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Abstract

In this paper, we first obtain an identity for differentiable mappings. Then we establish some new generalized inequalities for differentiable
(n1,M2) — convex functions involving some parameters and generalized fractional integrals. We show that these results reduces to several
new Simpson, midpoint and trapezoid type inequalities. Some special cases are also discussed.
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1. Introduction

Simpson’s inequality plays an important role in many areas of mathematics. The classical Simpson’s inequality is expressed as follows for
four times continuously differentiable functions:

Theorem 1.1. Suppose that f : [a,b] — R is a four times continuously differentiable mapping on (a,b) , and let Hf(4> H = sup ’f(“) (x)’ <
© x€(ab)
oo, Then, one has the inequality

‘ 1 [f<a>;f<b> +2f<%b)} — 5 P f(x)dx

< oo Hf(“) Hm (b—a)*
In recent years, many authors ha ve focused on Simpson’s type inequalities for various classes of functions. Specifically, some mathematicians
have worked on Simpson’s and Newton’s type results for convex mappings, because convexity theory is an effective and powerful method for
solving a large number of problems which arise within different branches of pure and applied mathematics. For example, Dragomir et al. [7]
presented new Simpson’s type results and their applications to quadrature formulas in numerical integration. What is more, new Newton’s
type inequalities for functions whose local fractional derivatives are generalized convex are given by Iftikhar et al. in [14]. For more recent
developments, one can consult [1,2,3,9,10,11,19,20,21,29].

2. Preliminaries

In this section, we first summarize the generalized fractional integrals defined by Sarikaya and Ertugral in [24].
Let’s define a function ¢ : [0,00) — [0, o) satisfying the following conditions :

1
/ Mdt<<>o,
0 t
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We define the following left-sided and right-sided generalized fractional integral operators, respectively, as follows:

a+1<pf(X):/)r %f(t)dt, x>a, Q2.1
b _
p-lpf(x) = /x (pt(ixx) f(t)dt, x<b. (2.2)

The most important feature of generalized fractional integrals is that they generalize some types of fractional integrals such as Riemann-
Liouville fractional integral, k-Riemann-Liouville fractional integral, Katugampola fractional integrals, conformable fractional integral,
Hadamard fractional integrals, etc. These important special cases of the integral operators (2.1) and (2.2) are mentioned below.

i) If we take ¢ (z) =1, the operator (2.1) and (2.2) reduce to the Riemann integral

ii) If we take @ (¢) = #(;), & > 0 the operator (2.1) and (2.2) reduce to the Riemann-Liouville fractional integrals J% f(x) and Ji* f(x),

respectively. Here I" is Gamma function.

iii) If we take @ (¢) = ﬁm)t%, o,k > 0 the operator (2.1) and (2.2) reduce to the k-Riemann-Liouville fractional integrals Jﬁ_k f(x) and

Jit o f(x), respectively. Here I'; is k-Gamma function.
Sarikaya and Ertugral also establish the following Hermite-Hadamard inequality for the generalized fractional integral operators:

Theorem 2.1 (24). Let f : [a,b] — R be a convex function on [a,b] with a < b, then the following inequalities for fractional integral
operators hold

7(%57) = 52 Lol @40 Tp )] < LTI 9

where the mapping A : [0,1] — R is defined by
[ o((b
At) = / Mdu'
0

In the literature, there are several papers on inequalities for generalized fractional integrals. Budak et al. proved Midpoint type inequalities
and extensions of Hermite-Hadamard inequalities in [4] and [5] , respectively. In [11], Ertugral and Sarikaya presented some Simpson type
inequalities for these fractional integral operators. For some of other papers on inequalities for generalized fractional integrals, please refer
to [13,15,16,25,26,27,29].

Definition 2.2. [31] A set I C R is invex with respect to a real bifunctionn : I x I — R, if

x,yel, A€0,1]] = y+An(x,y) €l 2.4
If 1 is an invex set with respect to 1, then a function f : I — R is called preinvex , if x,y €  and A € [0,1].

FO+AN(xy) SAf ) +(1=2) f(y). 2.5)
Definition 2.3. [31]A function f : I — R is called convex with respect to N—convex, if

flx+ (1 =0)y) <f)+m(f(x),f) (2.6)
forallx,yelandt€[0,1].

Definition 2.4 (32). Let I C R be an invex set with respect to M : I X I — R.Consider f: 1 — R and 1y : f(I) X f (I) = R.The function f
is said to be (N1,M2) — convex, if

St (3x) < f(x)+ A2 (f(y), f(x)) 2.7
forallx,yeland A € [0,1].
Remark 2.5. An (11, 1M2) —convex function reduces to;

(i) If we choose 1 (x,y) =x—y for all x,y € I in Definition 2.4, then we obtain n-convex function.

(ii)If we choose M, (x,y) =x—y for all x,y € f (I ) in Definition 2.4, then we obtain preinvex function.

(iii) If we choose Ny (x,y) = 12 (x,y) = x —y in Definition 2.4, then we obtain classical convex function.

In this paper, simpson, midpoint and trapezoid type inequalities using (17, 1)2)-convex function via generalized fractional integrals. Moreover,
we also consider their relevances for other related known results.
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3. An Identity for Generalized Fractional Integrals

In this section, we offer a parameterized identity involving ordinary first derivative via generalized fractional integrals.

Lemma3.1. Let f € Ly [a,a+ 1 (b,a)] be a differentiable function on (a,a+ 1 (b,a)). If f is continuous and integrable on [a,a+ 1 (b,a)),
then for A, 11 > 0, Ny (b,a) > 0, one has the identity;

(1-wr@+ @ (o POD) -7 @ 6.0) G

1 i (b,a) m (b,a)
o () ¢ o (o B3

where the mapping Ay, : [0,1] — R is defined by;
t (P 711 ba )
AT]I = /
0

Proof. Applying fundamental rules of integration, we have
Jo (An, (1) = An, (DA) f' (a+ 13101 (b,a)) di b
= e [Bn (D ((1=2) f(amy (b)) AF (at ME2)) .
ba
= armi(ba)-lof (a+ W)]

and
1 1—
/0 (Ag, (D p—Ag () f' <a+ Tlm(bya)> dt (3.3)
_ 2
B m (b7a)
b b
<Jan 0 (0-wr@rus (o TEDY) oty (ar RO, ()
By adding (3.2) and (3.3), we obtain the required equality (3.1). O

Corollary 3.2. If we assume @ (t) =1t in Lemma 3.1, then we obtain the following equality;

a+mn;(b,a)

HO-m @+ @) f (et 2ED) £ 0= 2) flatm )| =gy [ 70
=20 = 2) f (a+ i mi (b)) dr
I3 (=) f (a+ 5t (b)) dr]
Corollary 3.3. In Lemma 3.1, if we set ¢ () = #‘;) , then we obtain the following new identity for Riemann-Liouville fractional integral;

(lfu)f(a)+(u+l)f<a+w>+(1*/1)f(a+m (b,0))

R (4 242) 1 (o242

< [Jo (% =2) £ (a+ 5Em (.a)) i+ Jg (=) £ (a+ 2550 (b,)) ]
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Corollary 3.4. In Lemma 3.1, if we take ¢ (t) =
integral;

(=) f @)+ (2 f (a+ 2PDL) 4 (1-2) f (a1 (b,a)

R T W ORI C D)

(n1(b,a)) * a+ni(ba)”,

kl"tifa)’ then we obtain the following new identity for k-Riemann-Liouville fractional

= DA [ (1 =2) 7 (0 Em (b))
+f (u —t%)f’ (a+5tn, (b,a))dt] .

4. Some parameterized inequalities for generalized fractional integral operators

In this section, we establish some new generalized inequalities for differentiable convex functions via generalized fractional integrals.

Theorem 4.1. We assume that the conditions of Lemma 3.1 hold. Let I C R be an invex set with respect to M1 and 1 is an integrable

bifunction on f(I) x f(I), for any a,b € I with ny (b,a) > 0. If the mapping |f'| is (N1, M2)-convex on [a,a+ Ny (b,a)], then the following
inequality holds for generalized fractional integrals;

(1= u) £ (@) + (u+/l)f(a+”‘( U)+(1-2) £ (a+m (b,a))
2A,71 [a+1<pf<a+m ))+a+m(b.,a)fl¢f<a+w>”
< B I 1 @)L @) (1] () +115 (1))

+1f'(a I(f rAm — By (DA + 5 [ Ay, (=8, (0)])]

where

.1

= 01 (1—1)|Ap, (t) = Ap, (1) K|d1

and
= / (1+1)|Ag, (1) = Ay, (1) k| dt.
Proof. By taking the modulus in Lemma 3.1 and using the properties of the modulus, we obtain that

(1= p) f @)+ (u+2) £ (a+ 289D) 4 (1-2) £ (a+ 1 (b))

— 517 [atof (a+ ”l(b’[”)  aimva fof (a+259)]|
= A1 1A () = B, (DA] |7 (a+ F2m1 (b,0)) | ar

+fo|Am Y=g, (O] [f (a+1550 (b,0)) ]
Since the mapping |f’| is (11,M2) — convex on [a,a+ 1Ny (b,a)], therefore, we have
\(HL) (@) + (1 +2) f (a+2G20) + (1-2) f(a+m (b,0))
[w'wf(a“"’”)) im0~ ,M,f(a+w)”

a)l

!

4.2)

_i’gf,”“ [17@)1 (g |y (1) = Ag (V)| de+ [ 8, (1) = Ay, (1) )
1 (1 B @) (5 (1) |Am<r — By (DA di+ i (1 =) |Ag, (D) =4y, (1) dr ) |
i?,;b(“ (2 (IF ®)],|£ (@)]) (0] () + 115 (A)) + [ £ ()] (TTF (A) +T1F ()]

which ends the proof. O

Corollary 4.2. Under assumption of Theorem 4.1, with @ (t) = t, then we obtain the following inequality;

[0-mr @+ @+2) (a+ 2BD) 4 (1-2) f(a+ s (b,a)]
a+n:(b,a)

T

< nl(

[If @] (2 +2%2 =2 —p+1) +m (/' ()], 1f (@) (IO () + 115 (2))]
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Corollary 4.3. Under assumption of Theorem 4.1, with ¢ (t) = % then we obtain the following inequality for Riemann-Liouville fractional
integrals;

| =m) f @+t f (a+ ZGD) - (1=2) f(atmi (b,a)

R s (42 15, 1242

LIf @) (& (A +1%) = A—n+ 52y

+m (1 (B)]1f (@) (T (1) + 105 (1)) ]

where
2 a a+2 1
Y (k) = O et ¢ KT—E+
o+1 o+2 2 (e+2)(ax+1)
and
o a2 3K 20+3 200 atl
% (k) = Ko —— K @
2 (K) a+2 2 (a+)(a+2) o+l
Corollary 4.4. In Theorem 4.1, if we take ¢ (t) = #T(a), then we obtain the following inequality for k-Riemann-Liouville fractional

integrals;

(1= p) @+ (u+2) £ (a+ 2B2D) 4 (1-2) £ (a+ 1 (b,a)

-%%ﬂ[wm+w ) of (o242 |
a+k

P 1@ (5 (A ) ~A -k i)

1 (f B)]1f @D T ()+115 (3)]

where

a 200 atk o a2k K k>
I¢ (x) = Ko — Ke ——4 =

() a+k a+2k 2+((x+2k)(a+k)’
and

o ax 3K 20tk + 3k2 200wk

Ilf (k) = K& —— K

2 (%) o+2k 2 +(a+2k)(a+k)+oc+k

Theorem 4.5. We assume that the conditions of Lemma 3.1 hold. Let I C R be an invex set with respect to M1 and 1 is an integrable
bifunction on f(I) x f(I), for any a,b € I with 1y (b,a) > 0.If the mapping |f|"', p1 > 1 is (N1,M2)-convex on [a,a+ Ny (b,a)] then the
following inequality holds for generalized fractional integrals;

| =m)f @+t A)f (at ZED) 4 (1-2) fat mi (b,a)

s o o+ 89) o o4 7))

1

a l_p
< gAlf,}l]U)) {(IOI ‘Afll (t) — A, (l)l‘dt) !

€1
x (fo‘ [y () (DA @17 T )21/ ) ) ) n

1—L
(fO ’Am /J' Am )|dt> "

1
X(n?<u>nz<|f'<b>\.,\f’< "+ A, (D dt)f’(a)l”‘)”l}

where H(lp (k) and l'I(zp () are defined as in Theorem 4.1.
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Proof. Reutilizing inequality (4.2) and from power mean inequality, we have

=@+ ays (ae BP0 -2 et m 0.0

—ﬁ [a+1<pf(a+ n (57(1)) Fatn(ba)- I(pf( + 1 (57@)”
2 (-]
><</1 |Ag, (1) — A, ()] | (w%m(b,a))

1—L
</ !ATII [.i Anl ’dt) :

</ Ay (1) 1= A, (1) ’(a+%m(b,a)>

Using the (171,1) — convexity of |f|P*, we have

IN

P1 ﬁ
dt)
1
Pi ”n
dt) } .

- r@+aan s (50) +a-nr s m ba)

1 +b +b
*Amu){“*“’f(a )*“*"'“ I“’f(a )”

=5
< ginllm {(/ |An, (1) Am(l)?t|dt>
! "
X(|f/(a)’pl/0 ’Aﬂl (t)*ATIl Mdt+n2 ’f ‘ }f ‘ /0 <%> ’Aﬂl (t)fAm Mdt)
1 1=
+(/0 \Am(l)u—Anl(r)}dr)
e "
. (If’(a)!p‘ [ 1 = Ol (O @D [ (5 180 =0, 0]ar) }
1-—L
_ 2Am {(/ Ay (1) Am(l))L|dt)
X(ﬂ) [An, (1) = A, (DA]IF @I +T15 () 12 (1 (B 1 (@) )
2
(/ |Ag, (1) — Ay, (¢ }dz) E
X<H§p(u)nz(f’(b)|,l.f’()I) + (U6 |An (=g, ()] dr ) I @ |)]
2
which finishes the proof. O

Corollary 4.6. If we assume that ¢ () = t in Theorem 4.5, then we obtain the following inequality;

3 [0-mf @+ @+2)f (a+2BD) 4+ (1-2) f(a+ i (b,a)]
| a+n;(b,a)
O] af f(t)dt

< 2l
. [(Hl (A) T ()7 (A2 =2+ 1) |F @ +T () ma (1 B (@)
(1) (1) + T ()7 (T () ma (1 ()] f (@) + (2 — o+ 1) | <a>|“)ﬂ

where I1} (k) and I1, (k) are defined as in Corollary 4.2.
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Corollary 4.7. If we take ¢ (t) = ( ) in Theorem 4.5, then we have the following inequality for Riemann-Liouville fractional integrals;

’(1 —)f@)+(u+A)f <a+ i (fﬂ)) =2 flatm (b)) (4.3)
< DO g ) +mig (a5

(525 -t g )@ +18 e )L @) )

(T () + I () 70

(2 G (17 ) @)™+ (5 ek i )1 >y>]

where TI{ (k) and TI$ (k) are defined as in Corollary 4.3.

Corollary 4.8. If we take ¢ (t) = % in Theorem 4.5, then we have the following inequality for k-Riemann-Liouville fractional integrals;
: b,
s+ ars (arMGD) - 2) st b.0) )

26 (a4 1) [ o M1 (b,a) o N1 (b,a)
_(m(bﬂ))%{]ﬁ’kf(a—k— 5 )+Ja+m(h,a)’,kf(a+ ) )H

0 [(nf yenf )

IN

1

2 otk 1 i ! ! D\t
(e 2 g Ir@pranf @m (7 @)1 @)

a I—T
Fwmg () "

< (mf G (7 @I @)+ | - ) @ H

where I1{ (k) and I1§ (k) are described in Corollary 4.3.

Theorem 4.9. We assume that the conditions of Lemma 3.1 hold. Let I C R be an invex set with respect to N and 1, is an integrable
bifunction on f(I) x f(I), for any a,b € I with 0y (b,a) > 0.If the mapping |f|"", r| > 1 is (N1, M2)-convex on |a,a+ Ny (b,a)| then the
following inequality holds for generalized fractional integrals;

-wr@urans (ae MDY -2) e m 0.0 @s)

P

(b,a) ! ﬁ3 B (@) +41f (a)|”
;gm K/ (A, ()= A, (DA dl) (nzuf( L\ @)" +417" @

# () o 0n a0 0 o) g (3L @l @)1 @) ) }

IN

L
)rl

1,1 _
where o + 5 =1.

Proof. Reutilizing inequality (4.2) and from well-known Holder’s inequality, we have

=@+ ays (ae MDY 012 et m 0.0

_ﬁ [a+1¢f(“+m (f’a))“““ ba)- ’q’f( + (5))”
([ lnio-sq wapa) ([ o gim0a) )
. </01 |Am (1)t — An, (z)|”‘ dt>f’l] (/01 n dz)ll]

IN

/! (a+ %nl (b,a))
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Using the fact that [f'|"" is (11,72) — convex, we have

a-wr@+ a2 (ar MDY 1-2) e m .0

st (-2 (24

2Am {(/ [An, (1) Am(l)ﬂp‘dt)p]l
x (|f/(a)‘rl/Oldt+n2(’fl(b)|"f/(a)Drl/Ol (12_H)dt)1]
+ (/01 |An, (1) —Ap, ()] d;)”
( ‘”/ol””*nz<>f’<b>|7|f’<a>\>”/0'(I?)dﬂ
= {(/ |Ap, (1) — Ay (|)x|mdl);1 (3112(f’(b)|,|f/(a)|)rlJr4|f/(a)rl);l
2Am ] 1 4
' (/1 [Am, (1)1 = A, ()] dr)”l‘ (‘”f’ @ +m(r (b)hlf’(a))")%]
0

which completes the proof. O

IN

Corollary 4.10. In Theorem 4.9, if we set @ (t) =t, then we obtain the following inequality;

S [0-mr@+ e+ 2) 7 (a+ 2D+ (1=2) f (a1 (b,a)]
a+mn;(b,a)

< miba) [(H3 ()1 (AL )

1 4 T '’ ! r }
(T ()7 (AL POl @) 1}

L
)yl

where

K-p1+l+(1 )PIH
p1+1

T3 (k) =
Corollary 4.11. In Theorem 4.9, if we take ¢ (t) = ( ik then we obtain the following inequality for Riemann-Liouville fractional integrals;

=) f @+ () f (a+ 2BD)+(1=2) £ (a1 (b,a)
2T(a+1) miba) mi(ba)

~ | taf (a2 ,>+a+m<b,a)”“f (a2 m

< mlba) [(fo‘ 1% — [P d,) o (3n2<|f"<h>\,\f/<§>\>'l +4/f'(a)|" )*

+ (fol | — [P d,) " (4\f’<a>\"‘ (G @) ) W} :

Corollary 4.12. In Theorem 4.9, if we set ¢ (t) = %, then we obtain the following inequality for k-Riemann-Liouville fractional

integrals;

a-wr@+urars (ae MDY 1-2) e m 0.0

_W |:J‘?+,kf (a+ - (5 )> +J‘?+n' = (a-i— 8 (5 a))H

(gl

([t

4

) (PR LI @) el oy
r) <4|f( a)l" +nz(l YOI (@) >]
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5. Special Cases

In this section, we give some special cases of our main results.
Remark 5.1. From Theorem 4.1, we have following new inequalities:

l.ForA=pu= % , we have the following inequality;

‘é [ a)+2f( +"‘(b”)>+f(a+m (b’a))]

Ly [atof (a+ 289 ) 4oy 0y Tof (a+ 252 )] |
< o ‘ié[ (2)+18 (3)]m (1 B)].1F @)
+1f'(a) [(fo [Any (0) = Ay (1) 3]+ Jo [An, (15— 4, (’)|>]

Particularly, if we choose 1 (x,y) = 12 (x,y) = x —y, then we obtain [11, Theorem 4].
2. For A = u = 0, we have the following inequality;

f(a)+f(“2+711 (b,a))
~ 3 1) [a%f (a+ M) tarmba-lof (“+ WH ( (5.1)
< B0 (1w @] ar) a7 @1 @D +17 @]

Particularly, the inequalty (5.1) for 1y (x,y) = 12 (x,y) = x —y is proved by Ertugral et al. in [12].
3. For L = p = 1, we have the following inequality;

o)
e o tof (4 25) - Tof (o 252 ]| (52)
<% b([f (l |An, (1) = Ap, (1)|dt) (2 (17 O (@)) + [ (a)]].-

Particularly, the inequalty (5.2) for 1y (x,y) = 12 (x,y) = x—y is proved by Ertugral et al. in [12].
Remark 5.2. From Corollary 4.2, we have following inequalities:
l.ForA=pu= % , we have the following Simpson’s inequality for Riemann integrals;
b,
& [F@-+af (a+2G2) + f(a+m (b,0))]
a+ni(b,a)

fm [ f(t)dt (5.3)
< 9 17 ()| (3) +m (1 G 1 @D (0 (3) + 118 (3)]

Particularly, the inequalty (5.3) for n; (x,y) = 12 (x,y) = x —y is proved by Sarikaya et al. in [22,23].
2. For A = u =0, we have the following trapezoid inequality for Riemann integrals;

a+m (b,a)
f(a>+f<a2+m(b-,a>)7171(2’“) [ f)dr

a

5.4

1
< 282 s (@)L, @)D ] |aw, O]+ 17 @)
Particularly, the inequalty (5.4) for n; (x,y) = 12 (x,y) = x —y is proved by Dragomir and Agarwal [8].
3. For A = u =1, we have the following midpoint inequality for Riemann integrals;

a+mn;(b,a)

‘f (a+ L(zb’a)) — 7,11(2“) [ f(r)ar

(5.5)

< L) [(gl'lAm (1) —Ap, <1>}dr) . (f G)LIf @) +If (@)

Particularly, the inequalty (5.5) for 1y (x,y) = 12 (x,y) = x—y is proved by Kirmaci in [17].

Remark 5.3. From Corollary 4.3, we have following inequalities:
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1. For A = u = £, we have the following Simpson’s inequality for Riemann-Liouville fractional integrals;

73’

‘é[f(a)+4f( +’71( )+f(a+m(ba))]
2t [ g (ar 2a) e o (o 240)]|

< 189 (¢ () +11¢ (3)) (2 (| 0)]. £ (@)

da (V% 4, 2
7@l Q)7 -4+ @y )|
2. For A = u =0, we have the following trapezoidal type inequality for Riemann-Liouville fractional integrals;
f(a)+f(a+m (b.a))

*%%?%[ngm ) 118 o 282)]|
< mipe) (\Am !df) [n2(|f'(b)\,\f’(a)\)+ﬁ|f/(a)].

3. For A = u = 1, we have the following midpoint type inequality for generalized fractional integrals;

e
T S (at B ) T S (o252 )]

< 2 ([ an )~y ] ) [ 011 @) + 25 17 @]

Remark 5.4. From Corollary 4.4, we have following inequalities:

I.ForA=pu= % ,we have following Simpson’s type inequality for k-Riemann-Liouville fractional integrals;
b,
@ (e 252) + s @t m b0
2 M(0+k) m(b,a) o m(b.a)
b P (o )z S (o 2]
b.a
<209 (mf (3)+11f (%)) 2 (1f (B)], 11 (@)
2\ 4 2k
+1f'(a |<a+k(3) §+m)}-
2. For A = pu = 0, we have the following trapezoidal type inequality for k-Riemann-Liouville fractional integrals;
‘ fa)+f(atm (ba))

_% [J‘(’XJ“"f (a+ M) -k (“+ M)H

kni(b,a)

< Farg M G (@) +81f (a)l]-

3. For A = p = 1 we have the following midpoint type inequality for k-Riemann-Liouville fractional integrals;

j2f (a+ 2G)

L e 242) o 242)]

< QA [ G (1 )17 @)+ (285 I @]

Remark 5.5. From Theorem 4.5, we have following new inequalities:

I.ForA=pu= %, we have following Simpson’s type inequality for generalized fractional integrals;
‘1[f( )+4f<a+’71( >+f(a+n1(b a))]
- [ lof (a+25D) 40, 1¢f<a+ ni(ba >>”
< B (5 |An, (1) =g, (1) §|dt)
X (f° ENORE UG \”2‘ +I1 (2)ma (17 (B) | (@) )™ ) o

+( M O @) 1, 0-, () a0 >}
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2. For A = u = 0, we have the following trapezoidal type inequality for generalized fractional integrals;

‘ f(a)+f(a2+m (b,a))

ZA,, 0 atof (at P20 4 Lo f (at 220))|
<

< B (8, (0] dr)

X

1
((fo]|Am )| o)1 (@)1 T8 O)ma (£ (B, |>"1)1
2

| —

+(H?’(O)nz(\f’(b)\,\f’(a)l)”'Jr(fol|Am )|dr)\f"(a ”‘)}
5 .

3. For A = u = 1, we have the following midpoint type inequality for generalized fractional integrals;

(o 22)
i o (o 2) 7o+ 2]
]

< B (5 80, (0=, <1>\dz)

1
((fo [Ag, ()=Ag, (D]d0) f' (@1 +18 (D2 (1 (D)L (@)))7 >
2

X

L
+(n‘fumz(\f'(b)mf'< "+ (2 )=, (V}d) e |”1) ]

Remark 5.6. From Corollary 4.6, we have following inequalities:

1.ForA=u= 3, we have following Simpson’s type inequality for Riemann integrals;

|6 [r@-+af (a+2G0) + f(a+m (b,0))]
a+n(b,a)

f(0ydr
(m (3)+1m(3) 7 |
. [“*%)' (@ 1L (3) (1 B (@])™) 7
+ (M (3)m (1 )], |f’<a>|>m+(g)|ff(a)|m)ﬂ_

Z

a
a

1

IN
= =

1(Ds
1(b,
8

2. For A = u =0, we have following trapezoid type inequality for Riemann integrals;

X B a+ni(b,a)
f(a)+f(a2+m(b., ) TI](}M) [ fo)dr

T, (0) + T, (0))' ¢
(4 If’ )P TL (0) e (I (B @))) 7

( ) ma (1 B @) + (~3) |7 @)

|—|

Remark 5.7. 3. For A = i = 1, we have following midpoint type inequality for Riemann integrals;

a+m(b.a)

< M (11, (1) + Ty (1)) 70
x [((—%) 1 (@) + T ()2 (IF ()], |f (@))P) 7
(I (W2 (17 @)L @D+ (3) 1 (a)mﬂ ,

Remark 5.8. From Corollary 4.7, we have following inequalities:
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I.ForA=pu= 3, we have following Simpson’s type inequality for Riemann-Liouville fractional integrals;

[f()+4f(a+”‘ ) (a+m(b7a))]

S (e 2 (o282

1
o+l Pl
(2@ + ok -3) v @r +ng Q) m(r o)1 @) )
1
atl »
(M@ mlr L @)+ (5 Q) + gk -3) 1 @) } .
2. For A = u = 0, we have the following trapezoidal type inequality for Riemann-Liouville fractional integrals;
f(a>+f(a2+m (b.a))
_24'(e+) [ a m(b.a) a Ni(b,a)
) [Ja;fl(“* ) v S (ot 252 |
b, o
< m( a) (%) |

( S @+ 2a+3)nz(|f’(b>\¢\f’(a)\)”‘)ﬁ
a+T (o+1)(a+2)

1
"(b)],f (a)])™ . L
+ (BUEEHEA + 1 @) .

3. For A = p = 1, we have the following midpoint type inequality for generalized fractional integrals;

a2
i [Ja"ilf(“*m( D) IS (a+ 23]
< M () |
< (&) 1 @7 +TE (D (1 G)] 1 (@)™ 78
+(@EOMAF LI @D+ (&)1 @) 7]

Remark 5.9. From Corollary 4.8, we have following inequalities:

I.ForA=pu= %, we have following Simpson’s type inequality for k-Riemann-Liouville fractional integrals;

8 [r@-+ar (a4 2G2) + s @t m .0

M o M o M
(m (b)) [Jlﬁ’kf <a+ 2 ) JrJtl+’11(b a)” .,kf (a+ 2 ﬂ ’
< M Ao (2

m
+k =
otk o Pl
x [((iﬁ‘k(ﬁ) i —%m%l) | (@) +115 (%)n2<|f'<b>|,|f’<a>\>"')
1
2 20 (2)%" _2 | p\"
+ (§)n2(|f( W @D+ % (5) © —5+ a+1 |f (a)] :
2. For A = u =0, we have the following trapezoidal type inequality for k-Riemann-Liouville fractional integrals;

f(@)+ f(a+m(b,a))
olne o asne) g (e 2|

(b,a)) & a+n(b.a

(M
< 249 (22 | (1 @+ @m0 @)")
(51 @17+ 11 @) ma (1 @)1 @) ) 7} .

+

3. For L = pu = 1 we have the following midpoint type inequality for k-Riemann-Liouville fractional integrals

Q

() B () ()
G { () I @I +11f (1 )nz(lf’(b)\,\f/(a)‘)m)ﬁ
+ (@) @p (1>n2(\f’<b>\,\f’(a)D”‘)ﬂ |

<

w-
.;;

Remark 5.10. From Theorem 4.9, we have following inequalities:
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1. For A = u = £, we have following Simpson’s type inequality for generalized fractional integrals;

=2,
‘é [f( )+4f("+m( )+f(a+m(b a))]
ﬁ [m[(pf <a+ W) +a+n1(bﬁa)l, Ipf <a+ M)”

< 2An (fo [An, (1) = 34, (1] df)ﬁ
x [( G ) 47" ﬁ + (Aer el ﬂ .

4

2. For A = u =0, we have the following trapezoidal type inequality for generalized fractional integrals;

% [’#Iq’f( T 711 ? at+ni (ba)- Tof (a-i- w)”
< fAlT('ba) <f0 A, ()] dt)T
[(3nv(|f L)L @) 4l @) )% + (L@l o) ﬂ .

)
3. For A = u = 1, we have the following midpoint type inequality for generalized fractional integrals;

= 3482) sty 3242 o o342

€1
< B8 (1o () ()" )
x [(3ﬂz<lf’< L @I +4f @l )* . (4\f’(a)|"‘ ()L @) ) *} _

Remark 5.11. From Corollary 4.10, we have following inequalities:

l.ForA=u= %, we have following Simpson’s type inequality for Riemann integrals;

[t [r@+ar (a+209) 4 (b))
a+1n,(b,a)

N m &L”) af f(t)dt
< m(ba) (( 2ty )ﬁ {<3nz(\f’(b)|7|f’(i)\)" 4/ (@)™ ) o

! Pr+1)3PT

+ (ALl el L ) )’} :

2. For A = u = 0, we have following trapezoid type inequality for Riemann integrals;

a+ni(b,a)
f(a)Jrf(a;ﬂl(b-a)) _ m&w) [ f@)dt
’ a
1 1
b.a n 3 "(b)|,|f (@)) +4|f (a)|T \ T
< 171(4 ) <p11+1>!’1 {( (|1 (D)] |f(4)\) +4|f'(a)| )

1
n <4|f (a)| 1+nz(|{ )L (@)™ ) o } '

3. For A = u = 1, we have following midpoint type inequality for Riemann integrals

a+n(b,a)

f(a—l— Hl(g,a)) _ m(lb.a) af f(t)dt
1

a 7 (| £/ (D), f () "(a

(m)( I ) {<3n_(\f(b)\,lf(4>\) +4/f'(a)

=

<

4 pi+1

1
rl)ﬁ

+ (U@l G @) ) } _

Remark 5.12. From Corollary 4.11, we have following inequalities:

I.ForA=pu= %, we have following Simpson’s type inequality for Riemann-Liouville fractional integrals;
§[f@+ar (a+ 2BD) 4 flatm (ba)]
2T (0r+1 : M(ba)
~ Gt oS (“ D) 4 nvar fa (a4 252 )]
L ! / r ! 1
< QA (3" ar) " {(3’12(\“ I @ e )

al
T <4|f (a)] 1+r12(|4{r (b)].If (@) ) a } .
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2. For A = pu = 0, we have the following trapezoidal type inequality for Riemann-Liouville fractional integrals;

Tt o (0 52) Tt (a 23]
<Ml (L) [( AURGINAO) R TIO )*

! r r L
+ (ALl Ol @) ) }

3. For A = u = 1, we have the following midpoint type inequality for generalized fractional integrals;

o)

R Lo (542 o238

L 4 4 r ! r L
< uba) ( Jo (1 =197 dt) i [(3nz(|f OIN{ONER IO ) i

1
+ (UL oL@ ) } .

Remark 5.13. From Corollary 4.12, we have following inequalities:

I.ForA=pu= %, we have following Simpson’s type inequality for k-Riemann-Liouville fractional integrals;

‘é [f( )+4f(a+ m(ba)> ¢t b a))]
_W [Jg+,kf<a+ M) . kf(a+’71 ))H
< M) (fol t%_%‘l’ldt)ﬁ

x[(3n2(|f'( IF @I 4l )*+(4\f'<a)|"1+nz<L{’<b>\,\f'<a>l>")ﬂ.

2. For A = pu = 0, we have the following trapezoidal type inequality for k-Riemann-Liouville fractional integrals;

‘ f(a>+f<a2+m (bya))

e s nt) g (o 12

M (b.a) k »
< 4 api+k

x [( SIGIONEE IO >’ + (L@ o) ’} :

4

3. For A = u = 1, we have the following midpoint type inequality for k-Riemann-Liouville fractional integrals;

(o) -2 g () (o)

< 1Ga) (fol <1 —t%)P‘ dt)ﬁ

x [(Mz(lf’(h)\-,\f’(i)\)" 41 )" )* + (Mmoo ’} .

6. Concluding Remarks

In this study, we present some generalized inequalities for differentiable (11,1,) — convex functions via generalized fractional integrals. It is
also shown that the results proved here are the strong generalization of some already published ones. It is an interesting and new problem
that the forthcoming researchers can use the techniques of this study and obtain similar inequalities for different kinds of convexity in their
future work.
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