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Homothetic Motions and Dual Transformations
1. Introduction

Kinematics is a subfield of physics, deals with the motions of points, bodies, and systems of bodies without
considering the forces that cause them to move: mention frames, variables, and transformations. The study of
kinematics is often referred to as the geometry of motion. Motion is the phenomenon of constant displacement of
a rigid body relative to a certain reference point. Displacement of a rigid body is used to describe the motion of
systems in mechanical engineering, robotics, biomechanics, astrophysics, and in other areas related. Homothetic
motions of a rigid body in n-dimensional Euclidean space are generated by the homothetic transformations. In [1],
the n-dimensional homothetic motion of a body in Euclidean space is generated by the transformation

=["" 116 )

where h = h.I, is a scalar matrix, A € SO(n) and a € RT. Here, if h = 1 in (1) one-parameter motions are defined.
If A € O(n) that provides the property

where

=

s=|.|ery
1

then A is called an umbrella matrix. Umbrella motions and homothetic motions in Euclidean spaces are given in
[2]. Also, homothetic motions are studied by several authors [3] - [6].

The relationship between Euclidean and Lorentzian rotational motion matrices is given by using dual
transformations between SO(n+ 1) and SO(n,1) in [7]. In the light of this study, we examined dual
transformations in dual spaces by investigating invariant axes in both spaces, see [8]. Additionally, we carry this
research into Galilean spaces in [9]. Kinematics applications of dual transformations are also studied in [10]. In
kinematics, there has been very important activities of an experimental nature concerning not only the study of
models and the visualization of flows, but also that of objects like the human figure and the bodies of animals.
Previous studies on kinematics can be used to obtain extensive information, cited as references [11] - [18]. Our
paper is also expected to contribute to the existing literature on kinematics and its applications.

The main objective of this paper is to define a transition from Euclidean homothetic motion matrices to Lorentzian
homothetic motion matrices by means of dual transformations. Even though many researchers were worked on
affine kinematics in both spaces, the new and the most intriguing part of this study is to give the relationship
between homothetic motions in different spaces. In other words, the dual transformation defined in this paper
works as a handy tool for obtaining Lorentzian homothetic motions from Euclidean homothetic motions.
Additionally, we acquire umbrella motion matrices in Lorentzian space with a similar method. We examine the
invariance of the axis of the umbrella motion that is ¥ = (1,1,..,1) in both spaces. Moreover, we provide some
examples making effective our obtained results. Furthermore, we draw their figures to give visual representations.
Considering the importance of dual space in kinematics, we also focus on homothetic motions in dual spaces.

2. Material and Method

This section includes two subsections to give a background for Lorentzian space and dual transformations. Since
we present the concepts with their dual notions in the following subsections, it would be appropriate to give the
preliminaries of dual space beforehand.

Definition 2.1 If a and a* are real numbers and €? = 0, the combination & = a + ea* is called a dual number, where
€ is the dual unit.

Definition 2.2 The set of all dual numbers forms a commutative ring over the real number field and is denoted by
D. The set D3 = {5 = (a,4,,03)|4; € D,1 <i < 3}is called a D-module or dual space.
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Definition 2.3 The elements of D? are called dual vectors. A dual vector & can be written & = @ + ed@* where @
and d@* are real vectors in R3.

(a,a)

la|?

Definition 2.4 The norm of a dual vector 3 is defined by |§| =|d|+e

For more details about dual space see [19].

2.1 Background on Lorentzian space

We mention some fundamental definitions and properties in Lorentzian space that we use in this paper.
Definition 2.5 The Lorentzian metric (, ) defined by

(U, V) = Uy + UVt FUp 1 Vpq — UpTy (2)
in E* will be used in this study.

It is pointed out that {, ) is a non-degenerate metric of index 1. It can also be written in the form:

0 .. 0
1 T
.o . |v=uGv. (3
00 .. -1

After giving the Lorentzian metric, we recall that a vector v € EJ* can have one of three casual characters as given
below.
Definition 2.6 A vector v € E]' is called

e spacelike if (v,v) > 0orv =0,

o timelike if (v, v) < 0,

« lightlike if (v, v) = 0 and v # 0.

Since we will be working with more matrices in this study, let us recall some properties of Lorentzian matrices,
see [20].

Definition 2.7 Ann X n matrix S is called
e semi symmetric if ST = GSG or S = GSTG,
« semi skew-symmetric if ST = —GSG or § = —GS7G,
e semi-orthogonal if ST = GS™1G or S™! = GSTG, where G is the sign matrix of Lorentzian space, see [21].

We will use dual vectors in the sections concerning dual spaces, so we need the following definition.
Definition 2.8 The Lorentzian inner product of dual vectors @ and b is defined by
(8.8) = (a.B) + e((@ ") + (@)

with @ =d +ed* and b = b + eb* . A dual vector & is called timelike if (51 , é) < 0, spacelike if (5 , 5) > 0 and
lightlike (or null) if (5 , 5) = 0, where {, ) is Lorentzian inner product. We call the dual space D3 together with this
Lorentzian inner product as dual Lorentzian space and indicate it by D3.

Previous studies in Lorentzian space can be used to achieve more information [22] - [24]. Also, in Lorentzian
space, rotational motions are studied by [25] and [26].
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2.2 Dual transformations

The dual transformation between SO(n)\{a,, = 0} and SO(n — 1,1) which is defined below, will be used for
obtaining semi-orthogonal matrices from orthogonal matrices. We acquire Lorentzian matrices from Euclidean
matrices by using this dual transformation.

Definition 2.9 Dual transformation between SO(n)\{a,, = 0} and SO(n — 1,1) is defined in Dohi et al. (2010).
Two sets can be given by

SO(n) = {A € GL(n, R)|ATA = AAT = I,,,detd = 1},

SO(n —1,1) = {A € GL(n,R)|ATGA = AGAT = G,detd = 1},
Iy O . . . :
where G = [ 0 _1 ] and [, is n X n identity matrix.

Let A € SO(n), then it can be written in the block form as

B C
A‘[D -

where a,, # 0. Here, B is an (n — 1) X (n — 1) square matrix, C is a column matrix and D is a row matrix. Since
a,, #* 0, then we can use the following two sets given by

S; ={4 € SO(n)|a,, # 0},
S, ={A€S0(n—-11)|a,, # 0}
Therefore, the dual transformation can be defined as

[:6, -6,

fram fea) = [ BT C 4)

here T denotes transposition.

We now give the definition of dual transformation in dual spaces. We will use it for obtaining dual semi-orthogonal
matrices from dual orthogonal matrices.

Definition 2.10 There is dual transformation between SO(n)\{@,, = 0} and SO(n — 1,1). Firstly, we give the
following sets:

SO(n) = {A € GL(n,D)|ATA = AAT = I,,,detd = 1},

SO(n—1,1) = {A € GL(n,D)|ATGA = AGA™ = G,detd = 1},
[l O . . . :
where G = [ 0 _1 ] and I, is n X n identity matrix.
We write the dual matrix A € SO(n) in the block form as

=15 Gl
ann

where @,,, # 0. Since a,,,, # 0, then two sets can be written as

) T

G/5\1 = {A € Sﬁ(n)lann # 0},

S, ={AesO(n—1,1)|a,, # 0}
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Now, f dual transformation can be defined as below
f16, -6,

fido fh) = 2=|

Ann

A (BHT C
-D 1

(5)

For more details about dual transformation in dual space see [8].
3. Results

This section includes five subsections to investigate homothetic motions and umbrella motions with the help of
dual transformations. We also carry the results into the dual space.

3.1 Homothetic motions and dual transformations

In this section, we examine homothetic motions by means of dual transformations. We obtain a Lorentzian
homothetic motion from a Euclidean homothetic motion.

Theorem 3.1 Let H € E™ given by
_[hA a
H=| . ‘] (6)

where h = h.I, is a scalar matrix, A € SO(n — 1) and a € R},
fr defines a dual transformation,

fu:E" = ET

h.f(A
Ho fu =, =" 4] )

where f is the dual transformation given in (4), thus f(4) € SO(n — 2,1). The semi-orthogonal matrix H, € E}'
represents the homothetic motion in n-dimensional Lorentzian space.

Proof We show that
fi (H) = fu(fu(H))
= fu(H), f*=id.
=H
2 =id.
Thus, f}, is a dual transformation.

3.2 Applications with one-parameter homothetic motions

After examining homothetic motions with dual transformations, we investigate one-parameter homothetic
motions by means of dual transformations. One-parameter homothetic motion in n-dimensional Euclidean space
is generated by the transformation

[Y(lt)] _ [h.gl(t) a(lt)] _ [th)] (8)

where h = h. I, is a scalar matrix, A(t) € SO(n).
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By using f,, dual transformation in (7), Lorentzian one-parameter homothetic motion matrix can be represented
by

Hy(t) = [h'f gA(t)) ‘;(t)]. 9)

Example 1 Let H € E* be a one-parameter homothetic motion matrix is given by

—2tcos?(t) +t 2tsin(t) — 2tcos(t) 2tsin(t)cos(t) + 2t t
H(t) = 2tsin(t) + 2tcos(t) t 2tcos(t) — 2tsin(t) t?
2tsin(t)cos(t) — 2t  2tsin(t) + 2tcos(t) 2tcos?(t) —t t3

0 0 0 1

Then, Lorentzian one-parameter homothetic motion matrix H; (t) can be obtained by using f;, as follows

2tcos?(t) —t
—2tsin(t) + 2tcos(t)

t —2tsin(t) — 2tcos(t)

2tsin(t)cos(t) + 2t

2tcos?(t) —t
—2tcos?(t) +t

2tcos?(t) —t
2tcos(t) — 2tsin(t)

HL(t) = 2tcos2(t) —t

—2tsin(t)cos(t) + 2t

2tcos?(t) —t
—2tsin(t) — 2tcos(t)

2tcos?(t) —t

2tcos?(t) —t

2tcos?(t) —t
1
2tcos?(t) —t

2

t3

0 0 0 1

Example 2 Let A(t) be a homothetic matrix is given by

2(t—t3) 43 —-t?) 43 +t?H)
1+ 3t2 1+ 3t2 1+ 3t2
A(t) = 4(e3+¢t2) 2(t—t3) 4@2-t?H)
1+ 3t? 1+ 3t? 1+ 3t?
43—t 43 +t?) 2(t-t3)
1+ 3t? 1+ 3t? 1+ 3t?

If we multiply the matrix A(t) with the curve ¢(s) = (sin(s), cos(s), s*), then we obtain the matrix A(t). ¢(s). The
2sin(s)(t—t3) | 4cos(s)(t3-t?)
1+3t2 1+3t2

elements of the matrix A(t).¢(s) can be represented by a surface S; = W(¢t,s) = (

453(t3-t?) 4sin(s)(t3-t?) 253 (t—t3)

’

4s3(t3+t?) asin(s)(t3+t?) | 2cos(s)(t—t3) 4cos(t3+t?)

1+3t2 ' 1+3t2 1+3t2 1+3t2

). See Fig. (1).

1+3¢t2 1+3t2 1+3t2

Figure 1. The surface S; € E®

By using f dual transformation, we obtain the Lorentzian homothetic matrix 4; (t).
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—4(t3+t?) 43 +t?)]

1 2(t —t3) 2(t —t3)
| -4 —t%) 4(t3 - t?)
Am = 2(t — t3) 2(t — t3)

—4(t3 —t%) —4(t3+t?)
2(t—t3)  2(t—t3)

1

By multiplying the matrix A, (t) with ¢(s), we acquire the matrix A;(t).¢(s). The elements of the matrix
—4cos(s)(t34t2)  4s3(t3+t?) —asin(s)(t3-t?)
2(t-t3) 2(t-t3) 2(t-t3)

A;(t).¢(s) can be expressed as a surface S, =W¥(t,s) = (sin(s) +

453 (t3-t?) —4sin(s)(t3-t?) = —4cos(s)(t3+t?)

cos(s) + 2(t-t3) '’ 2(t-t3) 2(t-t3)

+ 53). See Fig. (2).

Figure 2. The surface S, € E3

3.3 Umbrella motions and dual transformations

In this section, we define a transition from a Euclidean umbrella motion to a Lorentzian umbrella motion. We
obtain an umbrella matrix in E{* from an umbrella matrix in E™ with the help of a dual transformation.

Theorem 3.2 Let U € E™ given by
(A C
U= [0 1 (10)
where Aisan (n — 1) X (n — 1) umbrella matrix. f,, defines a dual transformation,
furE™ > ET
_y =[fA C
Un fWy=u, =1 ] (11)

where f is the dual transformation given in (4), thus f(4) € SO(n — 2,1). The semi-orthogonal matrix U, € E}
represents the umbrella motion in n-dimensional Lorentzian space.

Proof f, is a dual transformation, since it holds
fEU) = fu(fu(0))
= fu(U), f*=id.
=U
fii =id.
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Example 3 Let U represents the umbrella motion in E* given by

1 1-vV3 1443
3 3 cosé
1++3 1 1-/3 |
U= 3 3 3 sind |
1-v3 1+V3 1
3 3 3 0
0 0 0 1

By applying the f,, dual transformation to the umbrella motion matrix U, we obtain the Lorentzian matrix f,,(U) =
U, as follows

1 —1—-+/3 1++V3 coso
y =| "1+V3 1 1-+3 sinb |
-1+V3 -1-+3 1 0
0 0 0 1

Theorem 3.3 f dual transformation leaves invariant the axis of the umbrella matrix in E™ and EJ', which is ¥ =
(1,1,..,1).

Proof The Euclidean umbrella matrix A € SO(n) and the Lorentzian umbrella motion matrix f(4) € SO(n — 1,1)
leave the same axis invariant, where f is the dual transformation given in (4). Thus, it holds that

1 1 1 1
1 1 1 1

Example 4 Let A be an umbrella matrix in E3 given in Ex. 3 as follows

1 1—+/3 1+4+3]
3 3 3

Ao 14++3 1 1—\/§_
3 3 3
1-v3 1++3 1
3 3 3

We acquire the Lorentzian umbrella matrix 4; under the f dual transformation as follows

1 -1-+v3 1++3
A =|-1++3 1 1-V3|
-1+v/3 -1-v3 1

Now, let us verify that f dual transformation leaves invariant the axis of the matrix A, which is ¥ = (1,1,..,1), as
given in Theorem 3.3.

1 1-v3 14+/3]
3 3 3
1+V3 1 1-43 Hz[ﬂ
3 3 3 |1 L1
1-v3 1+4/3 1
3 3 3

1 -1-vV3 1+V3] 11 1
-1++V3 1 1-v3 -H=H-
-1+v3 -1-v3 1 S
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Example 5 Let A be an umbrella matrix is given by

1-62  2(0%2-6) 2(62+06)
14362 1+362 1+ 3¢t2
2(024+6) 1-6%2 2(0%2-0)
1+362 1+302 1+302 |
2(02—6) 2(02+6) 1—62
1+362 1+362 1+ 362

If we multiply the matrix A with the curve ¢(a) = (sin(a), cos(a), a®), then we obtain the matrix A. ¢(a). The
2a3(0%+0) | sin(a)(1-62)
362+1 362+1

elements of the matrix A.¢(a) can be represented by a surface S; =W¥(0,a) = ( +

2cos(a)(0%-0) 2a%(6%2-0) | 2sin(a)(0%+0) , cos(a)(1-0%) a3(1-62) , 2sin(a)(6%2-0) , 2cos(a)(0%+8)
362+1 ' 30%2+1 362+1 362+1 362+1 362+1 362+1

). See Fig. (3).

’

Figure 3. The surface S; € E3
With the help of f dual transformation, we can get the Lorentzian matrix A; as below

—2(02+60) 2(62+0)

1 1— 62 1— 02
-2(6%-9 2(6%2 -6
AL: ¥ 1 g A
1-—062 1—62
—2(0>—0) —2(0%+06) .
1-—062 1-—062

By multiplying the matrix A; with ¢(a), we acquire the matrix 4;. ¢(«). The elements of the matrix 4;. ¢ (a) can
2a3(62+6)  2cos(a)(62+6) 2a3(62-0) n —2sin(a)(6%-0)
1-62 1-62 1-62 1-62

)- See Fig. (4).

be expressed as a surface S, = ¥(8,a) = ( + sin(a),
—2sin(a)(6?-0)  2cos(a)(6°+6)

1-62 1-62

cos(a), a® +
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Figure 4. The surface S, € E3

3.4. Dual homothetic motions and dual transformations

In this section, we examine homothetic motions in n-dimensional dual space D™. We give a transition from a dual
homothetic motion matrix in £™ to a dual homothetic motion matrix in EI* by means of dual transformations.

Theorem 3.4 Let H € E™ given by

g_[hA a
H:[ 12
0 1 (12)

where h = h.1, is a scalar matrix, A € SO(n — 1) and @ € D7 . f; defines a dual transformation,

A~

A m fuf) = A, =PI 4] (13)
where f is the dual transformation given in (5), thus f(4) € SO(n — 2,1). The dual semi-orthogonal matrix H, €
E? represents the homothetic motion in n-dimensional dual Lorentzian space.

Proof We show that
fi () = fu(fu(D))
= fu(H), f*=id.
=H
2 =id.
Therefore, f}, is a dual transformation.

Example 6 Let A € E* be a dual homothetic matrix for § = 6 + ¢ is given by

[ cos28 —sin?0  2cosfsin —2  2cosh + 2sinf 52
3 3 3
2cosfsind + 2 —cos?8 + sin?  2sind — 2cosh .
0= 3 3 3 2cosf |
2cosf — 2sinf  2sinf + 2cosb 1 oA
3 3 3 2sinf
0 0 0 1

Thus, we can obtain the dual homothetic matrix H; with the help of f;, dual transformation is given in (13).

sin?f — cos2§  —2 — 2cosf@sind  2cosf + 2sind 62

7 = | 2—2sinfcosf  —sin®d +cos’d  —2cosf + 2sinf  2cosh
t —2cosf + 2sinf  —2cosh — 2sinf 3 2sind
0 0 0 1

3.5 Dual umbrella motions and dual transformations

In this section, we carry our work in umbrella motions from n-dimensional real space to dual space D". We give a
transition from a dual Euclidean umbrella motion to a dual Lorentzian umbrella motion by using the dual
transformation. Thence, we acquire a dual umbrella matrix in E‘f from a dual umbrella matrix in E™.

Theorem 3.5 Let U € E™ given by
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0= [A ¢ (14)
0 1

where A is an (n — 1) x (n — 1) dual umbrella matrix. £, defines a dual transformation,

0o f,(0)=0, = [g@ ¢ (15)

where f is the dual transformation given in (5), thus f(4) € SO(n — 2,1). The dual semi-orthogonal matrix U, €
E? represents the umbrella motion in n-dimensional dual Lorentzian space.

Proof Since f, is a dual transformation, it satisfies
£ 0) = fu(£u(0))
= fu(0), f*=id.
=0
2 =id.

4, Discussion and Conclusion

The geometry of the motion is important in the study of spatial mechanisms. It has a number of applications in
geometric modeling of mechanical products or in the design of robotic motion. In this study, homothetic motions
of arigid body are examined. The new and the exciting part of this study is to define the dual transformation as a
handy tool for obtaining one homothetic motion from another. We define a transition from Euclidean homothetic
motion matrices to Lorentzian homothetic motion matrices. We give this transition by using dual transformations.
With a similar method, we acquire umbrella motions in Lorentzian spaces. We also investigate the invariance of
the axis of the umbrella motion thatis ¥ = (1,1,..,1) in both spaces. Additionally, related examples of matrices are
provided. Furthermore, we draw their figures to investigate visual representations. Finally, because of the
importance of the dual space in kinematics, robotics, and other areas related, we carry this work into dual spaces.
Our paper is expected to contribute to the existing literature on kinematics.
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