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Abstract

The spectrum and spectral divisions of band matrices are very new and popular topics of
studies. In this paper, our aims are to investigate boundedness of Jacobi matrix which is a band
matrix has important role in physics and give subdivisions of the spectra, which are
approximate point spectrum, defect spectrum and compression spectrum, for a special type
Jacobi matrix. Moreover, we will find the fine division of spectrum which is given by

Goldberg with the help of it.

1. Introduction

The band matrices are an interesting topic for
researchers since they have important applications in
applied mathematics. In the summability theory and
functional analysis, there are applications of band
matrices. Also, they are used in linear algebra,
computation in classical and fractional situations and
approximation theory. The spectrum and spectral
divisions of band matrices are very new and popular
topics of studies.

In recent years, some authors have investigated the
spectral decomposition of generalized difference
matrices on various sequence spaces. In 2011, Amirov,
Durna and Yildirim [1] calculated the approximate
point spectrum, the defect spectrum, and the
compression spectrum of the operators using the
relationship between the spectral decompositions of
the operators. Many researchers have benefited from
this study and found the fine division of the operator.
In the studies conducted so far, the approximate point
spectrum, the defect spectrum and the compression
spectrum were calculated using the fine spectrum of
the operator. Generally, in order to examine the fine
spectrum of operator, we investigate injectivity and
surjectivity of its adjoint. Because it is well-known
that "T has a dense range if and only if T* is 1-1" and
"T has a bounded inverse if and only if T* is onto".
But we can not always find adjoint operator. Even if
we find it, we can not investigate the character of the
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series obtained while examining the injectivity and
surjectivity of the adjoint operator. For example, it is
not possible to talk about the adjoint of operator in
general on £, because ¢, does not have the Schauder
basis in the usual sense. And so, we will first calculate
the approximate point spectrum, the defect spectrum
and the compression spectrum of operator using the
relationship between spectral division of operator and
spectral division of its adjoint. Moreover, we will find
the fine division of spectrum which is given by
Goldberg with the help of it.

Firstly, we will recall basic definitions and properties
of operator which are used by us.

Definition 1.1 Let T: D(T) — X be a linear operator,
defined on D(T) < X, where D(T) denote the domain
of T and X is an infinite-dimensional complex normed
space. LetTy :=Al — T forT € B(X) and A € C where
I is the identity operator, then different definitions and
notations of spectra are defined as follows [2-3]:

(1) The spectrum: o(T,X):={1€ C:T, isnot
invertible},

(2) The resolvent set p(T,X) is the complement of
o(T,X) in C,

(3) The point spectrum: 6, (T, X) := {1 € C: T is not
injective},

(4) The continuous spectrum: o.(T,X) := {A €
C: T, is injective and m =XbutR(Ty) # X},
where R(T;) denote the domain of T},
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(5) The residual spectrum: o,(T,X):= {A €
C: Ty is injective but R(Ty) # X},
(6) The  defect spectrum: o5(T,X):={1€

o(T, X): R(Ty) # X},
(7) The compression spectrum: g, (T, X) := {/1 eEC:

R(Ty) #X},

(8) The approximate point spectrum: o, (T,X)
:={ 1 € C: there exists a sequence (X, ) in X such
that |[x,|| =1 for all neN and
limn—monTA(xn)” =0.

In Banach spaces, Proposition 1.2 is frequently used

for calculating the partition of the spectrum of the
linear operator.

Proposition 1.2 [2] The spectra and subspectra of an
operator T € B(X) and its adjoint T* € B(X™) are
related by the following relations:

(@) a(T*,X*) =a(T,X),

(b) 0c(T", X*) S 0y (T, X),

(¢) 0ap(T", X*) = 05(T, X),

(d) 05(T", X*) = 04y (T, X),

() 0p(T*, X7) = 00 (T, X),

(0) 0o (T*, X*) 2 0,(T, X),

(@ (T, X) =04 (T,X) U 0,(T",X*) = 0,(T,X) U
Oap(T", X™).

1.1. Goldberg's classification of spectrum

If X is a Banach space and T € B(X), then there are
three possibilities for R(T):

(1) R(T) =X, (II) R(T) =X, but R(T)#X,
() R(T) #X
and three possibilities for T~

(1) T~* exists and continuous,

(2) T~1 exists but discontinuous,
(3) T~* does not exist.

If these possibilities are combined in all possible ways,
nine different states are created. These are labelled by:
I, 15,13, 111,115,115, 1114, 1115, 1115. If an operator is in
state 11, for example, then R(T) # X and T~! exist
but is discontinuous (see [4]).

If A is a complex number such that T; € I; or T € I1;,
then A € p(T, X). All scalar values of A not in p(T, X)
comprise the spectrum of T. The further classification
of o(T, X) gives rise to the fine spectrum of T'. That is,
o(T,X) can be divided into the subsets I,a(T,X) =
@, 150(T, X), I1,6(T, X), 156(T, X), 111, (T, X),
I11,0(T,X),11150(T,X). For example, if Tj is in a
given state, I11, (say), then we write A € I11,0(T, X).

Let us give a short survey concerning the spectrum and
the fine spectrum and subdivision of the spectrum of
the linear operators over certain sequence spaces.

First, the spectrum of the Cesaro operator of order one
over the sequence space ¥, has been examined by
Brown, Halmos, and Shields [5] in 1965. In 1977, Cass
and Rhoades [6], in 1978, Cardlidge [7] computed the
spectrum of Weighted mean matrices.

Subdivisions of the spectrum for an operator on a
sequence space were given by [8], [9] and [10] firstly.

Besides the above listed workers, the spectrum, fine
spectrum and subdivision of the spectrum for various
matrix operators have been investigated by many
authors in the recent years, [11-25].

By the definitions given above, the following
statements are obtained from the Table given by Durna
and Yildirim in [9]:
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Table 1. Subdivisions of the spectrum of a linear operator

1

2

3

T exits and is

T exits and is

T does not exits

bounded unbounded

A€ p(T,X A€ a,(T,X)

I R(T) = X p(T,X) B p
A€ p(T,X) A€ 04p(T, X)
A€a.(T,X) A € 0,(T,X)
11 R(T;) =X A€ p(T,X) A € 04p(T, X) A € 04p(T, X)
A€ as5(T,X) A€ o05(T, X)
A€o (T, X A€o,(T,X)

1€ a,.(T,X) (7.%) P
- A € 04p(T, X) A€ 04,y (T, X)

11 R(Ty) #X A € o5(T,X) A€oy (T.X) N Ty

A€ 0,0(T,X) ookt € 0s(T. %)
A€ a,(T,X) A€ a,(T,X)

In this paper, we computed subdivisions of the spectrum for constant Jacobi matrix.

2. Boundedness of Jacobi Matrix J(s,,75,)

A matrix of the form ] = (ay;) is called a Jacobi matrix, where a;; = 0 unless |j — i| < 1. More specifically,

So To
To $1

J(sp, 1) =| 0 np

0 0

0
n
S2
r

0 -
0 .-
r, |

w7

(M

where all s,,, 1, are real. If we get some constant sequences such as (s;;) = (s) and (1,) = (1) , this J(5,,13,) =
J(s,r) matrix is called constant Jacobi matrix. The spectral results are clear when r = 0, so for the sequel we

will have r # 0.

Lemma 2.1 [25] Let T be an operator with the associated matrix A = (a,,;). Then the followings hold:
i. T € B(c) if and only if

1]l := sup Lic=1l@ni| < oo, 2
ay = AI—I};IO an exists for each k, 3)
a:= 7&1_r)r01O Yreq Ani €Xists @))
are valid.

ii. T € B(cy) if and only if (2) and (3) with a; = 0 for each k are valid.
iii. T € B(¢,) if and only if (2) is valid.

In these cases, the operator norm of T is

TNl (bo:br) = T llc:e) = NT Nl (cyice) = Al (5)
iv. T € B(#;) if and only if

A%l := sup Yr=il@nkl < oo (6)
is valid.
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In these cases, the operator norm of T is || T'[[ ¢¢,.¢,) = ALl

Theorem 2.2 u € {cy, ¢, 1,0} J(5,7) € B(u) and [|J(s, ") ||y < 2I7] + Is].
Proof It is clear from Lemma 2.1.

Theorem 2.3 J(s,7) € B(fp) (1 <p < ) and||(s, r)ll({,p:{,p) <2|r|+|s].

Proof Since

1

(00}
p
G )y, (Zm LS+ rxn+1|p)
|7"(xn—1 + Xn41) + an|p>

1
1 1
s P d )
Dl t xn+1|p> +1sl (Z|xn|p>
=1 n=1

< 2|rlllxlle, + Isllixlle, < Clrl + [sDllxlle,,

S
Il

1

IA

= ANGE
S
|

where x, = 0, we have J(s,7) € B(fp) and ||/ (s, r)ll({,p:{,p) <2|r|+|s].

Theorem 2.4 /(s,1) € B(bvp) (1<p<o)and]]J(s, r)ll(b,,p:bvp) <|s—r|+3]|r|.

Proof We have
||](s,r)x||§v = |rxg+sxy; +1x3—5x; —1x|P + |rxy + 5x3 +1x4 — X — SXp; —TX3|P + -
= |r=s)x;+ (G —1r)xy +rx3|P +|(r —s)x, + (s —1r)x3 +rx, —rx|P + -
[00)
< El(r = 8)Xns1+ (S = T)xpyz + 7(Xng3 — Xpyz + Xnpz — Xpp1 + Xngr — x)[P

n=0

0 1/p
= (st = ) Ctnz= 1) + T Chnas = v + Xnsz = e + Xnsr = xn>|p)
n=0

o0 1/p
< <2|s—r|p|xn+z—xn+1|p)
| n=0
00 1/p
+ (Z |r|p|xn+3 — Xn+2 + Xn+2 — Xn+1 + Xn+1 — xn|p>
n=0
<

0 1/p
<|s =l ) |xn+2—xn+1|p>
n=0

o0 1/p
+ (lrl 2(|xn+3 - xn+2| + |xn+2 - xn+1| + |xn+1 - xnl)p>

n=0
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o0 1/p
< |Is=rl <Z|xn+z—xn+1|p)
n=0
. e p e 1|
+17] <Z|xn+3 : xmv’) - (lem : xn+1lp> - (lem : xm)
n=0 n=0 n=0
P T
< [Is = llixllpw, + 1302l = ls = 71+ 31r(PllID,
where xy = 0. Then
(s, )%, < (Is =71 + 317 Dllxll oy, -
Hence we get J(s,7) € B(bvp) and ||/ (s, r)||(bvp:b,,p <|s—r|+3]|r|.

Theorem 2.5 ](sn: rn) € B(ﬂ) and ”](Sn:rn)”(u:u) = ler”oo + ”s”oo where uEe {CO; c {)1, ‘goo}a (Sn): (rn) €
U

Proof It is clear from Lemma 2.1.
Theorem 2.6 /(s,,1;,) € B(fp) (1<p<)and]| J(sp, Tn)”(gp;gp) < 2||rll, + lIsll, where (s,), (1) € £p.

Proof Since
1

|rn—1xn—1 + SnXn + ™mXn+1 |p>

1 1
D lrnatns 4 sl | + () Itnaal?
n= n=1
1 1 1
it » it » 2 »
< Zm_lxn_m) +(Z|snxnlp) ' (ernxn+llp>
n=1 n=1 n=1

< (207l + lslip) il

VG rxll, = ()

2
2
(

IA

we have J(5n, 7) € B(£,) and 1] (sn, 7l p, .0,) < 2117l + Dl
3. Spectrum of Jacobi Matrix J(s,r) with constant entries

In this section, we will give the spectral decomposition of Jacobi Matrix J(s,r) with constant entries with the
help of the spectrum and the fine spectrum, which were previously studied in [27] and [18].

3.1. Subdivision of the spectrum of J(s, ) on ¢,
Theorem 3.1 0,,(J(s,7),¢) = a(J(s,7),¢) = [s — 21,5 + 21].
Proof From Table 1, we know

0apJ(s,7),€0) = a(J(s,7), co)\I111o(J (s, 7)), C0).
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Since a,(J(s,7),c9) = @ from [27, Theorem 3.3], we have III;6(J(s, 1), cy) = @ and we know a(J(s,7), Co) =
[s — 27,5 + 2r] from [27, Theorem 2.5]. Hence 0,,(J(s,7),¢o) = [s — 21,5 + 2r].
Theorem 3.2 a5(J(s,7),¢9) = a(J(s,7),¢o) = [s — 21,5 + 27].
Proof We have

Os (](S, T), CO) = O'(](S, 7'), Co)\I3O'(](S, 7'), CO)

from Table 1. Since o, (J(s,7),¢p) = @ from [27, Theorem 2.1], we get I30(J(s,7),¢co) = @ and we know
o(J(s,1),co) = [s — 2r,s + 2r] from [27, Theorem 2.5]. Hence a5(J(s,7),cq) = [s — 2r,s + 2r].

Theorem 3.3 a,,(J(s,7),co) = 0.

Proof From Table 1, we get

0.0J(s,1),cq) =I1Ia(J(s,1),co) UIll,a(J(s,1),co) Ulllza(J(s,1),Cop).

Since 0, (J(s,7),¢p) = @ from [27, Theorem 2.1] and 0,-(J(s,7), ¢o) = @ from [27, Theorem 3.3], we have
Io(J(s,1),co) = III,6(J(s,7),¢co) = 1lI36(J(s,7T),Co) = D.

Therefore a.,(J(s,7),co) = @.

3.2. The fine spectrum and subdivision of the spectrum of J(s,r) on ¢

Theorem 3.4 [11,6(J(s,1),c) = {s + 2r}.

Proof By [27, Theorem 3.5], 0,-(J(s,7),¢) = {s + 2r}. So that s + 2r € I[II;6(J(s,7),c) U Ill,0(J(s, 1), C).
Now we investigate either s + 2r € III;6(J(s,7),¢) or s + 2r € [II,6(J(s, 1), ¢). For this we must show that

((s +2r)I — (s, r))_1 is whether bounded or not.

s+ 2r 0 0 s r 00
_ 0 s+ 2r 0 r s r 0
(s+2rnI—]J(s,r) = 0 r s 1

0 0 s+ 2r

2 -1 0 0

The inverse of above matrix is

111 1
{1 2 2 2
-1 2 3 3
1 2 3 4

which is unbounded matrix. Therefore we get s+ 2r € II,6(J(s,7r),c). Hence IIl,a(J(s,7),C) =
{s + 2r}, from II1,6(J(s,1),c) € 0,.(J(s,T),C).

Corollary 3.5 1I;6(J(s,7),Cc) = ©.
Proof By [27, Theorem 3.5], 0,-(J(s,7),¢) = {s + 2r}and II1I;06(J(s,7),c) = @ from Theorem 3.4
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Corollary 3.6 0,,(J(s,7),¢) = [s — 21,5 + 21].
Proof From Table 1, we get
OapU(s,7),0) =a((s,7),O\lI1a(J(s,1), ).

Since I11I;6(J(s,7),c) = @ from Corollary 3.5 and 6(J(s,7),¢) = [s — 2r,s + 2r] from [27, Theorem 2.5], we
have 0,,(J(s,7),¢) = [s — 21,5 + 2r].

Corollary 3.7 65(J(s,1),c) = [s — 2r,s + 2r].
Proof We know
as(J(s,7),¢) =a(J(s,7),c)\Iz0(J(s,1),C)

from Table 1. Since 0,(J(s,7),¢) = @ from [27, Theorem 2.1] and 6(J(s,7),¢) = [s — 2,5 + 2r] from [27,
Theorem 2.5], we get a5(J(s,7r),c) = [s — 2r,s + 2r].

Corollary 3.8 o.,(J(s,7),c) = {s + 2r}.
Proof By Table 1, we get
0.0(J(s,1),c) =I1La(J(s,r),c) Ulll,c(J(s,7),c) Ulll;a(J(s,1),C).

Using 0,(J(s,7),¢) = @ from [27, Theorem 2.1], we get o,,(J(s,7),¢) = {s + 2r} from Theorem 3.4 and
Corollary 3.5.

3.3. The fine spectrum and subdivision of the spectrum of J(s,r) on €4

Theorem 3.9 [I1,0(J(s,7),¢1) = 0.

Proof We know

Oap(*(5,7),¢" = £1) = 6" (5,7, E\I110 (1 (5,7), £1)

by Table 1 and we have

0ap U (s,7) = J(5,7),£1) = 05(J(s,7), o)

by the Proposition 1.2. We get

o5(J(s,7),¢0) = a((s,1),¢0)\I30((s,7), Co)

by Table 1. Since a(J(s,1),co) = [s — 2r,s + 2r] from [27, Theorem 2.5], and I50(J(s,7),Cco) = @, we have
o5(J(s,1),¢0) = [s —2r,s + 2r]. Therefore o4,(J*(s,7) =J(s,7),#1) = [s —2r,s +2r] and since
o(J*(s,7),¥1) =a((s,7),£1) = [s — 2r,s + 2r] from Proposition 1.2, we get [II;0(J(s,7),€1) = .
Corollary 3.10 I11,6(J(s,1),£1) = (s — 2r,s + 21).

Proof We know a,(J(s,7),£1) = (s — 2r,s + 2r) by [27, Theorem 3.4] and we have IIl,o(J(s,1),%1) =
(s — 2r,s + 2r) by Theorem 3.9.

Corollary 3.11 04, (J(s,7), 1) = [s — 2r,s + 27].

Proof From Table 1, we know
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O-ap (](S, T), €1) = 0-(](51 7'), gl)\llllo-(](SJ T), €1)

Since a(J(s,7),¥1) = [s — 2r,s + 2r] from [27, Theorem 2.5] and I1I;0(J(s,1),€1) = @ from Theorem 3.9,
we have 04, (J(s,7),€1) = [s — 21,5 + 2r].

Corollary 3.12 a5(J(s,7),%1) = [s — 2r,s + 2r].

Proof Since 0,,(J(s,7),¥1) = @ from [27, Theorem 2.1], we have I30(J(s,7),¥1) = @. And since
o5 (s,r), 1) = a(J(s,7), £1)\I30( (s,7), 1)

by Table 1, we have a5(J(s,7),£1) = [s — 2r,s + 2r].

Corollary 3.13 6.,(J(s,1),%1) = (s — 2r,s + 27).

Proof From Table 1, we have

0.0J(s, 1), 1) = 1Lo(J(s,1),21) VIll,a(J(s,1),£1) UIllsa(J(s,1),£1).

Using 0,(J(s,7),£1) = (s — 2r,s + 2r) from [27, Theorem 3.4] and 0, (J(s,7),¥1) = @ from [27, Theorem
2.1], we have a,,(J(s,1),%1) = (s — 2r,s + 2r) from Theorem 3.9 and Corollary 3.10.

3.4. Subdivision of the spectrum of J(s,7) on £,

Theorem 3.14 aap(](s, r),{’p) = J(](s, r), {’p) = [s—2r,s + 2r].
Proof We know

Jap(](s, r), {’p) =a(J(s, r),fp)\lllla(](s, r), fp)

by the Table 1. Since O'r(](S, r),fp) = @ from [18, Corollary 3.5], we find Illla(j(s, r), {’p) = @ and we have
a(](s, r), fp) = [s — 2r,5 + 2r] from [18, Theorem 3.2]. Therefore g, (](s, r), fp) =[s—2r,s+ 2r].

Theorem 3.15 05(](5, r), fp) = a(](s, r), fp) = [s —2r,s + 2r].
Proof From Table 1, we have
as(J(s, 1), fp) =a(J(s, r),i’p)\13a(](s, ), fp).

We have 130(](5, r),fp) =@ and J(](s, r), {’p) =[s—2r,s+2r] from [18, Theorem 3.2] since
oy (](s, ), {’p) = @ from [18, Theorem 3.3]. Hence o5 (](s, r),fp) = [s—2r,s + 2r].

Theorem 3.16 a.,(J (s, 1), fp) = Q.
Proof We know
0co(J(5,7),8p) = 1o (J(s,7),£,) U llL,o(J(s,7),£,) U l30(J (s,7),£})

by the Table 1. Since o, UG, r),fp) = @ from [18, Theorem 3.3] and o,.(J (s, r),fp) = @ from [18, Corallary
3.5], we get Illla(](s, r),fp) = 11120(](5, ), fp) = 11130(](s, r),{’p) = (. Hence aco(](s, r),fp) = Q.
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3.5. The fine spectrum and subdivision of the spectrum of J(s,7) on £,
Theorem 3.17 I;6(J(s,7),£%) = @.

Proof From Table 1, we have

05 (5,7),400) = 0(J(5,7), Le)\I30(J (5,7), £co).

We get 05(J(s,7),€a) = 04p(J*(s,7),£1) from Proposition 1.2. Using Corollary 3.11, a4,(J(s,7),%1) =
[s —2r,s+2r]and 6(J(s,7), ) = [s — 27,5 + 2r] from [27, Theorem 2.5], we have I;6(J(s,71), ) = @.

Theorem 3.18 [11,6(J(s,1),%») = @.

Proof We know

Oap(J(5,7),4) = 0(J(5,7), £ )\I1o(J(5,7), Loo)

by Table 1. 04,(J*(s,7) =]J(s,7), ) = 05(J(s,7),£1) from Proposition 1.2. Since as(J(s,7),¥1) =
[s — 2r,s + 2r] from Corollary 3.12 and c(J(s,7),fw) = [s — 21, s + 2r] from [27, Theorem 2.5], we have
1H,6(J(s,1),£x) = O.

Corollary 3.19 0,,(J(s,7),¥x) = [s — 21,5 + 21].

Proof From Table 1, we get

Oap(J(5,7),4) = 0(J(5,7), £ )\II1;0(J(5,7), L 5).

We have a4, (J(5,7), ) = [s — 21,5 + 2r] since 6 (J(s,7), ¥ ) = [s — 21,5 + 2r] from [27 Theorem 2.5] and
I11,6(J(s,1),£x) = @ from Theorem 3.18.

Corollary 3.20 o5(J(s,7), ) = [s — 21,5 + 2r].
Proof We know
05(J(5,7),40) = a(J(s,7), Lc)\I30( (5, 7), L)

by the Table 1. Since 6 (J(s,7),fw) = [s — 21, s + 2r] from [27, Theorem 2.5] and I56(J(s,1),£») = @ from
Theorem 3.17, we have a5(J(s,1), %) = [s — 2r,s + 2r].

3.6. Subdivision of the spectrum of J(s,) on bv,

Theorem 3.21 aap(](s, r), bvp) = J(](s, r), bvp) = [s—2r,s + 2r].
Proof From Table 1, we get

Oap (](s, ), bvp) = J(](s, ), bvp)\lllla(](s, ), bvp).

Since ar(](s, ), bvp) = @ from [18, Theorem 4.3 (iii)], we have Illla(j(s, ), bvp) = @ and a(j(s, ), bvp) =
[s — 2r,s + 2r] from [18, Theorem 4.2]. Therefore aap(](s, ), bvp) = [s—2r,s + 2r].

Theorem 3.22 05(](5, r), bvp) = a(](s, r), bvp) = [s —2r,s + 2r].

Proof We know
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O (](s, ), bvp) = J(](s, ), bvp)\l3a(](s, ), bvp)

by the Table 1. Since o, (](s, r), bvp) = @ from [18, Theorem 4.3 (i)], we have 130(](s, r), bvp) = @ and we
have a(](s, r), bvp) = [s — 2r,s + 2r] from [18, Theorem 4.2]. Hence 05(](5, r), bvp) = [s —2r,s + 2r].

Theorem 3.16 o, (](s, ), bvp) = Q.

Proof From Table 1, we get

0co(J(s,7), bv,) = 111,6(J (5,7), bvy) U 111,0(J (s,7), bv,) U I130(J (s, 1), bvy,)

Since g, (](s, r), bvp) = @ from [18, Theorem 4.3 (i)] and o, (](s, r), bvp) = @ from [18, Theorem 4.3 (iii)], we
have I11,6(J (s, 1), bvy,) = I11,0(J (s,7),bvy) = Il30(J (s,7), bv,) = @. Hence a.,(J (s, 1), bv,,) = 0.
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