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Abstract 

 

Different regression models have been developed in the literature 

for count data. Among these, the most well-known regression 
models are Poisson and negative binomial regression models. 

Poisson or negative binomial models are suitable if there are not 

many zero-valued terms. When there are excessive zeros in count 
data, zero-inflated Poisson models are the most preferred models in 

the case of equal dispersion, and zero-inflated negative binomial 

models are the most preferred models in case of overdispersion. 
Other models used in the case of too many zeros are the Poisson 

Hurdle and negative binomial Hurdle models. In this study, these 

models are compared for a sample data set. For this purpose, LL, 
AIC, BIC and Vuong test statistics were used. 

 

Keywords: Count data, Hurdle model, negative binomial model, 
poisson model, zero-ınflated models. 

Öz 

 

Sayma verileri için literatürde farklı regresyon modelleri 

geliştirilmiştir. Bunlar arasında en bilinen regresyon modelleri 
Poisson ve negatif binomial regresyon modelleridir. Poisson ya da 

negatif binomial modeller eğer fazla sıfır değerli terimler yoksa 

uygun olur. Sayma verilerinde aşırı sıfır olduğunda eşit yayılım 
durumunda zero-inflated Poisson, aşırı yayılım durumunda zero-

inflated negatif binom modelleri en çok tercih edilen modellerdir. 

Çok fazla sıfır olması durumunda kullanılan başka bir model de 
Poisson Hurdle ve negatif binomial Hurdle modelleridir. Bu 

çalışmada örnek bir veri seti için bu modeller karşılaştırılmıştır. Bu 

amaçla LL, AIC, BIC ve Vuong test istatistiği kullanılmıştır. 

 

 

Anahtar Kelimeler: Hurdle model, negatif binomial model, 
poisson model, sayma verisi, sıfır şişirilmiş modeller. 
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1. INTRODUCTION 

 

Count models have a wide range of applications, especially in fields such as public health, 

epidemiology, psychology, social sciences, economics, demography, sociology, insurance and 

educational sciences. Poisson regression (PR), which is one of the widely used count models, 

uses the assumption that the conditional variance of the dependent variable is equal to the 

conditional mean, while negative binomial regression (NBR) is used in the case of 

overdispersion. Applying Poisson regression causes bias in parameter estimates and standard 

errors in case of overdispersion (Khoshgoftaar et al., 2005). In case of overdispersion, except for 

negative binomial distribution, generalized Poisson regression model, generalized negative 

binomial regression model, quasi model can be applied. Apart from these, Poisson-inverse 

Gaussian, Poisson-Lognormal are other methods used (Denuit et al., 2007). 

 

Count data has zero values by nature and the classical least squares (OLS) method does not give 

good estimates because it does not show normal distribution. The presence of more than 

expected zero values in the data set is defined as zero-inflation (Martin et al., 2006; Cui & Yang, 

2009). In data sets where most of the observations are zero, excluding the zero values from the 

analysis causes to obtain incorrect results. Zero-inflation count data may lack equality of mean 

and variance. In such a case, over-dispersion or under-dispersion must be taken into account. 

When there are excessive zeros in the data set, new models are needed for such data because 

when there are many zeros in the sample, Poisson and negative binomial distributions cannot 

predict well enough. Therefore, Lambert (1992) first proposed the zero-inflation Poisson (ZIP) 

model with an application of manufacturing defects. Later, Green conducted a study in 1994 on 

taking excessive zeros and sample selection into account in Poisson and negative binomial 

regression models. 

 

Famoye and Singh (2006) proposed the zero-inflation generalized Poisson (ZIGP) model, which 

is an extension of the generalized Poisson distribution. Another widely used method is the 

negative binomial model, which can be preferred in cases where the Poisson mean has a gamma 

distribution. A natural extension of the negative binomial model is the zero-inflation negative 

binomial (ZINB) model when there are excess zeros in the data (Mwalili et al., 2008). 

 

When you want to use the zero-inflation regression model, first consider whether a conventional 

negative binomial model is good enough. Just the presence of too many zeros in the dataset 

doesn't mean you need a zero-inflation model. There are two types of zeros in the zero-inflation 

model, namely "real zeros" and "excess zeros". Of course, there are situations where a zero-

inflation model makes sense in terms of theory or common sense. For example, if the dependent 

variable is the number of children born in a sample of women aged 50, it is reasonable to assume 

that some women are biologically infertile. For these women, no change in predictive variables 

can change the expected number of children (Allison, 2012). 

 

Another popular approach to modeling excess zeros in count data is to use truncated models. The 

Hurdle model is an example of truncated patterns for census data (Cragg, 1971). A failure to 

account for the correct type of over or under dispersion leads to very different estimates of the 

regression parameters and incorrect inferences about the model parameters (McCullagh & 

Nelder, 1989; Ver Hoef & Boveng, 2007). In the literature, hurdle and ZIP models are widely 

used for analyzing count responses with excessive zeros. However, hurdle and ZIP models do 

not allow for underdispersion with excessive zeros, these models apply only when there is 

overdispersion in the response variable (Lee at al., 2016).  
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Zero-inflated count models offer a way of modeling the excess zeros in addition to allowing for 

overdispersion in a standard parametric model. However, the hurdle model is flexible and can 

handle under-dispersion, overdispersion, and excess zeros problem (Workie & Gedef, 2021). 

 

Zero-inflated models are used in many studies to model data which has high zero density. Ridout 

et al. (1998) reviewed some zero inflated models and hurdle models and gave an example on 

biological count data. Yip and Yau (2005) studied on zero-inflated distributions for claim 

frequency and they used the generalized Pearson χ2 statistic and information criteria. Greene 

(2005) has compared Zero Inflated and Hurdle Models. In this work, several extensions of the 

models are described and an application to health care demand data for comparison of the 

models is presented. Flynn (2009) compared traditional Poisson and Negative Binomial models 

with the Zero Inflated Models. Mouatassim and Ezzahid (2012) compared Poisson and zero-

inflated Poisson model for health insurance and they used Vuong test for model comparison. A 

new zero-inflated regression model for zero-inflated count data and a new regression model so 

called Poisson quasi-Lindley regression model for over-dispersed count data are proposed by 

Altun (2018, 2019). Erdemir and Karadağ (2020) investigated models for count data with 

excessive zeros in non-life insurance. 

 

There are also hurdle models as an alternative to zero-inflated models. Boucher et al. (2008) used 

compound frequency models and they examined different risk classification models for count 

data by using Score and Haussmann tests. Yang et al. (2012) proposed new link functions for 

hurdle Poisson and hurdle negative binomial to deal with zero-inflation, overdispersion and 

missing observations in clinical trials. Sarul and Şahin (2015) compared Poisson models, zero-

inflated models and hurdle models for claim frequency data. Baetschmann and Winkelmann 

(2017) introduced a new dynamic hurdle model for zero-inflated count data. Sakthivel and 

Rajitha (2017) compared methods with back propagation neural network for modeling the count 

data which has excessive number of zeros by using mean square error for model selection. 

 

Although there are many publications on overdispersion in the literature, fewer publications are 

made because under-dispersion is a less common situation. Conway-Maxwell-Poisson (COM-

Poisson) distribution can handle under dispersed count data. It is a flexible distribution that can 

account for under dispersion usually encountered in some types of count data (Shmueli et al. 

2005; Sellers and Shmueli 2010). In Figure 1, frequently used models in count data are given. 

 

 
 

Figure 1. The Frequently Used Models in The Count Data Analysis   
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Hurdle models assume that there is only one process where zero can be generated, whereas zero-

inflation models assume that there are two different processes that can produce zero. The first is 

the on-off part, which is a binary process. System π likely "off" and 1 - possibly "open" (where π 

is known as inflation probability). When the system is "off", only zero counting is possible. This 

part is the same for zero-inflation and Hurdle models. The second part is the counting part that 

occurs when the system is "on". This is where the Zero-inflation and Hurdle models differ. In 

zero-inflation models, the numbers can still be zero. In Hurdle models, they must be different 

from zero. For this section, zero-inflation models use a "normal" discrete probability distribution, 

while Hurdle models use a discrete probability distribution cut from zero. 

 

To give an example to explain the Hurdle model; a car manufacturer wants to compare two 

quality control programs for its cars. It will compare them according to the number of warranty 

claims made. For each program, a randomly selected set of clients are monitored for one year 

and the number of warranty claims they file is counted. The "closed" state means "there is zero 

claim", "open" state means "at least one claim has been made". In the zero-inflation model, 

researchers discovered that some repairs on cars were fixed without filing a warranty claim. In 

this way zeros are a mixture of the absence of quality control problems as well as the presence of 

quality control problems involving no warranty claims. "closed" means "zero claims" while 

"open" means "at least one claim has been made or repairs have been done without a claim 

(James, 2014). 

 

In count regression models, parameter estimates are commonly obtained using the Maximum 

Likelihood method (Karen & Kelvin, 2005). Information criteria such as Akaike information 

criterion (AIC) and Bayes information criterion (BIC) can be used to select the appropriate 

model. In addition, model comparisons with Vuong test statistics, which are widely used in zero-

inflated models, are also made. 

 

In the second section of this study, counting regression models are presented. In the third section, 

the model selection criteria used in the study are explained. In the 4th section, analyzes are made 

on a sample data set. In the 5th section, the results are evaluated. 

 

 

2. MATERIALS AND METHODS 

 

2.1. Poisson Regression (PR) 

 

When the dependent variable consists of discrete and non-categorical counting data, the first 

method used is Poisson regression analysis. In Poisson regression analysis, it is assumed that the 

dependent variable 𝑦𝑖 shows a Poisson distribution (Deniz, 2005). Probability density function 

for Poisson distribution with λ parameter (Sinharay, 2010) is as follows; 

 

𝑓(𝑦𝑖|𝑥𝑖) =
𝜆𝑖
𝑦𝑖𝑒−𝜆𝑖

𝑦𝑖!
,   𝑦𝑖 = 0,1,2, . .. (1) 

 

In this expression, 𝑦𝑖 is the number of occurrences of events, and λ is the rate of repetition of 

events per unit of time. In other words, λ gives the mean of the distribution. Here the probability 

changes as a function of the λ value. The Poisson probability distribution is slanted to the right. 

However, as 𝜆𝑖 grows, the distribution approaches the normal distribution. The Poisson 

distribution is mostly used to model the number of rare events occurring. The most prominent 

feature of the Poisson regression model is that mean and variance are equal to each other; 

 

𝐸(𝑦) = 𝜆  and Var (y)= 𝜆 (2) 
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Over or under-dispersion data sets cannot be modeled with the Poisson distribution because 

distortions are seen in the assumption that the conditional expected value is equal to the variance 

and the assumption is not satisfied. In practice, count variables show overdispersion, as they 

generally have greater variance than the average. The overdispersion of the data is caused by the 

number of observed zero values exceeding the zero values revealed by the Poisson model and 

unobserved heterogeneity (Kibar, 2008). The mean of the Poisson distribution, λ, is assumed to 

be a linear function of the arguments 𝑥𝑖. Poisson regression model can be given as follows; 

 

𝑙𝑜𝑔(𝜆𝑖) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2+ , … ,+𝛽𝑚𝑥𝑚 = 𝑥𝑖
′𝛽 (3) 

 

In this equation, 𝜆𝑖 is an exponential function of independent variables. The value of 𝜆𝑖 can be 

written as follows; 

 

𝜆𝑖 = exp (𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2++,… ,+𝛽𝑚𝑥𝑚) = exp (𝑥𝑖
′𝛽) (4) 

 

Poisson regression is estimated by the maximum probability estimate. Log likelihood function of 

Poisson model (Shalabh, 2020); 

 

𝐿𝐿𝑃𝑜𝑖𝑠𝑠𝑜𝑛 = lnL(y, 𝜆) =∑𝑦𝑖

𝑛

𝑖=1

ln(𝜆𝑖) −∑𝜆𝑖 −∑ln (𝑦𝑖!)

𝑛

𝑖=1

𝑛

𝑖=1

 (5) 

 

After selecting the appropriate link function, the log likelihood function can be maximized for a 

given dataset using some numerical optimization techniques. The Poisson regression model 

usually requires a large sample. 

 

In a Poisson model, the mean variance equality can be tested with the dispersion test. The test 

simply tests this assumption as a null hypothesis against an alternative where Var(𝜆)= λ+c∗f(𝜆), 

the constant c<0 means underdispersion and c>0 means overdispersion. The function f(.) is some 

monoton function (often linear or quadratic; the former is the default). The resulting test is 

equivalent to testing H0:c=0 vs. H1:c≠0 and the test statistic used is a t statistic which is 

asymptotically standard normal under the null. 

 

2.2. Negative-Binomial Regression (NBR) 

 

Possible values of 𝑦𝑖 in negative binomial regression are again non-negative integer values such 

as 0,1,2,… etc. as in Poisson regression. Although negative binomial regression is a special case 

of Poisson regression, it is used as an alternative method in cases where zero values show over-

dispersion (or under-dispersion) in applications. Negative binomial regression is a generalization 

of Poisson regression where the variance is equal to the mean calculated by the Poisson model 

and which relaxes the restrictive assumption. The negative binomial distribution has one more 

parameter, different from the Poisson distribution. Therefore, the second parameter can be used 

to adjust the variance independently of the mean. This model is based on a Poisson-Gamma 

mixed distribution. The Poisson distribution can be generalized by including a gamma noise 

variable with mean 1 and scale parameter v. The negative binomial distribution of Poisson-

Gamma mixture obtained with α spread parameter is as follows (NNCS, 2020), 

 

𝑃(𝑦𝑖|𝜆𝑖, 𝛼) =
Г(𝑦𝑖 + 𝛼

−1)

Г(𝑦𝑖 + 1)Г(𝛼−1)
(

𝛼−1

𝛼−1 + 𝜆𝑖
)

𝛼−1

(
𝜆𝑖

𝛼−1 + 𝜆𝑖
)

𝑦𝑖

, 𝑖 = 1, 2, … , 𝑛 

𝜆𝑖 = 𝑡𝑖𝜆 ,   𝛼 =
1

𝑣
 

(6) 
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The expected value of the NBR model is 𝐸(𝑦) = 𝜆 and variance 𝑉𝑎𝑟(𝑦) = 𝜆 + 𝛼𝜆2 a quadratic 

function of the mean for α>0, equal to the Poisson variance if α=0. NBR model with 𝑡𝑖 exposure 

time and 𝛽1, 𝛽2, … , 𝛽𝑘  unknown parameters can be shown as follows; 

 

𝜆𝑖 = exp (ln(𝑡𝑖) 𝛽1𝑖𝑥1𝑖 + 𝛽2𝑖𝑥2𝑖, … , 𝛽𝑘𝑖𝑥𝑘𝑖) (7) 

 

Regression coefficients are estimated using the maximum likelihood method (Cameron et al., 

2013). The log likelihood function of the negative binomial model can be given as follows 

(Zwilling, 2013); 

 

𝐿𝐿𝑁𝐵 = lnL(α, β) =∑(𝑦𝑖𝑙𝑛𝛼 + 𝑦𝑖(𝛼𝑖𝛽𝑖) − (𝑦𝑖 +
1

𝛼

𝑛

𝑖=1

) ln(1 + 𝛼𝑒𝛼𝑖𝛽𝑖) + 

lnГ (𝑦𝑖 +
1

𝛼
) − ln Г(𝑦𝑖 + 1) − lnГ (

1

𝛼
)) 

(8) 

 

Parameters are obtained by iterative solution methods. 

 

2.3. Zero-Inflated Poisson Regression (ZIP) 

 

One of the alternative methods used to analyze over-dispersed data is the zero-value weighted 

Poisson regression (ZIP) model. Zero value weighted Poisson regression is also used in 

modeling the dependent variable when the data set contains more zero values than expected. In 

the ZIP model, it is assumed that its dependent variable consists of two different data groups. 

These are structural zeros that always come from the zero group and the values that always come 

from the non-zero group, that is, the group defined as sampling zero (Peng, 2013). ZIP 

regression can be written as follows to explain the excess zeros in the dependent variable 𝑦𝑖 
(Lambert, 1992), 

 

Pr(𝑦𝑖/𝑥𝑖) = {
𝜋𝑖 + (1 − 𝜋𝑖) exp(−𝜆𝑖),      𝑦𝑖 = 0,
(1 − 𝜋𝑖) exp(−𝜆𝑖)𝜆𝑖/𝑦𝑖! ,      𝑦𝑖 > 0.

 (9) 

 

In this model, 0 ≤ 𝜋𝑖 ≤1 and 𝜆𝑖>0. The mean of the ZIP model is shown as 𝐸(𝑦) = (1 − 𝜋)𝜆 and 

its variance as 𝑉𝑎𝑟(𝑦) = (1 − 𝜋)𝜆(1 + 𝜋𝜆). If  𝜋 = 0, the ZIP model turns into PR. If 𝜋𝑖 > 0, it 

is an indicator of overdispersion. The ZIP model is a two-piece model. From these parts, the log 

function is used to model positive numbers from both structural zero and sampling zero, as well 

as positive numbers from Poisson and negative binomial distributions. The other part is the logit 

function. This part is used to model the zeros in the data set (Peng, 2013). The log likelihood 

function for 𝑦𝑖 dependent variable can be written as follows (Yau & Lee, 2001), 

 

𝐿𝐿𝑍𝐼𝑃 =∑(𝐼𝑦𝑖=0 log(𝜋𝑖 + (1 − 𝜋𝑖)𝑒
−𝜆𝑖) + 𝐼𝑦𝑖>0 log((1 − 𝜋𝑖)

𝜆𝑖
𝑦𝑖𝑒𝜆𝑖

𝑦𝑖!
))

𝑛

𝑖=1

 

= ∑ 𝐼𝑦𝑖=0 log(𝜋𝑖 + (1 − 𝜋𝑖)𝑒
−𝜆𝑖)𝑛

𝑖=1 +𝐼𝑦𝑖>0 log((1 − 𝜋𝑖) + 𝑦𝑖𝑙𝑜𝑔𝜆𝑖 − 𝜆𝑖 − 𝑙𝑜𝑔𝑦𝑖!)) 

(10) 

 

The I. expression given in equation 10 is the indicator function for the specified event. From 

here, the parameters 𝜆𝑖 and 𝜋𝑖 can be obtained using the link functions. 

 

log(𝜆) = Bβ (11) 

 

and 
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log (
𝜋

1 − 𝜋
) = Gγ (12) 

 

In equations 11 and 12, B and G are covariant matrices and are unknown parameter vectors (Yau, 

2002; Yeşilova et al., 2010). The parameters β and γ can be obtained using maximum likelihood 

estimates. 

 

2.4. Zero-Inflated Negative Binomial Regression (ZINB) 

 

Zero value weighted ZINB model is used as an alternative method in cases where there is zero 

weighted and overdispersion data sets. This model has been defined as an improved version of 

the NB model (Greene, 1994). As with the ZIP model, zero and non-zero observations are 

modeled separately. However, unlike ZIP regression, non-zero observations in ZINB are 

modeled by NB regression. An alternative regression method is ZINB in modeling the dependent 

variable 𝑦𝑖 in the case of overdispersion with many zero values. The ZINB model equation is as 

follows (Ridout et al., 2001): 

 

Pr(𝑦𝑖/𝑥𝑖) =

{
 
 

 
 𝜋𝑖 + (1 − 𝜋𝑖)(1 + α𝜆𝑖)

−𝛼−1 ,      𝑦𝑖 = 0,

(1 − 𝜋𝑖)
Г (𝑦𝑖 +

1
𝛼)

𝑦𝑖! Г (
1
𝛼)

(α𝜆𝑖)
𝑦𝑖

(1 + α𝜆𝑖)
𝑦𝑖+

1
𝛼

,       𝑦𝑖 > 0.
 (13) 

 

In equation 13, the parameters 𝜋𝑖 and 𝜆𝑖 depend on covariates and α>0 is an overdispersion 

parameter. The expected value of the ZINB model is shown as 𝐸(𝑦) = (1 − 𝜋)𝜆 and its variance 

as 𝑉𝑎𝑟(𝑦) = 𝐸(𝑦)(1 + 𝛼𝜆 + 𝜋𝜆). In case of α> 0 and 𝜋 > 0, there is overdispersion. ZINB log 

likelihood function for 𝑦𝑖 (Yau, 2002): 

 

𝐿𝐿𝑍𝐼𝑁𝐵 = 𝐿(𝜆, 𝛼, 𝜋; 𝑦) =∑(𝐼𝑦𝑖=0 log(𝜋𝑖 + (1 − 𝛼𝜆𝑖)
−𝛼−1))

𝑛

𝑖=1

 

+𝐼𝑦𝑖>0 log((1 − 𝜋𝑖)
Г (𝑦𝑖 +

1
𝛼)

𝑦𝑖! Г (
1
𝛼)

(α𝜆𝑖)
𝑦𝑖

(1 + α𝜆𝑖)
𝑦𝑖+

1
𝛼

) 

=∑(𝐼𝑦𝑖=0 log(𝜋𝑖 + (1 − 𝜋𝑖)(1 − 𝛼𝜆𝑖)
−𝛼−1)) + 𝐼𝑦𝑖>0

𝑛

𝑖=1

 

log ((1 − 𝜋𝑖)
1

𝛼
log(1 + α𝜆𝑖)𝑦𝑖log (1 +

1

𝛼𝜆𝑖
) + 𝑙𝑜𝑔Г (𝑦𝑖 +

1

𝑘
) − 𝑙𝑜𝑔Г (

1

𝛼
) − 𝑙𝑜𝑔𝑦𝑖!) 

 

(14) 

 

The I· expression given in equation 14 is the indicator function for the specified event. 𝜆𝑖 and 𝜋𝑖 
parameters can be obtained by using link functions (Lambert, 1992). 

 

log(𝜆) = Xβ (15) 

 

and 

 

log (
𝜋

1 − 𝜋
) = 𝐺𝛾 (16) 
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Here, X and 𝐺 are covariate matrices, β and γ are unknown parameter vectors of dimensions 

(p+1)x1 and (q+1)x1, respectively. The parameters  β and γ can be obtained using maximum 

likelihood estimates. Zero-inflation negative binomial models are not recommended for small 

samples. What constitutes a small sample is not clearly defined in the literature (Mamun, 2014). 

 

2.5. Hurdle Regression 

 

Hurdle models were first proposed by a Canadian statistician Cragg (1971), and later developed 

further by Mullahy (1986). These models are used for data sets with many zero values. Hurdle 

models consist of two stages. First, binary responses showing positive counts (1) versus zero 

counts (0); the second is the process in which only positive counts occur (Yeşilova et al., 2010). 

Binary responses are modeled using the logit connection function. Positive counts are modeled 

using the zero-value truncated counting model, that is, the log link function (Rose et al., 2006). 

In Hurdle models, Poisson Hurdle (PH) model is used if the counting part shows Poisson 

distribution, and NB Hurdle (NBH) model is used in case of negative binomial distribution 

(Gerdtham, 1997). The hurdle model is flexible and can handle both under and overdispersion 

problem. Hurdle models are widely used especially in healthcare applications. 

 

2.5.1 Poisson Hurdle model (PH) 

 

Positive observations based on truncated count data 𝑦𝑖 > 0 are called the PH model when 

modeled using the poisson distribution. The Hurdle model is defined in the Poisson case as 

follows (Dalrymple et al., 2003): 

 

𝑃(𝑦𝑖 = 0/𝑥) = 1 − 𝑝(𝑥), 

𝑃(𝑦𝑖 = 𝑞/𝑥, 𝑧) =
𝑝(𝑥) exp(−𝜆(𝑧)) 𝜆(𝑧)

𝑞! (1 − exp(−𝜆(𝑧)))

𝑞

,    𝑞 = 1,2, … 
(17) 

 

In equation 17,  𝑥 and 𝑧 are covariate matrices. In this equation, 𝑝(𝑥) ve 𝜆(𝑧) are modeled using 

logit and log-linear functions respectively. The Hurdle model formulation is very similar to the 

ZIP model but the Hurdle model keeps the class zero from the non-zero by modeling the non-

zero 𝑦𝑖’s with a truncated Poisson distribution. It is expressed as 𝜆(𝑧)  and 𝑝𝑖, 
 

𝑙𝑜𝑔(1 − 𝜆(𝑧)) = 𝑥𝑖
′𝛽, (18) 

 

and 

 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝑧𝑖
′𝛼 (19) 

 

𝛽 and 𝛼 given in equation 18 and equation 19 are unknown parameter vectors respectively. The 

mean of the PH model is shown as 𝐸(𝑦) = (1 − 𝜋)𝐸(𝑌𝐼𝑌 > 0) = (1 − 𝜋)
𝜆

1−𝑒−𝜆
 and its 

variance as 𝑉𝑎𝑟(𝑦) = (1 − 𝜋)𝑣𝑎𝑟(𝑌𝐼𝑌 > 0) + 𝜋(1 − 𝜋)[𝐸(𝑌𝐼𝑌 > 0)]2. For PH, the log 

likelihood function is written as: 

 

𝐿𝐿𝑃𝐻 = ∑ 𝑥𝑖𝛽 −∑log (1 + exp(𝑥𝑖𝛽))

𝑛

𝑖=0𝑦𝑖>0

 

+ ∑[𝑦𝑖𝑧𝑖𝛼 − exp(𝑧𝑖𝛼) − log(1 − exp(−exp(−exp(𝑧𝑖𝛼))) − log(𝑦𝑖) !)]

𝑦𝑖>0

 

= 𝐿𝐿(𝛽) + 𝐿𝐿(𝛼) 

(20) 
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The parameters 𝛽 and 𝛼 can be obtained using maximum likelihood estimates. 

 

2.5.2. Negative binomial Hurdle model (NBH) 

 

If there is additional zero-inflation in the NB model, NBH model is used among other alternative 

models. The probability function of the Negative Binomial Hurdle Model is as follows (Sarul & 

Şahin, 2015): 

 

Pr(𝑦𝑖/𝑥𝑖) = {

     𝜋0                                              , 𝑦𝑖 = 0

(1 − 𝜋𝑖),
𝑔

1 − (1 + 𝛼𝜆)−𝛼−1
   , 𝑦𝑖 > 0 (21) 

 

where 𝑔 = 𝑔(𝑦; 𝜆, 𝛼) =
Г(𝑦+𝛼−1)

(𝑦+1)Г(𝛼−1)
(1 + 𝛼𝜆)−𝛼

−1−𝑦𝛼𝑦𝜆𝑦. The mean of the NBH model is shown 

as 𝐸(𝑦) = (1 − 𝜋)
𝜆

1−(1+𝛼𝜆)
−
1
𝛼

  and its variance as 𝑉𝑎𝑟(𝑦) = (1 − 𝜋)𝑣𝑎𝑟(𝑌𝐼𝑌 > 0) +

𝜋(1 − 𝜋)[𝐸(𝑌𝐼𝑌 > 0)]2. The log likelihood function of NBH: 

 

𝐿𝐿𝑁𝐵𝐻 = ln(𝑓(0)) + {ln[1 − 𝑓(0)] + 𝑙𝑛𝑃(𝑡)} (22) 

 

In equation 22, 𝑓(0) represents the probability of the binary part and p(j) the probability of a 

positive count. The probability of zero when using the logit model, 

 

𝑓(0) = 𝑃(𝑦 = 0; 𝑥) =
1

1 + exp(𝑥𝑏1)
 (23) 

 

and 

 

1 − 𝑓(0) = 𝑃(𝑦 = 0; 𝑥) =
exp (𝑥𝑏1)

1 + exp(𝑥𝑏1)
 

(24) 

 

For both parts of the NBH model, the log likelihood function can be written as (Yeşilova et al., 

2010): 

 

𝐿𝐿𝑁𝐵𝐻 = 𝑐𝑜𝑛𝑑{𝑦 = 0, ln (
1

1 − exp(𝑥𝑏1)
, ln (

exp(𝑥𝑏1)

1 + exp(𝑥𝑏1)
) 

+𝑦 ∗ ln (
exp(𝑥𝑏)

1 + exp(𝑥𝑏)
) − ln (

1 + exp(𝑥𝑏)

𝛼
) + lnГ (y +

1

α
) − lnГ (

1

α
) 

−ln (1 − (1 + exp(𝑥𝑏)) (−
1

𝛼
))} 

(25) 

 

 

3. MODEL SELECTION 

 

Pearson statistics, deviance statistics (Deviance), Log-likelihood(LL), Akaike Information 

Criteria (AIC) and Bayes Information Criteria (BIC) are commonly used criteria in testing the 

goodness of fit of regression models. Since LL, AIC, BIC and Vuong statistics are used in this 

study, these statistics are explained below. 
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3.1. Log Likelihood (LL) 

 

The log likelihood (LL) test is one of the most widely used tests for comparing different models. 

The LL test can be used to test for the presence of overdispersion. To test the Poisson model 

against GP model, where α is the overdispersion parameter, the hypothesis is expressed as 

𝐻0: 𝛼 = 0 and 𝐻0: 𝛼 ≠ 0. Probability ratio statistics is calculated as; 

 

𝐿𝐿 = 2(𝑙𝑛𝐿1 − 𝑙𝑛𝐿0)                                                                                                                               (26) 
 

Where 𝐿1  and  𝐿0   are the log likelihood under the respective hypothesis. LL has an asymptotic 

chi-square distribution with one degree of freedom (Wang & Famoye, 1997). When choosing the 

model over LL value, the model with the largest log-likelihood value is determined as the 

appropriate model. 

 

3.2. Akaike Information Criteria (AIC) 

 

This criterion, which is widely used to compare different models is; 

 

𝐴𝐼𝐶 = −2𝑙𝑜𝑔(ℒ) + 2𝑘 (27) 

 

In this equation, ℒ is the maximum value of the log likelihood function; 𝑘 represents the number 

of explanatory variables. Among the existing models, the model with the smallest 𝐴𝐼𝐶 value is 

selected as the appropriate model. In cases where the number of parameters is larger than the 

sample size, the 𝐴𝐼𝐶𝑐 proposed by Hurvich and Tsai should be used instead of 𝐴𝐼𝐶. This value 

can be written as follows (Akaike, 1973; Sugiura, 1978; Hurvich & Tsai, 1989); 

 

𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +
2𝑘(𝑘 + 1)

𝑛 − 𝑘 − 1 
=

2𝑘𝑛

𝑛 − 𝑘 − 1
− 2𝑙𝑛 (𝐿) 

 

(28) 

 

3.3. Bayes Information Criterion (BIC) 

 

Akaike proposed the BIC (Bayesian Information Criterion) model selection criterion for selected 

model problems in linear regression (McQuarrie & Tsai, 1998). AIC and BIC criteria are usually 

given together. Equality regarding the Bayesian measure of knowledge is as follows: 

 

𝐵𝐼𝐶 = −2𝑙𝑜𝑔(ℒ) + 𝑘𝑙𝑜𝑔(𝑛) 
 

(29) 

As with the AIC, the model with the lowest BIC value among the available models is selected as 

the appropriate model. 

 

3.4. Vuong Statistic (V) 

 

The Vuong test statistic is used to compare two models’ fit to the same data with maximum 

probability. Specifically, it tests the null hypothesis arguing that the two models fit the data 

equally well. Vuong statistics is calculated as follows (Vuong, 1989); 

 

𝑉 =
𝑚√𝑛

𝑠𝑑(𝑚)
 (30) 

 

Where 𝑚 is the mean of 𝑚𝑖, 𝑠𝑑(𝑚) represents the standard deviation and n represents the 

sample size. 𝑚𝑖  is expressed as follows: 
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𝑚𝑖 = ln (
𝑝1𝑖(𝑦𝑖)

𝑝2𝑖(𝑦𝑖)
) (31) 

 

Vuong test statistics has a standard normal distribution. If the significance level is taken as                

α= 0.05 and if V> 1.96, it means that the first model is closer to the real model, yet, if V <-1.96, 

then it means that the second model is closer to the real model. If the calculated value is not 

between ± 1.96, then it means that that there is no difference between using the first or the 

second model. 

 

 

4. EXPERIMENTAL RESULTS 

 

The data set used in the current study is from Hemmingsen et al. (2005), who investigated the 

number of parasites in a study carried out for three years in four regions off the coast of Norway. 

The "intensity" variable, which indicates the number of parasites, was taken as the dependent 

variable. Independent variables are the variables of depth, weight, length, age, and area. Original 

observation values consist of 1254 data. But some observation values were excluded because 

they did not exist. As in the current study the dependent variable was count data and the analyses 

were made for PR, NBR, ZIP, ZINB, PH and NBH models. To evaluate the goodness of fit of 

the models, log likelihood, AIC, BIC and Vuong statistics values were calculated. Stata and 

RStudio were used for analysis. The histogram for the distribution of the number of parasites 

(intensity) is given in Figure 2. The distribution conforms to the Poisson distribution. Descriptive 

statistics are given in Table 1. 

 

 
 

Figure 2. Frequency Distribution of Parasites Numbers (Intensity) 

 

Table 1. Descriptive Statistics 

 

Variable Obs Mean Std. Dev. Min Max 

Intensity 1191 6.209.068 1.964.186 0 257 

Depth 1191 1.763.115 7.174.705 50 293 

Weight 1191 1.717.688 1355.43 34 9990 

Length 1191 5.353.065 1.418.831 17 101 

Age 1191 4.118.388 190.539 0 10 

Area 1191 256.843 1.078.504 1 4 
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4.1. Poisson Regression (PR) 

 

Poisson regression is often used in modeling census data. However, in order for this model to be 

used, it must conform to the Poisson distribution and show an equal spread. That is, the mean of 

the dependent variable must be equal to its variance. The results obtained for the Poisson 

regression analysis are given in Table 2. 

 

Table 2. Poisson Regression Analysis 

 

Poisson regression Number of obs = 1,191 

 

LR chi2(5) = 5086.40 

 

Prob > chi2 = 0.0000 

Log likelihood = -11316.054 Pseudo R2 = 0.1835 

Intensity Coef. Std. Err. z P>z [95% Conf. Interval] 

Depth .0041254 .0001935 21.31 0.000 .003746 .0045047 

Weight -.0002165 .0000321 -6.74 0.000 -.0002795 -.0001535 

Length -.0272516 .0025701 -10.60 0.000 -.0322889 -.0222144 

Age .1241356 .0112843 11.00 0.000 .1020188 .1462523 

Area .5170952 .0140313 36.85 0.000 .4895943 .544596 

_cons .7040017 .0929926 7.57 0.000 .5217395 .8862639 

 

When the Poisson regression model was examined, all variables were found to be statistically 

significant (p≤0.05). The presence of overdispersion was tested using the "dispersiontest" 

function of the AER package of the R software (z = 2.9025, p-value = 0.001851, dispersion(c)= 

2.786516). Thus, in data set, overdispersion was detected. In some cases, a misspecified model 

may present a symptom such as an overdispersion problem. A common cause of overdispersion 

is excess zeros which are generated by an additional data generation process. In this case, the 

zero-inflation model should be considered.  

 

The zero.test function of the “vcdExtra” package of the R software was used to test whether the 

Poisson distribution is suitable for processing zero frequencies in the data set (Chi-square = 

178219.44184, df = 1, pvalue: < 2.22e-16). 

 

4.2. Negative Binomial Regression (NBR) 

 

The results obtained for the negative binomial regression analysis are given in Table 3. 
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Table 3. Negative Binomial Regression Analysis 

 

Negative binomial regression Number of obs = 1,191 

 

LR chi2(5) = 129.74 

Dispersion     = mean Prob > chi2 = 0.0000 

Log likelihood = -2543.4871 Pseudo R2 = 0.0249 

Intensity Coef. Std. Err. z P>z [95% Conf. Interval] 

Depth .007029 .0012848 5.47 0.000 .0045109 .009547 

Weight -.0000879 .0001376 -0.64 0.523 -.0003576 .0001818 

Length -.0421083 .0147863 -2.85 0.004 -.0710888 -.0131277 

Age .2211496 .0553297 4.00 0.000 .1127053 .3295938 

Area .2487281 .0632454 3.93 0.000 .1247694 .3726868 

_cons 1.117.684 .5818868 1.92 0.055 -.0227928 2.258.161 

/lnalpha 1.654.779 .0541407 

  

1.548.665 1.760.893 

alpha 5.231.923 .2832601 

  

4.705.185 5.817.629 

 

Likelihood-ratio test of alpha=0: chibar2(01) = 1.8e+04 Prob>=chibar2 = 0.000 

 

NBR can be used for overly distributed count data; that is, when conditional variance exceeds 

conditional mean. When the model was examined, the variables other than the "weight" variable 

were found to be significant. In this model, alpha (α=5,231) represents the dispersion parameter. 

The Poisson model is the model in which this α value is limited to zero. In other words, when the 

dispersion parameter is zero, the negative binomial distribution is equal to the Poisson 

distribution. Here it was found quite different from zero. A common cause of overdispersion is 

excessive zeros caused by an additional data generation. In this case, the zero-inflation model 

should be considered again. 

 

4.3. Zero Inflated Poisson Regression (ZIP) 

 

In the data set, 651 observations among 1191 observations consist of zeros. For this reason, the 

ZIB model was tried. The results obtained for the zero-inflated Poisson regression analysis are 

given in Table 4. 
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Table 4. Zero-inflated Poisson Regression Analysis 

 

Zero-inflated Poisson regression Number of obs = 1,191 

 

Nonzero obs = 540 

 

Zero obs = 651 

Inflation model = logit LR chi2(5) = 3255.91 

Log likelihood  = -7157.201 Prob > chi2 = 0.0000 

 

Coef. Std. Err. z P>z [95% Conf. Interval] 

Intensity 

      Depth .0013499 .0002057 20.607 0.000 .0009467 .0017531 

Weight .0001842 .0000319 5.78 0.000 .0001217 .0002467 

Length -.058611 .0027065 -21.66 0.000 -.0639157 -.0533063 

Age .083538 .0113188 7.38 0.000 .0613535 .1057225 

Area .3155613 .01262 25.00 0.000 .2908266 .340296 

_cons 3.761.493 .0976798 38.51 0.000 3.570.044 3.952.942 

inflate 

      Depth -.0066406 .0009475 -7.01 0.000 -.0084977 -.0047836 

Weight .0004211 .0001239 3.40 0.001 .0001782 .0006639 

Length -.0287779 .0124624 -2.31 0.021 -.0532037 -.0043521 

Age -.1218325 .0504857 -2.41 0.016 -.2207826 -.0228824 

Area -.0576589 .0627729 -0.92 0.358 -.1806915 .0653738 

_cons 2.834.424 .4768654 34.455 0.000 1.899.785 3.769.063 

 

Vuong test of zip vs. standard Poisson: z =11.19 Pr>z = 0.0000 

 

Zero-inflated Poisson regression model given in Table 4 is statistically significant (Prob> chi2 = 

0.000). The first model gave similar results to Poisson regression analysis. However, in the 

second model, the variable "Area" was found to be insignificant.  

 

Vuong testing compares the ZIP model with a classical Poisson regression model. Significance 

of the Z test indicates that the ZIP model is better (z = 11.19 Pr > z = 0.0000). This model has 

both a count model and a logit model. According to the ZIP model, all the "inflate" variables 

except for "Area" were found to be significant. The ZIP model can be applied both when the zero 

observation values are too high and when there is equal dispersion. 

 

4.4. Zero Inflated Negative Binomial Regression (ZINB) 

 

ZINB distribution was applied as there were both overdispersion and zero values in the data set. 

The results obtained for the zero-inflated negative binomial analysis are given in Table 5. 
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Table 5. Zero-inflated Negative Binomial Regression Analysis 

 

Zero-inflated negative binomial regression Number of obs = 1,191 

  

Nonzero obs = 540 

  

Zero obs = 651 

Inflation model = logit 

 

LR chi2(5) = 92.13 

Log likelihood  = -2491.515 

 

Prob > chi2 = 0.0000 

 

Coef. Std. Err. z P>z [95% Conf. Interval] 

Intensity 

      Depth .001893 .001355 14.611 0.162 -.0007629 .0045488 

Weight -.0001165 .00014 -0.83 0.405 -.0003908 .0001578 

Length -.0397358 .015112 -2.63 0.009 -.0693549 -.0101168 

Age .211129 .0540591 3.91 0.000 .1051752 .3170828 

Area .3065592 .0655921 24.563 0.000 .1780011 .4351173 

_cons 44.318 .6164726 3.33 0.001 .8417357 3.258.264 

inflate 

      Depth -.1295182 .0338827 -3.82 0.000 -.195927 -.0631093 

Weight .0004932 .0005902 0.84 0.403 -.0006637 .0016501 

Length -.0207498 .0739934 -0.28 0.779 -.1657742 .1242746 

Age -.1258854 .2887396 -0.44 0.663 -.6918047 .4400338 

Area 125.639 .4016089 41.334 0.002 .4692512 2.043.529 

_cons 1.050.094 3.156.974 12.114 0.001 431.338 1.668.849 

/lnalpha 1.449.799 .0608788 23.81 0.000 1.330.478 1.569.119 

alpha 4.262.257 .2594811 

  

3.782.853 4.802.416 

 

Vuong test of zinb vs. standard negative binomial: z = 6.54 Pr>z = 0.0000 

 

Again in this model, the significance of the coefficient values changed. The Vuong test compares 

the ZINB model with a classical NB model. Significance of the Z test (z = 6254 Pr> z = 0.0000) 

indicates that the ZINB model is better. 

 

4.5. Hurdle Regression 

 

4.5.1 Poisson logit Hurdle regression (PH) 

 

One of the models used when there are too many zeros in the observation values is the PH 

regression model. Care should be taken in interpreting these models because λ is not the 

expected result, but the mean of a fundamental distribution containing zeros. The results 

obtained for the PH model are given in Table 6. 
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Table 6. Poisson Logit Hurdle Regression Analysis 

 

Poisson-Logit Hurdle Regression Number of obs = 1,191 

 

Wald chi2(5) = 83.50 

Log likelihood = -7155.9229 Prob > chi2 = 0.0000 

 

Coef. Std. Err. z P>z [95% Conf. Interval] 

logit 

      Depth -.0066536 .0009462 -7.03 0.000 -.0085081 -.0047992 

Weight .0004247 .0001237 3.43 0.001 .0001822 .0006672 

Length -.0286749 .0124465 -2.30 0.021 -.0530695 -.0042803 

Age -.1228605 .0503524 -2.44 0.015 -.2215493 -.0241716 

Area -.0598937 .0627175 -0.95 0.340 -.1828177 .0630303 

_cons 2.838.815 .4763591 5.96 0.000 1.905.168 3.772.462 

Poisson 

      Depth .0013485 .0002057 6.56 0.000 .0009454 .0017516 

Weight .0001815 .0000321 5.65 0.000 .0001186 .0002445 

Length -.0585348 .0027151 -21.56 0.000 -.0638564 -.0532132 

Age .0839956 .0113305 7.41 0.000 .0617882 .1062031 

Area .316694 .0126652 25.01 0.000 .2918707 .3415173 

_cons 3.755.515 .0979291 38.35 0.000 3.563.577 3.947.452 

 

4.5.2 Negative binomial logit Hurdle regression (NBH) 

 

Since there was overdispersion in the observation values, the analysis was done with the negative 

binomial Hurdle model. 

 

Table 7. Negative Binomial-Logit Hurdle Regression 

 

Negative Binomial-Logit Hurdle Regression Number of obs = 1,191 

  

Wald chi2(5) = 83.50 

Log likelihood = -2513.7673 Prob > chi2 = 0.0000 

 

Coef. Std. Err. z P>z [95% Conf. Interval] 

logit 

      Depth -.0066536 .0009462 -7.03 0.000 -.008508 -.0047992 

Weight .0004247 .0001237 3.43 0.001 .0001822 .0006672 

Length -.0286749 .0124465 -2.30 0.021 -.0530695 -.0042803 

Age -.1228604 .0503524 -2.44 0.015 -.2215493 -.0241716 

Area -.0598937 .0627175 -0.95 0.340 -.1828177 .0630303 

_cons 2.838.814 .476359 5.96 0.000 1.905.168 3.772.461 

neg binomial 

      Depth .0023168 .0014701 1.58 0.115 -.0005647 .0051982 

Weight .0001738 .0001714 1.01 0.311 -.0001621 .0005098 

Length -.0768143 .018983 -4.05 0.000 -.1140202 -.0396084 

Age .2018122 .0639428 42.430 0.002 .0764865 .3271378 

Area .2809381 .0733809 3.83 0.000 .1371142 .424762 

_cons 3.402.976 .7766218 4.38 0.000 1.880.825 4.925.127 

/lnalpha 1.670.232 .2715551 6.15 0.000 1.137.994 220.247 
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The variables "Area" in the logit part of the model, "Depth" and "Weight" in the negative 

binomial part are insignificant while the other variables are significant. 

 

 

5. CONCLUSION AND SUGGESTIONS 

 

Commonly used models in count data are PR and NB models. The applicability of PR to the data 

obtained based on the count depends on the fact that the mean and variances of the data set are 

equal. A greater than average variance indicates overdispersion in the data set. In this case, 

different count data models are used. Among these, NB is the most preferred model.  

 

In the count data, the dependent variable also takes the value zero. In this case, analyzes can be 

made by determining inflate variables. Zero dispersion occurs when there are more than 

expected zero values in the data set. Count data with zero inflated and (or) overdispersion is 

common in a wide variety of disciplines. In case of zero inflated, it is appropriate to use ZIP, 

ZINB, PH, NBH or generalized models. In count models, the distribution parameter is used to 

see if there is overdispersion. In addition, the Vuong test is applied to compare non-nested 

models. In the model selection, according to the Chi-square (𝜒2) distribution with one degree of 

freedom table value, the model with the largest LL and the smallest AIC and BIC values is 

determined as the best model. In the current study, 6 different models were tested on the sample 

data set and a comparison was made in terms of LL, AIC and BIC values. Among these models, 

the smallest AIC and BIC and the largest LL values were found for the ZINB model. Table 8 

gives the results collectively. 

 

Table 8. Information Criteria for Models 

 

Count Models LL AIC BIC 

PR -11316.054 22644.11 22674.6 

NB -2543.4871 5100.974 5136.552 

ZIP -7157.201 14338.4 14399.39 

ZINB -2491.515 5009.029 5075.102 

PH -7155.9229 14335.85 14396.84 

NBH -2513.7673 5053.535 5119.608 

 

When PR and NB distributions are compared, NB distribution gives smaller AIC, BIC, which is 

an expected result. In this study, among 1191 observations, 540(45.34%) observations consist of 

positive values and 651(54.66%) observations consist of zeros. Therefore, analyzes were 

obtained for zero-inflated models. When Hurdle model and zero inflated models are compared, it 

is seen that better results are obtained for zero-inflated models.  

 

As a result, while building a model, we must consider all other alternative methods including the 

simpler count models such as PR and NB models. In terms of the results obtained, the goodness 

of criteria, the Voung statistics, and LL tests were parallel to each other. We concluded that ZIP 

model is superior to the standard PR model and ZINB model is superior to NB in this study. 

Studies in the literature support this result. Results also showed that estimated regression 

coefficients and standard errors differed across different models. However, it is more reasonable 

to say that which model is the best for the data depends on the data structure. Also statistical 

software packages have recently developed a procedure to fit zero-inflated models.  
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