

Cumhuriyet Science Journal

Cumhuriyet Sci. J., 42(3) (2021) 743-750 http://dx.doi.org/10.17776/csj.898192

How to use adjusted degree of distinguishability and inter-rater reliability simultaneously?

Ayfer Ezgi YILMAZ^{1,*}10

e-ISSN: 2587-246X

ISSN: 2587-2680

¹Hacettepe University, Faculty of Science, Department of Statistics, Ankara/TURKEY

Abstract

When the categories of a square contingency table are ordinal, weighted kappa or Gwet's AC2 coefficients are used to summarize the degree of reliability between two raters. In addition, investigating the reliability among raters, the term category distinguishability should be considered. The study aims to assess the inter-rater reliability and category distinguishability in ordinal rating scales together. The weighted kappa, AC2, and adjusted degree of distinguishability coefficients are applied to pathology data. The results are discussed over the pathologist pairs.

Article info

History: Received:16.03.2021 Accepted:06.08.2021

Keywords: Ordinal rating scales, Inter-rater reliability, Adjusted degree of distinguishability, Weighted kappa, AC2 coefficient.

1. Introduction

Square contingency tables are occurred with the same row and column classification [1] and are frequently used in many fields, such as medicine, sociology, and behavioral sciences [2]. When working on these kinds of tables, the inter-rater reliability of row and column variables is investigated. Inter-rater reliability shows the accuracy of the measurement of the data collected in the study, thus it has great importance [3]. It is expected to have reliable results when the severity of the disease is evaluated by several raters during a clinical trial when the radiographs are evaluated by trauma surgeons and radiologists, when two clinicians classified the patients in three categories according to their syndrome type, when the severity of depression is evaluated by two psychiatrists, or when a sample of interview protocols is examined by three evaluators.

The reliability of the raters is to be determined by measuring inter-rater agreement coefficients. Cohen's weighted kappa coefficient which is the most popular coefficient and AC2 coefficients are used to determine the level of agreement between the ordinal classifications of two raters [4,5].

It is also important to determine the distinguishability of the categories (or the severity of the disease). When the categories are not defined clearly or when the raters are not expert enough in their field, the distinguishability of the categories becomes lower. If the reason is unclearly defined categories, then different raters may understand these categories differently or even the same rater may not distinguish the categories correctly. As a result of this indistinguishability, there occurs a low agreement.

In this study, it is purposed to assess the inter-rater agreement coefficients and category distinguishability in ordinal rating scales together. It is aimed to discuss how category distinguishability affects the level of reliability, and the possible solutions of low distinguishability are. Degree of distinguishability, weighted kappa, and AC2 coefficients are applied to a very well-known carcinoma in situ of the uterine cervix data. The results are discussed over the pairs of pathologists. The coefficients to measure inter-rater reliability and adjusted degree of distinguishability are introduced in Section 2. The pathology data is analyzed in Section 3, followed by the conclusions in Section 4.

2. Materials and Methods

2.1. Inter-rater agreement coefficients

Cohen's weighted kappa coefficient [4] is suggested for the analysis of reliability between the classifications of two raters. Suppose two raters rate n observations into R categories, independently. Let π_{ij} is the probability of cell (i, j) where π_{i} indicates the ith row total

^{*}Corresponding author. e-mail address: ezgiyilmaz@hacettepe.edu.tr

http://dergipark.gov.tr/csj ©2021 Faculty of Science, Sivas Cumhuriyet University

probability and $\pi_{,j}$ indicates the jth column total probability. The weighted kappa coefficient (κ_w) is

$$\kappa_{w} = \frac{\sum_{i=1}^{R} \sum_{j=1}^{R} w_{ij} \pi_{ij} - \sum_{i=1}^{R} \sum_{j=1}^{R} w_{ij} \pi_{i.} \pi_{.j}}{1 - \sum_{i=1}^{R} \sum_{j=1}^{R} w_{ij} \pi_{i.} \pi_{.j}}.$$
 (1)

Gwet's AC2 coefficient [5] is suggested to overcome the prevalence and marginal probability problem of Cohen's kappa. AC2 coefficient is

$$AC2 = \frac{\sum_{i=1}^{R} \sum_{j=1}^{R} w_{ij} \pi_{ij} - \frac{w_T}{R(R-1)} \sum_{j=1}^{R} p_i (1-p_i)}{1 - \frac{w_T}{R(R-1)} \sum_{j=1}^{R} p_i (1-p_i)}, \quad (2)$$

where

$$w_T = \sum_{i=1}^R \sum_{j=1}^R w_{ij},$$
 (3)

and

$$p_i = (\pi_{i.} + \pi_{.j})/2.$$
 (4)

In Equations 1-3, w_{ij} are the weights range $0 < w_{ij} < 1$. Even there are many suggested weighting schemes, linear and quadratic weights are the well-known ones. For different weighting schemes in the literature, see [2].

• Linear weights [6]:

$$w_{ij} = 1 - \frac{|i-j|}{R-1} \tag{5}$$

• Quadratic weights [7]:

$$w_{ij} = 1 - \frac{(i-j)^2}{(R-1)^2}$$
(6)

In the literature, there are several interpretations of the kappa coefficient. The inference shown in Table 1 is the well-known one and can be assigned to the corresponding ranges of kappa [8].

Table 1. Interpretation of the kappa coefficient

Kappa	Strength of Agreement
0.81-1.00	Almost Perfect
0.61-0.80	Substantial
0.41-0.60	Moderate
0.00-0.20	Slight
< 0.00	Poor

2.2. Category distinguishability

One of the assumptions of the kappa coefficient is the raters should rate the items independently. Even

though the raters rate the items independently, because of the ordinal structure of the table, there occurs a correlation between their decisions. There are two main components of agreement: (1) Marginal homogeneity which corresponds to the differences in the marginal distributions of raters and (2) category distinguishability which is the ability for raters to distinguish the categories [9].

In the agreement studies, it is necessary to determine if the categories of the table are distinguishable from one to another [10]. If the categories are indistinguishable, then there could occur some differences between raters' perceptions. The categories may not be distinguished because of two reasons. The first problem might be due to the definition of the categories. Different raters may understand the categories differently or the same rater may not distinguish the categories correctly. The second problem might be due to the nonexpert raters. The raters may not be experts in their fields and it may be difficult to distinguish the categories. The measure to calculate the distinguishability level of the categories is called the degree of distinguishability.

The degree of distinguishability is suggested to investigate the ability of the raters to distinguish between two categories [9]. The adjusted version of the degree of distinguishability (ADD) is suggested by Yilmaz and Saracbasi [11]. ADD between i and i + 1 categories is calculated as

$$ADD_{i,i+1} = \begin{cases} 1 - \tau_{i,i+1}^{-1} & \text{if } \tau_{i,i+1} \ge 1, \\ 1 - \tau_{i,i+1} & \text{if } \tau_{i,i+1} < 1, \end{cases}$$
(7)

where $0 < ADD_{i,i+1} < 1$, i = 1, 2, ..., (R - 1). The odds ratio for square contingency tables is

$$\tau_{i,i+1} = \frac{\pi_{ii}\pi_{i+1,i+1}}{\pi_{i,i+1}\pi_{i+1,i}}.$$
(8)

The interpretation levels of ADD are given in Table 2 [11].

Table 2. Interpretation of ADD

ADD	Strength of Distinguishability
>0.99	Perfect
0.94-0.99	Substantial
0.82-0.93	Moderate
0.57-0.81	Fair
0.00-0.56	Poor

3. The Pathology Data

The pathology data discussed by Holmquist, McMahon, and Williams [12] is used to illustrate the use of the adjusted degree of distinguishability and inter-rater reliability. To investigate the variability in the classification of carcinoma in situ of the uterine cervix, seven pathologists are classifying 118 biopsy slides into five categories: (1) Negative, (2) Atypical Squamous Hyperplasia, (3) Carcinoma in Situ, (4) Squamous Carcinoma with Early Stromal Invasion, and (5) Invasive Carcinoma.

This data set has also been analyzed in the studies of Landis and Koch [13], Becker and Agresti [14], and Agresti [15]. In their studies, the categories are reclassified into three or four categories as (1), (2), (3)+(4)+(5) or (1), (2), (3), (4)+(5).

It is aimed to investigate carcinoma in situ of uterine cervix data from the point of inter-rater reliability, from the point of category distinguishability, and also from the point of inter-rater reliability and category distinguishability together.

3.1. From the point of inter-rater reliability

The estimated values of weighted kappa and AC2 coefficients with linear and quadratic weights, their standard errors are summarized in Figure 1 for each pair of pathologists. The levels of agreement are highlighted by Landis and Koch [8] intervals.

PAIR	Kw_L	Sdt.Error	ſ	PAIR	Kw_Q	Sdt.Error	PAIR	AC2_L	Sdt.Error		PAIR	AC2_Q	Sdt.Error	
EF	0.266	0.052		EF	0.365	0.077	EF	0.440	0.049		EF	0.628	0.056	
BF	0.320	0.055		BF	0.419	0.076	AF	0.463	0.051		AF	0.633	0.058	
AF	0.334	0.052		AF	0.452	0.071	BF	0.518	0.045		BF	0.702	0.042	
DE	0.343	0.054		DE	0.471	0.072	DE	0.550	0.042		AD	0.732	0.047	Fair
BD	0.406	0.054	Ī	CF	0.499	0.087	AD	0.579	0.045		DE	0.741	0.042	Moderate
FG	0.406	0.055		FG	0.510	0.073	BD	0.604	0.040		AC	0.769	0.050	Substantial
CF	0.408	0.060		BD	0.523	0.073	FG	0.610	0.041		FG	0.774	0.037	Almost perfect
CE	0.429	0.056		CE	0.524	0.082	CF	0.623	0.043		CF	0.774	0.045	
AD	0.440	0.052		BC	0.532	0.086	AC	0.630	0.044		BD	0.783	0.041	
BC	0.454	0.059		AD	0.549	0.067	CE	0.633	0.042		CE	0.788	0.044	
DF	0.462	0.055		CD	0.554	0.080	AE	0.655	0.040		BC	0.807	0.037	
CD	0.477	0.058		AC	0.586	0.076	BC	0.663	0.041		AE	0.809	0.039	
AC	0.494	0.053		DF	0.597	0.071	DF	0.679	0.038		CD	0.818	0.038	
AE	0.509	0.053		CG	0.622	0.079	CD	0.684	0.040		DF	0.832	0.034	
DG	0.545	0.052		AE	0.632	0.068	AG	0.700	0.039		AG	0.832	0.037	
EG	0.550	0.053		EG	0.643	0.072	AB	0.713	0.039		AB	0.837	0.036	
CG	0.557	0.056		DG	0.654	0.071	DG	0.713	0.035		CG	0.851	0.035	
AG	0.563	0.050		AB	0.663	0.068	CG	0.735	0.037		DG	0.855	0.033	
AB	0.572	0.054		AG	0.667	0.064	EG	0.736	0.038		EG	0.859	0.034	
BE	0.586	0.054		BE	0.679	0.073	BE	0.764	0.036		BE	0.880	0.032	
BG	0.651	0.055		BG	0.699	0.074	BG	0.814	0.034		BG	0.895	0.029	

Figure 1. The levels of inter-rater reliability that are highlighted by Landis and Koch's intervals

The results show that the values of quadratically weighted agreement coefficients are higher than the linearly weighted ones. Furthermore, the values of the AC2 coefficient are higher than the weighted kappa. The value of the inter-rater reliability is higher when the quadratically weighted AC2 coefficient is used and is lower when the linearly weighted kappa coefficient is used.

According to the linearly weighted kappa results, there are fair agreements between Pathologists E and F, B and F, A and F, D and E. According to the quadratically weighted kappa results, there is a fair agreement between Pathologists E and F. According to the AC2 coefficient results, there are more than fair agreements between all the pairs of pathologists. In general, Pathologist F has a low agreement with the other pathologists. The highest agreement is observed between Pathologists B and G, B and E. As the overall agreement coefficient, Light's weighted kappa [16] is used. Linearly weighted Light's kappa is calculated as 0.465 and the quadratically weighted one is calculated as 0.564. There is a moderate agreement between the seven pathologists' decisions.

3.2. From the point of category distinguishability

The levels of ADD that are highlighted by Yilmaz and Saracbasi [11] intervals are given in Figure 2 for the adjacent categories. The results show that six pairs of pathologists cannot classify (1) and (2) well. Three pairs of pathologists cannot classify (2) and (3) well. 14 pairs of pathologists cannot classify (3) and (4) well. 10 pairs of pathologists cannot classify (4) and (5) well. In general, pathologists have difficulties classifying the last three categories.

According to the results in Figure 2, when Pathologists C and E cannot distinguish (1) and (2) well, Pathologist G substantially distinguishes. When Pathologist F cannot distinguish (2) and (3) well, Pathologist G substantially distinguishes. When Pathologist F cannot distinguish (3) and (4) well, Pathologist B substantially

PAIR	ADD12]	PAIR	ADD23]	PAIR	ADD34]	PAIR	ADD45	ĺ	
CE	0.662		BF	0.642		EF	0.061]	CD	0.000		
BE	0.690		CF	0.687		CG	0.085]	AF	0.222	ΙC	Poor
AE	0.720		DF	0.740		CD	0.103		DF	0.400		Fair
BC	0.780		DE	0.815		AF	0.174		FG	0.400		Moderate
AC	0.791]	EF	0.824]	BF	0.182]	BD	0.444		Substantial
DE	0.811		BC	0.825		AG	0.369]	DE	0.667		
EF	0.815		AF	0.842		CE	0.533]	AG	0.800		
DF	0.856		AE	0.858		BD	0.574]	BG	0.800		
EG	0.872		CD	0.859		DF	0.609		CG	0.800		
CF	0.900		AB	0.868		AD	0.609		EG	0.800		
BD	0.902		BD	0.869		EG	0.725		AD	0.815		
CG	0.905		BE	0.892		AE	0.725		BF	0.857		
AB	0.919		FG	0.903		FG	0.769		DG	0.857		
BF	0.924		AG	0.933		DE	0.780]	EF	0.857		
CD	0.938		DG	0.941		BC	0.862		CE	0.880		
AF	0.940		AD	0.946		BG	0.881		AE	0.914		
AG	0.943		EG	0.960		CF	0.920		CF	0.933		
DG	0.944		BG	0.963		AC	0.931		AC	0.945		
AD	0.956		AC	0.974		BE	0.948		BE	0.961		
FG	0.966		CE	0.979		DG	0.973		BC	0.971		
BG	0.977		CG	0.984		AB	0.974		AB	0.990		

Figure 2. The levels of ADD that are highlighted by Yilmaz and Saracbasi's intervals

3.3. From the point of reliability and category distinguishability

According to the inter-rater agreement coefficients, it is concluded that there are fair inter-rater reliabilities between Pathologists A and F, B and F, D and E, E and F. One of the reasons for the low agreement is a low ability of distinguishability. The unclearly defined categories or non-expert pathologists may cause a low distinguishability. In this section, the sub-tables that low agreements occur are analyzed in more detail.

Pathologists A and F

The estimated values of linearly weighted interagreements and ADD coefficients of Pathologists A and F are summarized in Table 3.

Table 3. The summary of the linearly inter-agreements and ADD coefficients of Pathologists A and F

		ADD		Inter-Rater Agreement		
	12	23	34	45	κ_w (Std. Error) AC2 (Std. Error)	
Estimate	0.940	0.842	0.174	0.222	0.334 (0.052) 0.463 (0.051)	
Level	Substantial	Moderate	Poor	Poor	Fair Moderate	

The results show that there is poor distinguishability between (3) and (4), and between (4) and (5). A poor distinguishability indicates that pathologists A and F cannot distinguish these categories well. Thus, the categories can be combined as (3+4), (4+5), or (3+4+5). Linearly inter-rater agreement and ADD coefficients for adjacent categories are calculated for the reclassified tables. The results of the three alternatives are:

Alternative 1: 1, 2, (3+4), 5

		ADD		Inter-Rater Agreement		
	12	2(3+4)	(3+4)5	κ_w (Std. Error)	AC2 (Std. Error)	
Estimate	0.940	0.908	0.968	0.366 (0.054)	0.479 (0.051)	
Level	Substantial	Moderate	Substantial	Fair	Moderate	

distinguishes. When Pathologists D, G, and F cannot distinguish (4) and (5) well, Pathologist B substantially distinguishes.

A MICH Hall VC	2 , 1 , 2 , 3 , $(4$)	5)			
		ADD		Inter-Rater	Agreement
	12	23	3(4+5)	κ_w (Std. Error)	AC2 (Std. Error)
Estimate	0.940	0.842	0.890	0.329 (0.049)	0.331 (0.063)
Level	Substantial	Moderate	Moderate	Fair	Fair

Alternative 2: 1, 2, 3, (4+5)

Alternative 3: 1, 2, (3+4+5)

	AD	D	Inter-Rater Agreement			
	12 2(3+4+5)		κ_w (Std. Error)	AC2 (Std. Error)		
Estimate	0.940	0.924	0.364 (0.052)	0.272 (0.072)		
Level	Substantial	Moderate	Fair	Fair		

Alternative 1 is suggested to use because the highest values of inter-rater agreement coefficients are observed. The linearly weighted kappa increases to 0.366 and linearly weighted AC2 is increases to 0.479 after the reclassification 1. For the first alternative, the adjusted degree of distinguishability of (2) and (3+4) increases to moderate, the adjusted degree of

distinguishability of (3+4) and (5) increases to a substantial level.

Pathologists B and F

The estimated values of linearly weighted interagreements and ADD coefficients of Pathologists B and F are summarized in Table 4.

Table 4. The summary of the linearly inter-agreements and ADD coefficients of Pathologists B and F

_		ADD)	Inter-Rater	r Agreement	
	12	23	34	45	κ_w (Std. Error)	AC2 (Std. Error)
Estimate	0.924	0.642	0.182	0.857	0.320 (0.055)	0.518 (0.045)
Level	Moderate	Fair	Poor	Moderate	Fair	Moderate

The results show that there is poor distinguishability between (3) and (4). A poor distinguishability indicates that pathologists B and F cannot distinguish these categories well. Thus, the categories can be combined as (2+3) or (3+4). Linearly inter-rater agreement and ADD coefficients for adjacent categories are calculated for the reclassified tables. The results of the two alternatives are:

Alternative 1: 1, (2+3), 4, 5

		ADD		Inter-Rater	Inter-Rater Agreement			
	1(2+3)	(2+3)4	45	κ_w (Std. Error)	AC2 (Std. Error)			
Estimate	0.988	0.716	0.857	0.421 (0.070)	0.739 (0.037)			
Level	Substantial	Fair	Moderate	Moderate	Substantial			

Alternative 2: 1, 2, (3+4), 5

		ADD		Inter-Rater	Inter-Rater Agreement			
	12	2(3+4)	(3+4)5	κ_w (Std. Error)	AC2 (Std. Error)			
Estimate	0.924	0.726	0.990	0.324 (0.053)	0.451 (0.051)			
Level	Moderate	Fair	Substantial	Fair	Moderate			

Alternative 1 is suggested to use because the highest values of inter-rater agreement coefficients are observed. The linearly weighted kappa increases to 0.421 and linearly weighted AC2 increases to 0.759 after the reclassification 1. For the first alternative, the adjusted degree of distinguishability of (1) and (2+3) is at a substantial level and the adjusted degree of distinguishability of (2+3) and (4) is at a fair level.

Pathologists D and E

The estimated values of linearly weighted interagreements and ADD coefficients of Pathologists D and E are summarized in Table 5.

	y	ADD	Inter-Rater Agreement			
-	12	23	34	45	κ_w (Std. Error)	AC2 (Std. Error)
Estimate	0.811	0.815	0.780	0.667	0.343 (0.054)	0.550 (0.042)
Level	Moderate	Moderate	Fair	Fair	Fair	Moderate

Table 5. The summary of the linearly inter-agreements and ADD coefficients of Pathologists D and E

The results show that there is fair distinguishability between (3) and (4), and between (4) and (5). A poor distinguishability indicates that Pathologists D and E cannot distinguish these categories well. Thus, the categories can be combined as (3+4), (4+5), or (3+4+5). Linearly inter-rater agreement and ADD coefficients for adjacent categories are calculated for the reclassified tables. The results of the three alternatives are:

Alternative 1: 1, 2, (3+4), 5

	ADD			Inter-Rate	Inter-Rater Agreement		
	12	2(3+4)	(3+4)5	κ_w (Std. Error)	AC2 (Std. Error)		
Estimate	0.811	0.817	0.971	0.368 (0.054)	0.567 (0.041)		
Level	Moderate	Moderate	Substantial	Fair	Moderate		

Alternative 2: 1 2 3 (4+5)

i mative	2 • 1, 2, 3, (1)	2)				
_		ADD		Inter-Rater Agreement		
	12	23	3(4+5)	κ_w (Std. Error)	AC2 (Std. Error)	
Estimate	0.811	0.815	0.900	0.353 (0.053)	0.444 (0.050)	
Level	Moderate	Moderate	Moderate	Fair	Moderate	

Alternative 3: 1, 2, (3+4+5)

	A	DD	Inter-Rater Agreement		
	12	2(3+4+5)	κ_w (Std. Error)	AC2 (Std. Error)	
Estimate	0.811	0.823	0.384 (0.053)	0.389 (0.058)	
Level	Moderate	Moderate	Fair	Fair	

The highest value of linearly weighted kappa coefficient is observed when Alternative 3 is used and the highest value of linearly weighted AC2 coefficient is observed when Alternative 1 is used. The linearly weighted kappa increases to 0.364 after reclassification 3 and increases to 0.368 after reclassification 1. The linearly weighted AC2 increases to 0.567 after reclassification 1 and decreases to 0.389 after reclassification 3.

For the first alternative, the poor distinguishability increase to a substantial level after the reclassification as (3+4). For the third alternative, the adjusted degree

of distinguishability of (2) and (3+4+5) increases to a moderate level.

Even though the value of linearly weighted kappa in Alternative 1 is less than the value of kappa obtained from Alternative 3, the values of linearly weighted AC2 and ADD coefficients are higher. Thus, Alternative 1 is suggested to use the interpretation of Pathologists D and E's results.

Pathologists E and F

The estimated values of linearly weighted interagreements and ADD coefficients of Pathologists E and F are summarized in Table 6.

Table 6. The summary of the linearly inter-agreements and ADD coefficients of Pathologists E and F

		ADD		Inter-Rater Agreement			
-	12	23	34	45	κ_w (Std. Error)	AC2 (Std. Error)	
Estimate	0.815	0.824	0.061	0.857	0.266 (0.052)	0.440 (0.049)	
Level	Moderate	Moderate	Poor	Moderate	Fair	Moderate	

The results show that there is poor distinguishability between (3) and (4). A poor distinguishability indicates that Pathologists E and F cannot distinguish these categories well. Thus, the categories can be combined as (2+3) or (3+4). Linearly inter-rater agreement and ADD coefficients for adjacent

categories are calculated for the reclassified tables. Th	ne
results of the two alternatives are:	

internative 1. 1, (2+5), 4, 5							
	ADD			Inter-Rater Agreement			
	1(2+3)	(2+3)4	45	κ_w (Std. Error)	AC2 (Std. Error)		
Estimate	0.972	0.414	0.857	0.272 (0.066)	0.638 (0.045)		
Level	Substantial	Poor	Moderate	Fair	Substantial		

Alternative	1.	1	(2+3)	4 5	
AILEI HALIVE	1.	1,1	(2 ' 5),	ч , Ј	

Alternative 2: 1, 2, (3+4), 5

	5 7	ADD		Inter-Rater Agreement		
	12	2(3+4)	(3+4)5	κ_w (Std. Error)	AC2 (Std. Error)	
Estimate	0.815	0.858	0.990	0.281 (0.050)	0.406 (0.049)	
Level	Moderate	Moderate	Substantial	Fair	Moderate	

The highest value of linearly weighted kappa coefficient is observed when Alternative 2 is used and the highest value of linearly weighted AC2 coefficient is observed when Alternative 1 is used. The linearly weighted kappa increases to 0.272 after reclassification 1 and increased to 0.281 after reclassification 2. The linearly weighted AC2 increases to 0.638 after reclassification 1 and decreases to 0.406 after reclassification 2.

For the first alternative, even though the adjusted degree of distinguishability of (1) and (2+3) increases to a substantial level, the adjusted degree of distinguishability of (2+3) and (4) is still at a poor level. For the second alternative, even though the adjusted degree of distinguishability of (1) and (2) is still at a moderate level, the adjusted degree of distinguishability of (2) and (3+4) increases to moderate and the adjusted degree of distinguishability of (3+4) and (5) increases to a substantial level.

Even though the value of AC2 decreases, because the values of linearly weighted kappa and ADD coefficients increase, Alternative 2 is suggested to use the interpretation of Pathologists E and F's results.

4. Conclusions

In recent studies, inter-rater reliability and category distinguishability have grown impartances. It has been proposing to use agreement coefficients and degree of distinguishability simultaneously [11]. This study is aimed to illustrate how to use inter-rater reliability and degree of distinguishability, together. For this purpose, the carcinoma in situ of uterine cervix data is used. Seven pathologists classify 118 slides into five ordinal categories to investigate the variability in the classification of carcinoma in situ of the uterine cervix. Landis and Koch [13], Becker and Agresti [14], and Agresti [15] reclassify the data into three or four categories, however, the reclassification procedures are made by considering the zero cells or the researcher's personal experience.

Adjusted degree of distinguishability, weighted kappa, and AC2 coefficients are applied to data for 21 pairs of the seven pathologists. The results are discussed together in terms of inter-rater reliability, category distinguishability, and inter-rater reliability and category distinguishability together.

The inter-rater reliability results showed that the value of the quadratically weighted kappa is higher than the value of the linearly weighted kappa. Besides, the value of the quadratically weighted AC2 is higher than the value of the linearly weighted AC2, as well. Pathologist F has the lowest, Pathologists B and G have the highest agreement with the others.

The adjusted degree of distinguishability results showed that Pathologist F cannot distinguish the categories except categories 1 and 2. The reason is Pathologist F may have less experience than the other pathologists. Pathologists C and E cannot distinguish the categories 1 and 2. In general, because Pathologist F has a lower agreement between the other pathologists, it may be excluded from the study.

The results showed that the pathologists have some problems distinguishing the categories (3) Carcinoma in Situ, (4) Squamous Carcinoma with Early Stromal Invasion, and (5) Invasive Carcinoma, and the incorrect classifications affect the level of the agreement in this respect. It is suggested to recollect the data or to combine the categories as considering the category distinguishability. According to the poor and fair inter-rater reliability between Pathologists A and F, B and F, D and E, E and F, the degrees of distinguishability of these sub-tables are analyzed in more detail. To get more reliable results for Pathologists A and F and Pathologists D and E, it is suggested to combine (3) Carcinoma in Situ and (4) Squamous Carcinoma with Early Stromal Invasion. Besides, it is suggested to combine (2) Atypical Squamous Hyperplasia and (3) Carcinoma in Situ for Pathologists B and F and Pathologists E and F. As a result of reclassifications, an increase in the level of inter-rater reliability is observed.

Conflicts of interest

The authors state that did not have a conflict of interests.

References

- Altun G., Aktaş, S., Karesel Olumsallık Tablolarında Asimetri ve Çarpık Simetri Modelleri, *Turkiye Klinikleri J Biostat*, 8 (2) (2016) 152–161.
- [2] Yilmaz, A.E., Saracbasi, T., Assessing Agreement between Raters from the Point of Coefficients and Log-linear Models, *Journal of Data Science*, 14 (1) (2017) 1–24.
- [3] McHugh, M.L., Interrater Reliability: the Kappa Statistic, *Biochemia Medica*, 22 (3) (2012) 276– 282.
- [4] Cohen, J., Weighted Kappa: Nominal Scale Agreement with Provision for Scaled Disagreement or Partial Credit, *Psychological Bulletin*, 70 (4) (1968) 213–220.
- [5] Gwet, K.L. Handbook of Inter-rater Reliability, The Definitive Guide to Measuring the Extent of Agreement among Raters. 3rd ed. Maryland: Advanced Analytics, LLC, (2002).
- [6] Cicchetti, D., Allison, T., A New Procedure for Assessing Reliability of Scoring EEG Sleep Recordings, *American Journal EEG Technology*, 11 (3) (1971) 101–109.
- [7] Fleiss, J.L., Cohen, J., The Equivalence of Weighted Kappa and the Intraclass Correlation Coefficient as Measure of Reliability,

Educational and Psychological Measurement, 33 (3) (1973) 613–619.

- [8] Landis, J.R., Koch, G.G., The Measurement of Observer Agreement for Categorical Data, *Biometrics*, 33 (1) (1977a) 159–174.
- [9] Darroch, J.N., McCloud, P.I., Category Distinguishability and Observer Agreement, *Australian Journal of Statistics*, 28 (3) (1986) 371–388.
- [10] Perkins, S.M., Becker, M.P., Assessing Rater Agreement using Marginal Association Models, *Statistics in Medicine*, 21 (12) (2002) 1743–1760.
- [11] Yilmaz, A.E., Saracbasi, T., Agreement and Adjusted Degree of Distinguishability for Square Contingency Tables, *Hacettepe Journal of Mathematics and Statistics*, 48 (2) (2019) 592– 604.
- [12] Holmquist, N.D., McMahon, C.A., Williams, O.D., Variability in Classification of Carcinoma in Situ of the Uterine Cervix, *Archives of Pathology*, 84 (4) (1967) 334–345.
- [13] Landis, J.R., Koch, G.G., An Application of Hierarchical Kappa-type Statistics in the Assessment of Majority Agreement among Multiple Observers, *Biometrics*, 33 (2) (1977b) 363–374.
- Becker, M.P., Agresti, A., Log-linear Modelling of Pairwise Interobserver Agreement on a Categorical Scale, *Statistics in Medicine*, 33 (1) (1992) 101–114.
- [15] Agresti, A., Categorical Data Analysis. New York: John Wiley and Sons, (2002).
- [16] Light, R.J., Measures of Response Agreement for Qualitative Data: Some Generalizations and Alternatives, *Psychological Bulletin*, 76 (5) (1971) 365-377.