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Abstract.
In this paper, the geometry of pseudo-slant submanifolds of a nearly Cosymplectic
manifold is studied. We obtain the necessary and sufficient conditions on a totally
umbilical proper-slant submanifold and show that it is totally geodesic if the mean
curvature vector H ∈ µ. well as, we research the integrability conditions of the
distributions of pseudo-slant submanifolds and prove some characterizations.
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1. INTRODUCTION

The differential geometry of slant submanifolds has shown an increasing development
since B-Y. Chen defined slant submanifolds in complex manifolds as a natural generalliza-
tion of both holomorphic and totally real submanifolds [8]. Then many research articles
have been appeared on the existence of these submanifolds in different knows spaces. The
slant submanifols of an almost contact metric manifolds were defined and studied by A.
Lotta [13]. After, such submanifolds were studied by J.L Cabrerizo et.al in the setting of
Sasakian manifolds [6].

The notion of semi-slant submanifolds of an almost Hermitian manifold was introduced
by N. Papagiuc [14]. Hemi-slant submanifolds first were indroduced by A.Carrizo [6, 7]
and he called them pseudo-slant submanifolds. Recently, in [15] B. Sahin studied warped
product submanifolds in a Kaehler manifold. In [10, 11], authors studied the pseudo-slant
submanifold in trans- Sasakian manifols.

In this paper, we study the pseudo-slant submanifolds of a nearly Cosymplectic manifold.
In section 2, we review basic formulas and definitions for a nearly Cosymplectic manifold
and their submanifolds, which will be used later. In section 3, we recall the definitions
and some basic results of a pseudo-slant submanifold of almost contact metric manifold.
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We deal with the integrability of a the distributions on the pseudo-slant submanifolds of
nearly Cosymplectic manifold and then we obtain some results for these submanifolds in
the setting of nearly Cosymplectic manifold.

2. preliminaries

In this section, we give some notations used throughout this paper. We recall some
necessary fact and formulas from the theory of nearly Cosymplectic manifolds and their
subnanifols.

Let M̃ be a (2n + 1)-dimensional almost contact metric manifold together with a metric
tensor g, a tensor field ϕ of type (1, 1), a vector field ξ and a 1-form η on M̃ which satisfy

(2.1) ϕ2X = −X + η(X)ξ,

(2.2) ϕξ = 0, η(ϕX) = 0, η(ξ) = 1, η(X) = g(X, ξ)

and

(2.3) g(ϕX, ϕY) = g(X,Y) − η(X)η(Y), g(ϕX,Y) + g(X, ϕY) = 0

for any vector fields X,Y on M̃. If in addition to above relations

(2.4) (∇̃Xϕ)Y + (∇̃Yϕ)X = 0,

then, M̃ is called a nearly Cosymplectic manifold, where ∇̃ is the Levi-Civita connection of
g.We have also on nearly Cosymplectic manifold M̃

(2.5) ∇̃Xξ = 0,

for any X ∈ Γ(T M̃).

Now, let M be a submanifold of a contact metric manifold M̃ with the induced metric g
and ξ be tangent to M. Also, let ∇ and ∇⊥ be the induced connections on the tangent bundle
T M and the normal bundle T⊥M of M, respectively. Then the Gauss and Weingarteen
formulas are respectively, given by

(2.6) ∇̃XY = ∇XY + h(X, Y)

and

(2.7) ∇̃XV = −AV X + ∇⊥XV,

where h and AV are the second fundamental form and the shape operator (corresponding
to the normal vector field V ), respectively, for the immersion of M into M̃. The second
fundamental form h and shape operator AV are related by

(2.8) g(AV X,Y) = g(h(X,Y),V),

for all X,Y ∈ Γ(T M) and V ∈ Γ(T⊥M).

In equation (2.6), for Y = ξ, we have

∇̃Xξ = ∇Xξ + h(X, ξ).
2
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Using (2.5), the tangential and normal parts of the last equation give, respectively, us

(2.9) ∇Xξ = 0

and

(2.10) h(X, ξ) = 0.

The mean curvature vector H of M is given by

(2.11) H =
1
n

trace(h) =
1
n

n∑
i=1

h(ei, ei)

where n is the dimension of M and {e1, e2, ..., en} is a local orthonormal frame of M.
A submanifold M of an contact metric manifold M̃ is said to be totally umbilical if

(2.12) h(X,Y) = g(X, Y)H,

where H is the mean curvature vector. A submanifold M is said to be totally geodesic if
h(X,Y) = 0, for each X,Y ∈ Γ(T M) and M is said to be minimal if H = 0.

3. Pseudo-Slant Submanifolds Of A Nearly CosymplecticManifold

In this section we will obtain the integrability conditions of the distributions of pseudo-
slant submanifold of a nearly Cosymplectic manifold. Also, we obtain some results on a
totally umbilical pseudo-slant in a nearly Cosymplectic manifold.

Let M be a submanifold of an almost contact metric manifold M̃. Then for any X ∈
Γ(T M), we can write

(3.1) ϕX = T X + NX,

where T X is the tangential component and NX is the normal component of ϕX.
Similarly for V ∈ Γ(T⊥M), we can write

(3.2) ϕV = tV + nV,

where tV is the tangential component and nV is the normal component of ϕV.

Thus by using (2.1), (3.1) and (3.2), we obtain

(3.3) T 2 = −I + η ⊗ ξ − tN, NT + nN = 0

and

(3.4) Tt + tn = 0, Nt + n2 = −I.

Furthermore, for any X,Y ∈ Γ(T M) and V,U ∈ Γ(T⊥M), we have g(T X,Y) = −g(X,TY)
and g(U, nV) = −g(nU,V). These show that T and n are also skew-symmetric tensor fields.
Moreover, for any X ∈ Γ(T M) and V ∈ Γ(T⊥M), we can easily see

g(NX,V) = −g(X, tV),(3.5)

which gives the relation between N and t.

3
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Furthermore, the covariant derivatives of the tensor field T , N, t and n are, respectively,
defined by

(3.6) (∇XT )Y = ∇XTY − T∇XY,

(3.7) (∇X N)Y = ∇⊥X NY − N∇XY,

(3.8) (∇Xt)V = ∇XtV − t∇⊥XV

and

(3.9) (∇Xn)V = ∇⊥XnV − n∇⊥XV,

for any X,Y ∈ Γ(T M).

By direct calculations, we obtain the following formulas

(3.10) (∇XT )Y + (∇YT )X = ANXY + ANY X + 2th(X,Y)

and

(3.11) (∇XN)Y + (∇Y N)X = 2nh(X,Y) − h(X,TY) − h(Y,T X).

Similarly, for any V ∈ Γ(T⊥M), we obtain

(3.12) (∇Xt)V = AnV X − T AV X

and

(3.13) (∇Xn)V = −h(tV, X) − NAV X.

In contact geometry, A. Lotta introduced slant immersions as follows [13].

Definition 3.1. Let M be a submanifold of a nearly Cosymplectic manifold M̃. For each
non-zero vector X tangent to M at x, the angle θ(x) ∈

[
0, π2
]
, between ϕX and T X is

called the slant angle or the Wirtinger angle of M. If the slant angle is constant for each
X ∈ Γ(T M). and x ∈ M, then the submanifold is also called the slant submanifold. If
θ = 0 the submanifold is invariant submani f old. If θ = π2 then it is called anti-invariant
submani f old. If θ(x) ∈ (0, π2 ), then it is called proper-slant submani f old [13].

If M is a slant submanifold of an almost contact metric manifold, then the tangent bundle
T M of M can be decomposed as

T M = Dθ ⊕ ξ,(3.14)

where ξ denotes the distribution spanned by the structure vector field ξ and Dθ is com-
plementary of distribution of ξ in T M, known as the slant distribution on M. Recently,
Cabrerizo et al. [6, 7] extended the above result in to a characterization for a slant subman-
ifold in a contact metric manifold. In fact, they obtained the following crucial theorem.

Theorem 3.2. Let M be a slant submanifold of an almost contact metric manifold M̃ such
that ξ ∈ Γ(T M). Then M is slant submanifold if and only if there exists a constant λ ∈ [0, 1]
such that

(3.15) T 2 = −λ(I − η ⊗ ξ)
furthermore, in such case, if θ is the slant angle of M, then λ = cos2 θ [6].

4
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Corollary 3.3. [6]. Let M be a slant submanifold of an almost contact metric manifold M̃
with slant angle θ. Then for any X,Y ∈ Γ(T M), we have

(3.16) g(T X,TY) = cos2 θ {g(X,Y) − η(X)η(Y)}

and

(3.17) g(NX,NY) = sin2 θ {g(X,Y) − η(X)η(Y)} .

Definition 3.4. We say that M is a pseudo-slant submanifold of an almost contact metric
manifold M̃ if there exist two orthogonal distributions Dθ and D⊥on M such that

1)T M admits the orthogonal direct decomposition T M = D⊥ ⊕ Dθ, ξ ∈ Γ(Dθ)
2) The distribution D⊥ is anti-invariant i.e., ϕD⊥ ⊂ (T⊥M),
3) The distribution Dθ is a slant with slant angle θ , π2 , that is, the angle between Dθ and

ϕ(Dθ) is a constant [1, 10].

From the definition, it is clear that if θ = 0, then the pseudo-slant submanifold is a semi-
invariant submanifold. On the other hand, if θ = π2 , submanifold becomes an anti- invariant.

We suppose that M is a pseudo-slant submanifold of an almost contact metric manifold
M̃ and we denote the dimensions of distributions D⊥and Dθ by d1 and d2, respectively, then
we have the following cases:

1) If d2 = 0 then M is an anti-invariant submanifold,
2) If d1 = 0 and θ = 0, then M is an invariant submanifold,
3) If d1 = 0 and θ , 0, then M is a proper slant submanifold with slant angle θ,
4) If d1.d2 , 0 and θ ∈ (0, π2 ) then M is a proper pseudo-slant submanifold.

Let M a proper pseudo-slant submanifold of a contact metric manifold M̃ and we denote
the projections on D⊥and Dθ by P1 and P2, respectively, then for any vector field X ∈
Γ(T M), we can write.

(3.18) X = P1X + P2X + η(X)ξ.

Now applying ϕ on both sides of equation (3.18), we obtain

ϕX = ϕP1X + ϕP2X,

that is,

(3.19) T X + NX = NP1X + T P2X + NP2X.

We can easily to see
T X = T P2X, NX = NP1X + NP2X

and

(3.20) ϕP1X = NP1X, T P1X = 0, ϕP2X = T P2X + NP2X

T P2X ∈ Γ(Dθ).
If we denote the orthogonal complementary of ϕT M in T⊥M by µ, then the normal

bundle T⊥M can be decomposed as follows

(3.21) T⊥M = N(D⊥) ⊕ N(Dθ) ⊕ µ,
5
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where µ is an invariant sub bundle of T⊥M as N(D⊥) and N(Dθ) are orthogonal distribution
on M. Indeed, g(Z, X) = 0 for each Z ∈ Γ(D⊥

) and X ∈ Γ(Dθ). Thus, by equation (2.3) and
(3.1), we can write

g(NZ,NX) = g(ϕZ, ϕX) = g(Z, X) = 0
that is, the distributions N(D⊥) and N(Dθ) are mutually perpendicular. In fact, the decom-
position (3.21) is an orthogonal direct decomposition.

Lemma 3.5. Dθ is slant distribution if only and if there is a constant λ ∈ [0, 1] such that

(T P2)2X = −λX,
for all X ∈ Γ(Dθ). In such case, if θ is the slant angle of M, then λ = cos2 θ[6].

Proposition 3.6. Let M be a pseudo-slant of a nearly Cosymplectic manifold M̃ . Then

(3.22) h(X, ξ) = 0

(3.23) h(T X, ξ) = 0

and

(3.24) ∇ξξ = 0,

∀X,Y ∈ Γ(T M).

Proof. Since ξ is tangent to M, we have

∇̃Xξ = ∇Xξ + h(X, ξ).

for any X,Y ∈ Γ(T M). This yields to h(X, ξ) = 0 and ∇ξξ = 0.
�

Theorem 3.7. Let M be a pseudo-slant of a nearly Cosymplectic manifold M̃. Then the
anti-invariant distribution D⊥ is integrable if and only if

(3.25) ANWZ + ANZW + 2T∇ZW + 2th(W,Z) = 0

for any Z,W ∈ Γ (D⊥).

Proof. For any Z,W ∈ Γ(D⊥), by using equation (2.4), we have

(∇̃Zϕ)W + (∇̃Wϕ)Z = 0

which is equivalent to

∇̃ZϕW − ϕ∇̃ZW + ∇̃WϕZ − ϕ∇̃WZ = 0.

By using (2.6), (2.7), (3.1) and (3.2), we have

0 = ∇̃Z NW − T∇ZW − N∇ZW − th(W,Z) − nh(W, Z)

+∇̃W NZ − T∇WZ − N∇WZ − th(W,Z) − nh(W,Z).

So we have

0 = −ANWZ + ∇⊥Z NW − T∇ZW − N∇ZW − 2th(W,Z)
−ANZW + ∇⊥W NZ − T∇WZ − N∇WZ − 2nh(W, Z).

Corresponding the tangent components of the last equation, we conclude
6
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ANWZ + ANZW + T∇ZW + T∇WZ + 2th(W,Z) = 0.

From the above equation, we can infer

ANWZ + ANZW + 2T∇ZW − T (∇ZW − ∇WZ) + 2th(W,Z) = 0

T [Z,W] = ANWZ + ANZW + 2T∇ZW + 2th(W,Z).

Thus [W,Z] ∈ Γ(D⊥) if and only if (3.25) is satisfied. �

Theorem 3.8. Let M be a pseudo-slant submanifold of a nearly Cosymplectic manifold M̃.
Then the slant distribution Dθ is integrable if and only if

P1{∇XTY − T∇Y X + (∇YT )X − ANXY − ANY X(3.26)
−2th(X,Y)} = 0.

for any X,Y ∈ Γ(Dθ).

Proof. For any X,Y ∈ Γ(Dθ) and we denote the projections on D⊥ and Dθ by P1 and P2,
respectively, then for any vector fields X,Y ∈ Γ(Dθ), by using equation (2.4), we obtain

(∇̃Xϕ)Y + (∇̃Yϕ)X = 0,

or
∇̃XϕY − ϕ∇̃XY + ∇̃YϕX − ϕ∇̃Y X = 0.

By using equations (2.6), (3.6) (3.1), and (3.2), we can write

0 = ∇̃XTY + ∇̃XNY − ϕ(∇XY + h(X, Y))

+∇̃YT X + ∇̃Y NX − ϕ(∇Y X + h(X,Y)),

that is,

∇XTY + h(X,TY) − ANY X + ∇⊥X NY − T∇XY − N∇XY(3.27)
−th(X,Y) − nh(X,Y) + ∇YT X + h(Y,T X) − ANXY + ∇⊥Y NX

−T∇Y X − N∇Y X − th(X,Y) − nh(X,Y) = 0.

From tangential components of (3.27) reach

(3.28) ∇XTY − T∇XY + (∇YT )X − ANXY − ANY X − 2th(X,Y) = 0,

which implies that

T [X,Y] = ∇XTY − T∇Y X + (∇YT )X − ANXY(3.29)
−ANY X − 2th(X,Y).

Applying P1 to (3.29), we get (3.26). �

Theorem 3.9. Let M be a pseudo-slant submanifold of a nearly Cosymplectic manifold M̃.
Then the distribution D⊥ ⊕ ξ is integrable if and only if

AϕZW = AϕWZ

for any Z,W ∈ Γ(D⊥ ⊕ ξ)
7
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Proof. For any Z,W ∈ Γ(D⊥ ⊕ ξ) and U ∈ Γ(T M), by using (2.8), we can write

2g(AϕZW,U) = g(h(U,W), ϕZ) + g(h(U,W), ϕZ).

By using (2.6), we have

2g(AϕZW,U) = g(∇̃WU, ϕZ) + g(∇̃UW, ϕZ)

= −g(ϕ∇̃WU,Z) − g(ϕ∇̃UW,Z).

So we have

2g(AϕZW,U) = g((∇̃Wϕ)U + (∇̃Uϕ)W,Z) − g(∇̃WϕU,Z) − g(∇̃UϕW,Z).

By using equation (2.4), we obtain

2g(AϕZW,U) = −g(∇̃WϕU,Z) − g(∇̃UϕW,Z)

= g(∇̃WZ, ϕU) − g(−AϕWU,Z)

= −g(ϕ∇̃WZ,U) + g(AϕWU,Z)

= −g(ϕ∇̃WZ,U) + g(AϕWZ,U)
= −g(T∇WZ + th(Z,W),U) + g(AϕWZ,U)

which is equivalent to

(3.30) 2AϕZW = AϕWZ − T∇WZ − th(Z,W).

Interchanging W by Z in (3.30), we derive

(3.31) 2AϕWZ = AϕZW − T∇ZW − th(W,Z).

By using equation (3.30) and (3.31), we obtain

(3.32) 3(AϕZW − AϕWZ) = T [Z,W]

thus the distribution D⊥ ⊕ ξ is integrable if and only if T [Z,W] = 0 which proves our
assertion. �

Theorem 3.10. Let M be a totally umbilical pseudo-slant submanifold of a nearly Cosym-
plectic manifold M̃. Then at least one of the following statements is true;

1) dim(D⊥) = 1,
2) H ∈ Γ(µ),
3) M is proper pseudo-slant submanifold

Proof. For any Z ∈ Γ(D⊥), by using (2.4), we have

(∇̃Zϕ)Z = 0

∇̃Z NZ − ϕ(∇ZZ + h(Z,Z)) = 0.

From the last equation, we have

(3.33) − ANZZ + ∇⊥Z NZ − N∇ZZ − th(Z,Z) − nh(Z,Z) = 0.

From (3.7) and from the tangential components of (3.33), we obtain

(3.34) ANZZ + th(Z,Z) = 0,
8
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Taking the product by W ∈ Γ(D⊥), we obtain

g(ANZZ + th(Z,Z),W) = 0.

It implies that

(3.35) g(h(Z,W),NZ) + g(th(Z,Z),W) = 0.

Since M is totally umbilical submanifold, we obtain

(3.36) g(Z,W)g(H,NZ) + g(Z,Z)g(tH,W) = 0,

that is,

(3.37) g(tH,W)Z − g(tH,Z)W = 0.

Here tH is either zero or Z and W are linearly dependent. vector fields If tH , 0, then
dimΓ(D⊥) = 1.

Otherwise H ∈ Γ(µ). Since Dθ , 0, M is pseudo-slant submanifold. Since θ , 0 and
d1.d2 , 0, M is proper pseudo-slant submanifold. �

Theorem 3.11. Let M be totally umbilical proper pseudo-slant submanifold of a nearly
Cosymplectic M̃. Then M is an either totally geodesic submanifold or it is an anti- invariant
if H, ∇⊥X H ∈ Γ(µ).

Proof. Since the ambient space is a nearly Cosymplectic manifold, for any X ∈ Γ(T M), by
using (2.4), we have

(∇̃Xϕ)X = 0,

∇̃XϕX = ϕ∇̃XX.(3.38)

By using (2.6), (2.7), (2.12) and (3.1), (3.38) equation takes the from

∇XT X + g(X,T X)H − ANXX + ∇⊥X NX = ϕ∇XX(3.39)
+g(X, X)ϕH

by taking the product with ϕH, we obtain

(3.40) g(∇⊥X NX, ϕH) = g(N∇XX, ϕH) + g(X, X) ∥H∥2

taking into account (2.7), we get

(3.41) g(∇̃X NX, ϕH) = g(X, X) ∥H∥2 .
Now, for any X ∈ Γ(T M), we have

(3.42) ∇̃XϕH = (∇̃Xϕ)H + ϕ∇̃XH

making use of then from (2.7), (2.12), (3.1), (3.2) and (3.42), takes the from

(3.43) − AϕH X + ∇⊥XϕH = (∇̃Xϕ)H − T AHX − NAHX + t∇⊥X H + n∇⊥X H.

Taking the product with NX and view of fact n∇⊥X H ∈ Γ(µ), (3.43) becomes

g(∇⊥XϕH,NX) = g((∇̃Xϕ)H,NX) − g(NAHX,NX),

or
g(∇̃XϕH,NX) = g((∇Xn)H + h(tH, X) + NAHX,NX) − g(NAH X,NX).

9
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By using (2.8), (2.12) and (3.17), we have

g(∇̃XϕH,NX) = − sin2 θ
{
g(X, X) ∥H∥2 − g(h(X, ξ),H)η(X)

}
.

From (2.10), we obtain

g(∇̃XϕH,NX) = − sin2 θ
{
g(X, X) ∥H∥2

}
or

(3.44) g(∇̃X NX, ϕH) = sin2 θ
{
g(X, X) ∥H∥2

}
.

Thus, (3.41) and (3.44) imply

g(X, X) ∥H∥2 = sin2 θ
{
g(X, X) ∥H∥2

}
,

that is,

(3.45) cos2 θg(X, X) ∥H∥2 = 0.

From (3.45), we conclude that g(X, X) ∥H∥2 = 0, for any X ∈ Γ(T M). Since M proper pseudo
slant submanifold we obtain H = 0. This tells us that M is totally geodesic in M̃. �

Theorem 3.12. Let M be totally umbilical proper pseudo-slant submanifold of nearly
Cosymplectic M̃. Then at least one of the following statements is true;

1) H ∈ µ,
2) g(∇T Xξ, X) = 0,
3) η((∇XT )X) = 0,
4) M is a anti-invariant submanifold.
5) If M proper slant submanifold then, dim(M) > 3,
for any X ∈ Γ(T M).

Proof. For any X ∈ Γ(T M), from equation (2.4) and M is nearly Cosymplectic manifold,
we have

∇̃XϕX − ϕ∇̃X X = 0.

By using (2.6), (2.7), (3.1) and (3.2), we have

∇XT X + h(X,T X) − ANXX + ∇⊥X NX − T∇X X − N∇XX(3.46)
−th(X, X) − nh(X, X) = 0

tangential components of (3.46), we obtain

(3.47) ∇XT X − T∇X X − th(X, X) − ANXX = 0.

Since M is a totally umbilical pseudo-slant submanifold, by using (2.8) and (2.12), we
can write

g(ANX X, X) = g(h(X, X),NX)
= g(g(X, X)H,NX)
= g(H,NX)g(X, X)
= g(g(H,NX)X, X) = 0.

If H ∈ Γ(µ), then from (3.47), we obtain

(3.48) ∇XT X − T∇X X = 0.
10
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Taking the product of (3.48) by ξ, we obtain

g(∇XT X, ξ) − η(T∇X X) = 0,

that is,

(3.49) g(∇XT X, ξ) = 0.

Interchanging X by T X in (3.49), we derive

g(∇T XT 2X, ξ) = 0

or,
g(∇T Xξ, T 2X) = 0

by using (3.15), we have

g(∇T Xξ,− cos2 θ(X − η(X)ξ) = 0

cos2 θg(∇T Xξ, (X − η(X)ξ) = 0.

Since, M is a proper pseudo- slant submanifold, we have

g(∇T Xξ, (X − η(X)ξ) = 0.

From which

(3.50) g(∇T Xξ, X) = η(X)g(∇T Xξ, ξ).

Now, we have g(ξ, ξ) = 1. Taking the covariant derivative of above equation with respect
to T X for any X ∈ Γ(T M),we obtain g(∇T Xξ, ξ)+g(ξ,∇T Xξ) = 0 which implies g(∇T Xξ, ξ) =
0 and then (3.50) gives

(3.51) g(∇T Xξ, X) = 0.

This proves (2) of theorem.

Now, Interchanging X by T X in the equation (3.51), we derive

g(∇T 2Xξ, T X) = g(∇cos2 θ(−X+η(X)ξ)ξ, T X) = 0,

that is,
− cos2 θg(∇(X−η(X)ξ)ξ, T X) = 0,

or
− cos2 θg(∇Xξ, T X) + cos2 θη(X)g(∇ξξ, T X) = 0.

Since ∇ξξ = 0, we obtain

(3.52) cos2 θg(∇Xξ, T X) = 0.

From (3.52) if cos θ = 0, θ = π2 then M is an anti-invariant submanifold. On the other
hand, g(∇Xξ, T X) = 0, that is ∇Xξ = 0. This implies that ξ is a the Killing vector field
on M. If the vector field ξ is not Killing, then we can take at least two linearly independent
vectors X and T X to span Dθ, that is, the dim(M) > 3. �

11
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Example 3.13. Let R9 be the semi- Euclidean space endowed with the usual semi- Eu-
clidean metric tensor g = dx2

1 + dy2
1 + dx2

2 + dy2
2+ dx2

3 + dy2
3 + dx2

4 + dy2
4 + dz2 and with

coordinates (x1, y1, x2, y2, x3, y3, x4, y4, z).We define the almost contact metric structure on
R9 by

ϕ(
∂

∂xi
) =

∂

∂yi
, 1 ≤ i ≤ 4

ϕ(
∂

∂y j
) = − ∂

∂x j
, 1 ≤ j ≤ 4

ϕ(
∂

∂z
) = 0,

and

ξ =
∂

∂z
, η = dz.

Then for any vector field W = µi
∂
∂xi
+ ν j

∂
∂y j
+ λ ∂

∂z ∈ T (R9) we have

ϕW = µiϕ(
∂

∂xi
) + ν jϕ(

∂

∂y j
) + λϕ(

∂

∂z
)

= µi
∂

∂y j
− ν j

∂

∂xi
,

g(ϕW, ϕW) = g(µi
∂

∂y j
− ν j

∂

∂xi
, µi
∂

∂y j
− ν j

∂

∂xi
) = µ2

i + ν
2
j ,

g(W,W) = g(µi
∂

∂xi
+ ν j

∂

∂y j
+ λ
∂

∂z
, µi
∂

∂xi
+ ν j

∂

∂y j
+ λ
∂

∂z
) = µ2

i + ν
2
j + λ

2,

η(W) = g(W, ξ) = g(µi
∂

∂xi
+ ν j

∂

∂y j
+ λ
∂

∂z
,
∂

∂z
) = λ

and

ϕ2W = −µi
∂

∂xi
− ν j

∂

∂y j
− λ ∂
∂z
+ λ
∂

∂z
= −W + η(W)ξ

which implies that g(ϕW, ϕW) = g(W,W) − η2(W).

Thus (ϕ, ξ, η, g) is an almost contact metric structure on R9. We call the usual contact
metric structure of R9.

Let M be a submanifold of R9 defined by

(u,−
√

2v, v sin θ, v cos θ, s cos t,− cos t, s sin t,− sin t, z).
12
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We can easily to see that the tangent bundle of M is spanned by the tangent vectors

e1 =
∂

∂x1

e2 = −
√

2
∂

∂y1
+ sin θ

∂

∂x2
+ cos θ

∂

∂y2

e3 = cos t
∂

∂x3
+ sin t

∂

∂x4

e4 = −s sin t
∂

∂x3
+ sin t

∂

∂y3
+ s cos t

∂

∂x4
− cos t

∂

∂y4

e5 = ξ =
∂

∂z
.

Then we have

ϕe1 =
∂

∂y1

ϕe2 =
√

2
∂

∂x1
+ sin θ

∂

∂y2
− cos θ

∂

∂x2

ϕe3 = cos t
∂

∂y3
+ sin t

∂

∂y4

ϕe4 = −s sin t
∂

∂y3
− sin t

∂

∂x3
+ s cos t

∂

∂y4
+ cos t

∂

∂x4
.

By direct calculations, we infer Dθ = span{e1, e2} is a slant distribution with slant angle
α = cos−1(

√
6

3 ). Since ϕe3 and ϕe4 are orthogonal to M, D⊥ = span{e3, e4} is an anti-
invariant distribution. Thus M is a 5 -dimensional proper pseudo-slant submanifold of R9

with its usual almost contact metric structure.
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[1] Atçeken, M and Hui, S. K., Slant and Pseudo-Slant Submanifolds in (LCS )n-manifolds, Czechoslovak M. J,
63(138), 177-190 (2013).
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