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Abstract − The Poisson regression model is widely used for count data. This model assumes 

equidispersion. In practice, equidispersion is seldom reflected in data. However, in real-life data, the 

variance usually exceeds the mean. This situation is known as overdispersion. Negative binomial 

distribution and other Poisson mix models are often used to model overdispersion count data. Another 

extension of the negative binomial distribution in another model for count data is the univariate 

generalized Waring. In addition, the model developed by Famoye can be used in the analysis of count 

data. When the count data contains a large number of zeros, it is necessary to use zero-inflated models. 

In this study, different generalized regression models are emphasized for the analysis of excessive zeros 

count data. For this purpose, a real data set was analysed with the generalized Poisson model, 

generalized negative binomial model, generalized negative binomial Famoye, generalized Waring 

model, and the foregoing zero-inflated models. Log-likelihood, Akaike information criterion, Bayes 

information criterion, Vuong statistics were used for model comparisons. 

Keywords − Count data, overdispersion, generalized distribution models, zero-inflated 

Mathematics Subject Classification (2020) − 62P10, 62J05  

1. Introduction 

In regression analysis, the relationship between a dependent variable and one or more independent variables 

is examined. When the dependent variable consists of count data, count regression models are used instead of 

classical regression analysis. Count data can be expressed as observations consisting of nonnegative integers 

that can take the value of zero or a value greater than zero and show a discrete distribution [1]. Count data are 

generally right skewed and do not show normal distribution [2]. Different count regression models are used 

according to the mean and variance in modelling this type of data. Poisson regression analysis is based on the 

assumption of equidispersion, in other words, equality of mean and variance(mean=variance) in cases where 

the dependent variable is count data. In practice, however, even the distribution of data is rare. In practice, 

however, the variance usually exceeds the mean. This occurrence of non-Poisson variation is known as 

overdispersion (mean>variance) [3]. In cases where the variance is smaller than the mean, the data is 

considered underdispersion (mean<variance). Modelling overdispersion or underdispersion count data with 

inappropriate models can lead to overestimated standard errors and misleading inferences [4]. In this case, 

regression models containing the dispersion parameter should be used in the dataset instead of Poisson 

 
1oznur.isci@mu.edu.tr (Corresponding Author); 2burcudurmus@mu.edu.tr 
1Department of Statistics, Faculty of Science, Muğla Sıtkı Koçman University, Muğla, Turkey 
2Rectorate Performance Analysis Unit, Muğla Sıtkı Koçman University, Muğla, Turkey 

New Theory
Journal of

ISSN: 2149-1402

New Theory
Journal of

www.newtheory.org

ISSN: 2149-1402

Editor-in-Chief
NaimÇağman

Number 35 Year 2021

https://dergipark.org.tr/en/pub/jnt
https://orcid.org/0000-0003-3677-7121
https://orcid.org/0000-0002-0298-0802


49 

 

Journal of New Theory 35 (2021) 48-61 / Models for Overdispersion Count Data with Generalized Distribution … 

regression. Two approaches explain the overdispersion that occurs in Poisson regression. One of these 

approaches is the semi-likelihood approach, and the other approach is the mixed Poisson model approach [5]. 

Besides several models for modelling overdispersion count data, such as negative binomial distributions, 

quasi-Poisson, and other Poisson mixes, there are several models for underdispersion count data [6,7]. Harris, 

Yang, and Hardin (2012) proposed a generalized Poisson (GP) regression model for underdispersion count 

data [8].  

Count data can be expressed as observations made up of nonnegative integers and showing a discrete 

distribution. For this reason, count data are generally right-skewed and do not show normal distribution. 

Poisson regression or alternative models are used in modelling this type of data, depending on the state of 

mean and variance. Count data can be analysed using regression models based on the Poisson distribution in 

the case of equidispersion. However, other discrete regression models, such as the generalized negative 

binomial distribution (GNB), can be used in case of overdispersion [9,10]. Also, a model was investigated by 

Famoye (1995) to show its use for analysing grouped binomial data [11]. In case of overdispersion, GNB is 

recommended besides the negative binomial distribution. GP has been found to be useful in fitting 

overdispersion and under dispersion count data to a model [12]. GNB is a simplification based on the 

generalized negative binomial distribution. 

The generalized Waring distribution is an extension of the negative binomial distribution. This 

distribution is known as the beta negative binomial distribution. Waring distribution was first proposed and 

used by Irwin (1968) to model accident number data [13]. One advantage of this model over the negative 

binomial model is that researchers can distinguish unobserved heterogeneity from internal factors of each 

individual's characteristics and covariates that can affect the variability of the data. These models obtain 

parameter estimates by including the effect from overdispersion into the model. 

Generalized Famoye (GNB-F) and generalized Waring (GNB-W) models have different applications in 

the literature. Various applications of GNB-F have been demonstrated in physics, ecology, medicine, etc. [14-

16]. Another issue to be considered in the analysis of count data is the zeros' density in the dependent variable. 

Count data have zero values by nature, and the classical ordinary least squares (OLS) method does not give 

good estimates because it does not show a normal distribution.  

The presence of more than expected zero values in the data set is defined as zero inflation [17,18]. It is 

more appropriate to analyse such data sets with zero-inflated models that take into account zeros [19]. Zero-

inflated models are used in different fields such as econometrics, demography, medicine, public health, 

biology, agriculture, etc. Failure to use appropriate methods to analyse zero-inflated data may result in biased 

parameter estimates, smaller standard errors, and inconsistent results [20]. Zero-inflated count data may lack 

equality of mean and variance. In such a case, overdispersion or underdispersion must be taken into account. 

The zero-inflated generalized Poisson (ZIGP) model is an extension of the generalized Poisson 

distribution [21]. Other widely used methods are the zero-inflated negative binomial (ZINB) model and Hurdle 

models in case of excess zeros in the data [22,23]. There are two types of zeros in the zero-inflated model: 

"real zeros" and "excess zeros". There are situations where a zero-inflation model makes sense in terms of 

theory or common sense. Altun (2018) proposed Poisson-Lindley distribution for overdispersion data. The 

Poisson-Lindley distribution arises when the parameter of the Poisson distribution has the Lindley distribution 

[24]. Unlike the Poisson distribution, the Poisson-Lindley distribution allows for overdispersion. Therefore, 

this model is a good option for modelling datasets that are overdispersion and zero-inflated. 

In this study, some generalized models used for count data with overdispersion are discussed. These 

models are generalized Poisson (GP), generalized negative binomial Famoye (GNB-F), generalized negative 

binomial (GNB), generalized negative binomial Waring (GNB-W), zero-inflated negative binomial (ZINB), 

zero-inflated negative binomial Waring (ZINB-W) and zero-inflated negative binomial Famoye (ZINB-F) 

regression models. 
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2. The Generalized Models 

2.1. Generalized Poisson Regression Model (GP) 

The most widely used regression model for count data sets is the Poisson regression model with the log-link 

function. The most prominent feature of the Poisson model is its equidispersion. Still, in implementations, data 

sets often have a variance that exceeds the mean. When there is overdispersion in the data set, the generalized 

Poisson distribution is as follows [25]; 

𝑓(𝑦𝑖 , 𝜃𝑖, 𝑘) =
𝜃𝑖(𝜃𝑖 + 𝑘𝑦𝑖)𝑦𝑖−1𝑒−𝜃𝑖−𝑘𝑦𝑖

𝑦𝑖!
     𝑦𝑖 = 0, 1,2, … . (1) 

here 𝜃𝑖 > 0 and max (−1,
−𝜃𝑖

4
) < 𝑘 < 1. Also, the expected value and variance of the generalized Poisson 

distribution can be written as: 

𝜇𝑖 = 𝐸(𝑌𝑖) =
𝜃𝑖

1 − 𝑘
 

𝑣𝑎𝑟(𝑌𝑖) =
𝜃𝑖

(1 − 𝑘)3
=

𝜃𝑖

(1 − 𝑘)2
(2) 

𝐸(𝑌𝑖) = ∅𝐸(𝑌𝑖)  

In particular, the term ∅ = 1(1 − 𝑘)2 plays the role of a dispersed factor. It is clear that the generalized 

Poisson distribution for 𝑘 = 0 is the general Poisson distribution with the parameter of 𝜃𝑖. When 𝑘 < 0, under 

dispersion, occurs, while when 𝑘 > 0, overdispersion occurs [26]. The presence of overdispersion will cause 

the standard error to be below estimate and misinterpretation of the regression parameters. As a result, a 

number of estimation methods have been proposed to model data in the occurrence of overdispersion. These 

models include the quasi-Poisson or quasi-binomial regression model and the negative binomial distribution. 

Parameter estimates of these models are similar to the simple Poisson approach, but confidence intervals are 

larger [27]. As a result, the models will give different results in terms of the significance of the coefficients. 

2.2. Generalized Negative Binomial: Famoye (GNB-F) 

The GNB-F model assumes that the value of 𝜃 is an unknown scalar parameter. So, the probability mass 

function of the distribution, mean, and variance are given as: 

𝑃(𝑌 = 𝑦) =
𝜃

𝜃 + ∅𝑦
(

𝜃 + ∅𝑦
𝑦

) 𝜇𝑦(1 − 𝜇)𝜃−𝑦−∅𝑦  

0 < 𝜇 < 1, 1 ≤ ∅ < 𝜇−1   , 𝜃 > 0 and 𝑦𝑖 ∈ (0,1,2, … ) (3) 

𝐸(𝑌) = 𝜃𝑖𝜇(1 − ∅𝜇)−1  

𝑣𝑎𝑟(𝑌𝑖) = 𝜃𝑖𝜇(1 − ∅𝜇)−1(1 − ∅𝜇)−3  

Its main difference from the negative binomial model is that the θ parameter is unknown in Equation 2, 

but a known parameter in Equation 3 𝜎 = ∅ > 1. As the ∅ value approaches 1, the variance approaches the 

negative binomial. Thus, the parameter is generalized to have greater variance than is allowed in the GNB-F 

model. To compare the results of the Poisson and negative binomial distribution, the log link is as follows: 

𝑙𝑜𝑔(𝜇) = 𝑥𝛽 (4) 
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2.3. Generalized Negative Binomial Regression Model (GNB) 

The negative binomial distribution is the first distribution to consider when the variance is greater than the 

mean. Negative binomial regression is used as an alternative to Poisson regression because these two methods 

fit the model by using the same connection log link function [28]. NB model is often used to model 

overdispersion count result variables. The assumption that the Poisson parameter changes proportionally to the 

chi-square leads to the negative binomial distribution. 

The GNB model is based on the simplification of the generalized negative binomial distribution. If 𝜎 = ∅ 

and  𝜇 = 𝜋/(1 + ∅𝜋) expressions are substituted for  𝜎 and 𝜇 expressions given in Equation 3, the parameter 

becomes a vector of observation-specific known constants. When the 𝜃 parameter is known, while  ∅ > 1, the 

𝜎 parameter is not negative in the generalized negative binomial distribution. Thus, under these conditions, the 

probability mass function, mean, and variance are given by: 

𝑃(𝑌 = 𝑦) =
𝑛

𝑛 + 𝜎𝑦
(

𝑛 + 𝜎𝑦
𝑦 ) (

𝜋

1 + 𝜎𝜋
)

𝑦

(1 −
𝜋

1 + 𝜎𝜋
)

𝑛−𝑦−𝜎𝑦

 

𝐸(𝑌) = 𝑛
𝜋

1 + 𝜎𝜋
(1 −

𝜋

1 + 𝜎𝜋
) 𝜎−1 (5) 

𝑣𝑎𝑟(𝑌) = 𝑛
𝜋

1 + 𝜎𝜋
(1 −

𝜋

1 + 𝜎𝜋
𝜎) (1 + 𝜎𝜋)−3  

= 𝑛𝜋(1 + 𝜎𝜋)(1 + 𝜎𝜋 − 𝜋)  

Therefore, the variance is equal to binomial variance, = 0. It is equal to negative binomial variance 𝑖𝑓 𝜎 =

1. Here, if 𝜎 > 0, GNB generalizes the binomial distribution in the regression model. 

2.3.1. Generalized Waring Regression Model (GNB-W) 

The negative binomial distribution is a limiting case of the generalized Waring distribution. This distribution 

provides a model for the distribution of accidents. Here the variance is divided into three components. The 

first of these is the usual random component in classical accident theory; the other two can often be described 

as separate variances due to "liability" and "proneness". The sum of the last two components is the only 

component defined by the variation in sensitivity in classical theory [13]. The generalized Waring distribution 

(the number of crashes A) depends on three parameters: 𝜋, 𝑎, and 𝑘.  However, the "three-component 

distribution" is not necessarily a generalized Waring distribution. The generalized Waring distribution must 

satisfy the following conditions: 

i.  𝑌 / 𝑥, 𝜆𝑥, 𝑣 ~ Poisson (𝜇𝑥) 

ii. 𝜆𝑥 ,/𝑣 ~ Gamma (𝑎𝑥 , 𝑣) 

iii. 𝑣 ~ Beta (𝜌, 𝑘) 

In Irwin's study on accident data, 𝜆/𝑣 is specified as "accident liability" and 𝑣 as "accident proneness". 

Thus, the mass density function is given by: 

𝑃(𝑌 = 𝑦) =
Г(𝑎𝑥 + 𝜌)Г(𝑘 + 𝜌)

Г(𝜌)Г(𝑎𝑥+𝑘+𝜌)

(𝑎𝑥)𝑦(𝑘)𝑦

(𝑎𝑥 + 𝑘 + 𝜌)𝑦

1

𝑦!
(6) 

where 𝑎𝑥 , 𝑘 , 𝜌 > 0; 𝑎𝑥 = 𝜇(𝜌 − 1)/𝑘 and (𝑎)𝑤 is the Pochhammer notation Г(𝑎 + 𝑤)/Г(𝑤), if 

𝑎>0. 

𝐸(𝑌) = 𝜇 =
𝑎𝑥𝑘

𝜌 − 1
(7) 

𝑣𝑎𝑟(𝑌) = 𝜇 + 𝜇 (
𝑘 + 1

𝜌 − 2
) + 𝜇2 {

𝑘 + 𝜌 − 1

𝑘(𝜌 − 2)
}  
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2.3.2. Zero-Inflation Model 

Count models can also take zero value due to their nature. However, having more than the expected number 

of zero values in the data set is defined as zero inflation. In the datasets where most of the observations are 

zero, excluding the zero values from the analysis leads to incorrect results. Zero-inflated count data may lack 

equality of mean and variance. Therefore, when there are too many zeros, it may not be appropriate to use 

Poisson and other models. It is more appropriate to use zero-inflated Poisson (ZIP), zero-inflated negative 

binomial (ZINB), Poisson Hurdle (PH) or negative binomial Hurdle (NBH) regression methods in modelling 

dependent variables with more than the expected number of zero values [29]. 

Hardin and Hilbe (2012) describe two origins of the zero result [15]: Those who do not enter the counting 

process and those who enter the counting process and have a zero result. Therefore, the model should be 

divided into different parts, one being zero count 𝑦 = 0 and the other being nonzero 𝑦 > 0. The zero-inflated 

model can be given as: 

𝑃(𝑌 = 𝑦) = {
𝑝 + (1 − 𝑝)𝑓(𝑦),       𝑦 = 0

(1 − 𝑝)𝑓(𝑦),              𝑦 > 0
(8) 

In the above equation, p is the probability that the binary process will result in zero results. Here 0 ≤ 𝑝 <

1 and 𝑓(𝑦) is the probability function. Famoye and Singh (2006) proposed the zero-inflated generalized 

Poisson (ZIGP) model, an extension of the generalized Poisson distribution. In another widely used method, 

the negative binomial model may be preferred where the Poisson mean has a gamma distribution [21]. A 

natural extension of the negative binomial model, the zero-inflated negative binomial (ZINB) model, is used 

in case of excess zeros in the data [23]. 

For the Waring distribution and Famoye's proposed models, it is more appropriate to use zero-inflated 

versions if there are too many zeros in the data. In this context, ZINB-W and ZINB-F distributions have been 

proposed for models based on zero. 

3. Model Selection 

The fact that all p values in the model selection are less than 0.05 means that all explanatory variables are 

suitable for the model. However, the fact that all the explanatory variables are significant does not mean that 

the regression model applied will be suitable for the data. Various tests are used to determine which model is 

more suitable for count data. In this study, Akaike Information Criterion (AIC), Bayes Information Criterion 

(BIC), log-likelihood (LL) value and Vuong statistics were used. The interpretation that a model is good can 

be made when the AIC and BIC value is the smallest, or the LL value is the largest. Vuong test is one of the 

tests used to compare non-nested models. Apart from nested model comparisons, possible binary models can 

also be compared with the Vuong test. It is a widely used test, especially in zero-inflated model comparisons. 

In this way, it can be determined which models are suitable for models with excessive zeros. 

3.1. Log-Likelihood (LL) 

The advantage of using the maximum likelihood method (ML) is that the log-likelihood (LL) test can be used 

for model comparisons. The LL test can be used to test for the presence of overdispersion. To test the Poisson 

model against the GP model, where α is the overdispersion parameter, the hypothesis is expressed as 𝐻0: 𝛼 =

0 and 𝐻0: 𝛼 ≠ 0. Probability ratio statistics is calculated as; 

𝐿𝐿 = 2(𝑙𝑛𝐿1 − 𝑙𝑛𝐿0) (9) 

Where 𝐿1  and  𝐿0  are the log-likelihood under the respective hypothesis. LL has an asymptotic chi-square 

distribution with one degree of freedom [30]. When choosing the model over the LL value, the model with the 

largest log-likelihood value is determined as the appropriate model. 
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3.2. Akaike Information Criterion (AIC) 

This criterion, which is widely used to compare different models, can be expressed as follows [31]; 

𝐴𝐼𝐶 = 2𝑘 − 2𝑙𝑜𝑔(𝐿) (10) 

In this equation, L represents the maximum value of the log-likelihood function, and k represents the 

number of explanatory variables. Among the existing models, the model with the lowest AIC value is selected 

as the appropriate model. In cases where the number of parameters is larger than the sample size, the AICc 

proposed by Hurvich and Tsai should be used instead of AIC [32]. This value can be written as follows [31-

33]; 

𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +
2𝑘(𝑘 + 1)

𝑛 − 𝑘 − 1 
=

2𝑘𝑛

𝑛 − 𝑘 − 1
− 2ln (𝐿) (11) 

3.3. Bayes Information Criteria (BIC) 

Akaike derived the BIC (Bayesian Information Criterion) model selection criteria for selected model problems 

in linear regression [34]. The equation regarding the Bayesian measure of knowledge is as follows: 

𝐵𝐼𝐶 = −2𝑙𝑜𝑔(ℒ) + 𝑘𝑙𝑜𝑔(𝑛) (12) 

As in the Akaike information criterion, the model with the smallest BIC value among the available models 

is selected as the appropriate model. 

3.4. Vuong Test  

The Vuong statistic is used to compare non-nested models such as ZIP, NB and ZINB. This test is a statistic 

used when there is no missing observation in the data set [35,36]. Equations used for the Vuong test are given 

in Equation 13 and Equation 14. 

𝑉𝑢𝑜𝑛𝑔 =
�̅�√𝑛

∑ √𝑚 − �̅�
𝑛 − 1

=
�̅�√𝑛

𝑠𝑚

(13)
 

Here, 𝑚𝑖 is a random variable,  �̅� is the mean of  𝑚𝑖, 𝑠𝑚 is the standard deviation, and n is the sample size. 

Suppose we want to compare the probability density functions of the ZIP and ZINB models. The Ho and H1 

hypotheses are as follows: 

H0: ZIP and ZINB distribution functions are equal 

H1: ZIP and ZINB distribution functions are not equal 

Probability density functions with 𝑓1 and 𝑓2 , the representation way of 𝑚𝑖 is as follows; 

𝑚𝑖 = log (
𝑓1(𝑦𝑖/𝑥𝑖)

𝑓2(𝑦𝑖/𝑥𝑖)
) (14) 

Within the family of ZIP models, testing if a Poisson model is adequate corresponds to testing: 𝐻0 = ∅𝑖 =

0 vs. 𝐻0 = ∅𝑖 > 0.  In the interpretation of the Vuong test value having a normal distribution (e.g. for 𝛼 =

0.05 significance level), if the Vuong value is greater than 1.96, the first model is interpreted as "closer" to 

the real model; if the Vuong value is less than −1.96, the second model can be interpreted as "closer" to the 

real model. If the calculated value is not between (−1.96;  1.96), it is interpreted as "there is no difference 

between using the first or the second model" [37].  
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4. Experimental Results 

In this study, the data from a three-year study conducted by Hemmingsen et al. (2005) in four regions off the 

Norwegian coast to count parasites [38] were used. The dependent variable is the number of parasites 

(Intensity), while the independent variables are depth, length of the fish, and area. In addition, missing 

observations in the original data were removed from the model. Since the data set contains a large number of 

zeros, it was tested in zero-inflated models and generalized models. Statistical analysis of the study was made 

using Stata 14 software program. The frequency distribution showing the parasite density is given in Figure 1. 

 

Fig 1. Frequency distribution of the number of parasites  

4.1. Generalized Poisson Regression Model (GP) 

The Poisson regression model, one of the most widely used generalized models, was first tried because 

overdispersion was detected in observation values. The results obtained are given in Table 1. IRR values show 

exp β values in Tables. 

Table  1. Generalized Poisson regression model (GP) 

Generalized Poisson regression Number of obs = 1191    

 LR chi2(3) = 89.68    

Dispersion =  . 8910582 Prob > chi2 = 0.0000    

Log-likelihood = −2566.7445 Pseudo R2 = 0.0172    

Intensity IRR Std. Err. 𝒛 𝑷 > 𝒛 [𝟗𝟓% Conf. Interval] 

Depth 1.004756 . 0006329 7.50 0.000 1.00351 1.006003 

Length . 9981571 . 0028743 −0.64 0.521 . 9925496 1.003796 

Area 1.123788 . 047966 2.43 0.015 1.022953 1.234562 

_cons 2.024088 . 2408844 2.93 0.003 1.262374 3.245417 

/atanhdelta 1.427039 . 0548193   1.319595 1.534483 

delta . 8910582 . 0112936   . 8666833 . 9111886 

Likelihood-ratio test of delta=0: chi2(1)  =  1.8𝑒 + 04 Prob>=chi2 = 0.0000 

According to the results presented in Table 1, the length was found to be insignificant in terms of the 

number of parasites. The area and depth variables were found to be significant. According to the GP model, 

the length variable was found insignificant (𝑝 > 0.05). Area and depth variables are significant (𝑝 < 0.05). 

Accordingly, a one-unit increase in depth increases the parasite intensity approximately 1.005 times. When 

the area changes, the parasites density increases approximately 1.124 times. When the model is evaluated as 

a whole, it is significant according to the chi-square test. 
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4.2. Generalized Negative Binomial: Famoye (GNB-F) 

Results for GNB-F are shown in Table 2. According to this model, the depth, length, and area variables are 

significant (𝑝 <  0.05). The model was again found to be statistically significant (𝑃𝑟𝑜𝑏 > 𝑐ℎ𝑖2 = 0.0000).  

Table  2. Generalized negative binomial: Famoye (GNB-F) 

Generalized negative binomial-F regression Number of obs = 1191    

 LR chi2(3) = 120.96    

Log likelihood =  −2550.873 Prob > chi2 = 0.0000    

Intensity IRR Std. Err. 𝒛 𝑷 > 𝒛 [𝟗𝟓% Conf. Interval] 

Depth 1.006702 . 0013168 5.11 0.000 1.004.125 1.009286 

Length . 9756556 . 0050295 −4.78 0.000 . 9658476 . 9855632 

Area 1.245722 . 0802515 3.41 0.001 1.097957 1.413373 

_cons 15.753 6.412282 6.77 0.000 7.093826 34.98212 

/lnphim1 −6.154845 2.049813   −101.724 −2.137286 

/lntheta −1.64351 . 0809544   −1.802178 −1.484842 

phi 1.002123 . 0043521   1.000038 1.117975 

theta . 1933004 . 0156485   . 1649393 . 2265381 

4.3. Generalized Negative Binomial Regression Model (GNB) 

The GNB distribution is one of the most widely used models in cases where the variance is greater than the 

mean; that is, in the case of overdispersion. The results obtained are given in Table 3. The fact that 𝛼 = 5.34 

dispersion parameter is greater than zero indicates that it is overdispersion. According to the GNB model, the 

depth, length, and area variables are significant (𝑝 < 0.05). One unit increase in depth increases the parasite 

intensity nearly 1.006 times. When the area changes, the parasite intensity increases approximately 1.258 

times. 

Table  3. Generalized negative binomial regression model (GNB) 

Generalized Poisson regression Number of obs = 1191    

 LR chi2(3) = 114.65    

 Prob > chi2 = 0.0000    

Log likelihood = -2551.0291 Pseudo R2 = 0.0220    

Intensity IRR Std. Err. 𝒛 𝑷 > 𝒛 [𝟗𝟓% Conf. Interval] 

Depth 1.006555 . 0012471 5.27 0.000 1.004114 1.009002 

Length . 9753681 . 004905 −4.96 0.000 . 9658017 . 9850293 

Area 1.258504 . 0772588 3.75 0.000 1.115834 1.419414 

_cons 3.096207 1.192705 2.93 0.003 1.45524 6.587573 

/lnalpha 1.675206 . 0539381   1.56949     1.780923 

alpha 5.339897 . 288024   4.804195     5.935333 

Likelihood-ratio test of delta= 0: chibar2(01) =  1.8𝑒 + 04 Prob>=chibar2 =  0.0000 

4.3.1. Generalized Waring Regression Model (GNB-W) 

The results obtained for the GNB-W model are given in Table 4. The depth, length and area variables are 

significant according to the GNB-W model (𝑝 < 0.05).  
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Table  4. Generalized Waring regression model (GNB-W) 

Generalized negative binomial-W regression Number of obs = 1191    

 LR chi2(3) = 106.77    

Log likelihood =  −2544.401 Prob > chi2 = 0.0000    

Intensity IRR Std. Err. 𝒛 𝑷 > 𝒛 [95% Conf. Interval] 

Depth 1.008.675 . 0014077 6.19 0.000 1.005919 1.011437 

Length . 9783038 . 0058167 −3.69 0.000 . 9669695 . 9897709 

Area 1.204.492 . 0851747 2.63 0.009 1.048605 1.383554 

_cons 2.089.578 . 9044374 1.70 0.089 . 8946043 4.880748 

/lnrhom2 −.4083326 . 4713641   −1.332189 . 5155241 

/lnk −1.508367 . 0772628   −1.659799 −1.356935 

rho 2.664758 . 3133429   2.263899 3.674516 

k . 221271 . 017096   .1901771 . 2574488 

One unit increase in depth increases the parasites intensity approximately 1.008 times. When the area 

changes, the parasite intensity increases about 1.204 times. 

4.3.2. Zero-Inflation 

In the study, 651 observations within 1191 observations were found to contain zero values. In other words, 

approximately 55% of the parasite count data consists of zero observation. For this reason, analyses have also 

been made with zero-inflated models. The results of ZINB, ZINB-W, and ZINB-F models are given below. 

4.3.2.1. Zero-Inflated Negative Binomial Regression (ZINB) 

Zero-inflated models consist of two parts. ZINB model results are given in Table 5. The length variable is 

specified as the inflate variable. One unit increase in depth increases the parasites intensity approximately 

1.006 times. When the area changes, the parasite intensity increases approximately 1.238 times. As the length 

decreases, the parasite density decreases (−0.223). 

Table  5. Zero-inflated negative binomial regression (ZINB) 

Zero-inflated negative binomial regression Number of obs = 1191    

 Nonzero obs = 540    

 Zero obs = 651    

Inflation model = logit LR chi2(3) = 128.03    

Log likelihood =  −2539.562 Prob > chi2 = 0.0000    

Intensity IRR Std. Err. 𝒛 𝑷 > 𝒛 [𝟗𝟓% Conf. Interval] 

intensity       

Depth 1.006497 . 001221 5.34 0.000 1.004107 1.008893 

Length . 9693981 . 00494 −6.10 0.000 . 9597642 . 9791287 

Area 1.238253 . 0743365 3.56 0.000 1.100801 1.392868 

_cons 4.755356 1.888854 3.93 0.000 2.183137 10.35822 

inflate       

Length −.2229618 . 0809777 −2.75 0.006 −.3816751 −.0642484 

_cons 5.721762 2.252244 2.54 0.011 1.307444 10.13608 

/lnalpha 1.584263 . 061479 25.77 0.000 1.463767 1.70476 

alpha 4.875699 . 2997532   4.322209 5.500066 

Vuong test of zinb vs. standard negative binomial: 𝑧 =  2.58 Pr> 𝑧 =  0.0049 
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Using the ZINB distribution is more meaningful than the standard negative binomial distribution 

according to the Vuong test (𝑧 = 2.58 Pr > 𝑧 = 0.0049). The variables are significant for both parts of the 

model. 

4.3.2.2. Zero-Inflated Negative Binomial Regression-W (ZINB-W) 

The ZINB-W model was compared with the standard Waring model. Table 6 shows the results. One unit 

increase in depth increases the parasites intensity approximately 1.008 times. When the area changes, the 

parasite intensity increases approximately 1.164 times. As the length decreases, the parasite density decreases 

(−0.175). 

Table  6. Zero-inflated negative binomial regression-W (ZINB-W) 

Zero-inflated gen neg binomial-W regression Number of obs = 1191    

Regression link :  Nonzero obs = 540    

Inflation link: logit Zero obs = 651    

 Wald chi2(3) = 126.93    

Log likelihood = -2530.653 Prob > chi2 = 0.0000    

Intensity IRR Std. Err. 𝒛 𝑷 > 𝒛 [𝟗𝟓% Conf. Interval] 

intensity       

Depth 1.008.867 . 0013606 6.55 0.000 1.006204 1.011537 

Length . 9667968 . 0063723 −5.12 0.000 . 9543876 . 9793674 

Area 1.163945 . 0820843 2.15 0.031 1.013686 1.336477 

_cons 4.490452 2.178.058 3.10 0.002 1.735488 1.161873 

inflate       

Lengt −.1750797 . 0808031 −2.17 0.030 −.3334509 −.0167085 

_cons 4.615169 2.244926 2.6 0.040 . 2151952 9.015143 

/lnrhom2 −.9190866 . 4479906   −1.797132 −.0410411 

/lnk −1.337637 . 1120339   −1.55722 −1.118055 

rho 2.398883 . 1786959   2.165774 2.95979 

𝑘 . 262465 . 029405   . 2107211 . 3269151 

Vuong test of zinbregw vs. gen neg binomial(W): 𝑧 =  29.81 Pr > 𝑧 =  0.0000 

Bias-corrected (AIC) Vuong test: 𝑧 =  29.81 Pr > 𝑧 =  0.0000 

Bias-corrected (BIC) Vuong test: 𝑧 =  29.79 Pr > 𝑧 =  0.0000 

According to the Vuong test, this model is more significant than the generalized negative binomial 

distribution. The number of parasites increases as depth, length, and area change. 

4.3.2.3. Zero-Inflated Negative Binomial Regression-F (ZINB-F) 

The results found for ZINB-F are as in Table 7. When this model was compared with the results obtained with 

GNB-F, the Vuong test was found to be significant. 
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Table  7. Zero-inflated negative binomial regression-F (ZINB-F) 

Zero-inflated gen neg binomial-F regression Number of obs = 1191    

Regression link :  Nonzero obs = 540    

Inflation link: logit Zero obs = 651    

 Wald chi2(3) = 139.87    

Log likelihood =  −2539.562 Prob > chi2 = 0.0000    

Intensity_ IRR Std. Err. 𝒛 𝑷 > 𝒛 [𝟗𝟓% Conf. Interval] 

Intensity_       

Depth 1.006497 . 0012211 5.34 0.000 1.004107 1.008893 

Length . 9693989 . 0049403 −6.10 0.000 . 9597644 . 9791302 

Area 1.238.237 . 0743426 3.56 0.000 1.100775 1.392866 

_cons 2.318.361 9.117.887 7.99 0.000 10.72536 50.11299 

inflate       

Length −.2229628 . 0809865 −2.75 0.006 −.3816934 −.0642322 

_cons 5.721764 2.252445 2.54 0.011 1.307053 10.13647 

/lnphim1 −15.16193 695.4499   −1378.219 1347.895 

/lntheta −1.584.224 . 061541   −1.704842 −1.463606 

phi 1 . 0001809   1 . 

theta . 2051068 . 0126225   . 181801 . 2314003 

Vuong test of zinbregf vs. gen neg binomial(F): 𝑧 =  3.97 Pr> 𝑧 =  0.0000 

Bias-corrected (AIC) Vuong test: 𝑧 =  3.74 Pr > 𝑧 =  0.0001 

Bias-corrected (BIC) Vuong test: 𝑧 =  3.14 Pr > 𝑧 =  0.0008 

5. Conclusion 

Modelling discrete data is a special type of regression. As is known, linear regression analysis can be used in 

cases where the dependent variable is continuous. However, the data to be used in the analysis may not always 

be available continuously. In such cases, if the data are discontinuous, analyses using linear regression models 

will give ineffective, inconsistent, and contradictory results. Therefore, count data models should be used when 

the dependent variable consists of nonnegative discrete values. One of the most common models used in count 

data analysis is the Poisson regression model. The most important feature of the Poisson regression model is 

that the variance and mean are equal. Generally, this feature cannot be provided in practice. In this case, 

negative binomial regression analysis or generalized Poisson regression analysis is widely used. In addition, 

cases where count data contain too many zero values are encountered in many areas. In such cases, the zero-

inflated Poisson, zero-inflated Negative Binomial, Poisson Hurdle and Negative Binomial Hurdle regression 

models can be preferred. 

Table  8. Model Selection 

Count Models LL AIC BIC 

GP −2566.7445 5143.489 5168.902 

GNB-F −2550.873 5113.747 5144.242 

GNB −2551.0291 5112.058 5137.471 

GNB-W −2544.401 5100.802 5131.298 

ZINB −2539.562 5093.124 5128.702 

ZINB-W −𝟐𝟓𝟑𝟎. 𝟔𝟓𝟑 𝟓𝟎𝟕𝟕. 𝟑𝟎𝟔 𝟓𝟏𝟏𝟕. 𝟗𝟔𝟕 

ZINB-F −2539.562 5095.124 5135.785 
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This study aims to compare the generalized Famoye and Waring models with classical methods apart 

from the commonly used methods. Thus, GP, GNB-F, GNB and GNB-W models were examined by 

considering an overdispersion data set. Since approximately 55% of the data set consists of zero, the zero-

inflated models of these models were also tested, and a model comparison was made. As a result, LL, AIC, 

and BIC values for the six count models are given in Table 8. Due to the large number of zeros in the data set 

we were using, zero-inflated models yielded better results. Among these, the highest LL value and the lowest 

AIC and BIC values were obtained for the ZINB-W model. 

The study focused on generalized models, especially on count regression models. For these models, their 

performances can also be investigated by conducting a simulation study. In the case of different rates of zero 

values and outliers in the data set, the models' performances can be compared. Thus, the reliability of the 

obtained results can be increased by selecting the appropriate model for the data structure. 
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