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Abstract
In the present article, we consider a parametric surface generated by the Frenet frame
of a curve, and study the minimality condition for the surface. As a result, we give
characterizations of a helicoid and a catenoid. Finally we show some examples of minimal
surfaces generated by a circle and a helix.
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1. Introduction
Minimal surfaces are one of main objects which have drawn geometers’ interest for a

very long time. A minimal surface is a surface with vanishing mean curvature. It is
well known that the only minimal ruled surfaces in Euclidean 3-space E3 are planes and
helicoids. Also, a plane and a catenoid are the only minimal surfaces of revolution in E3.
Minimal surfaces have been studied in many research areas. In mathematics, the surfaces
have wide applications in a surface design [1,4–7]. In physics, minimal surfaces are familiar
as soap films. Besides the obvious application of a minimal surface theory to the study of
soap films, there are a number of other physical systems in which the theory of minimal
surfaces has a sometimes surprising applicability. The study of minimal surfaces generated
by the its Frenet frame and a space curve appear attractive and is used many areas. In [4]
Li, Wang and Zhu gave examples for approximation of minimal surface with a geodesic by
using Dirichlet function. Also, in [6] author examined construction method of a minimal
surface from a prescribed geodesic and drew minimal surfaces with a circle or a helix.
Moreover, Riverros and Corro [5] analyzed the class of minimal surfaces parameterized by
an isothermal coordinate and a geodesic coordinate. Several mathematician are studying
minimal surfaces generated by a curve [2–6,10], etc.

In this paper, we give minimal conditions of a parametric surface defined by the Frenet
frame of a curve in terms of the marching-scale functions. Also, we present a new approach
for obtaining minimal surfaces from a curve and give new examples of minimal surfaces.
Finally, we characterize a helicoid and a catenoid generated by a circle and a helix in
Euclidean 3-space.
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2. Conditions of minimal surfaces
Let γ be a curve parameterized by arc-length s in Euclidean 3-space E3. Denote by

{T, N, B} the Frenet frame of a curve γ with the curvature κ and the torsion τ .
Consider a parametric surface generated by the curve γ and its Frenet frame as following

X(s, t) = γ(s) + (f(s, t) g(s, t) h(s, t))

 T (s)
N(s)
B(s)

 ,

s1 ≤ s ≤ s2, t1 ≤ t ≤ t2,

(2.1)

where f(s, t), g(s, t) and h(s, t) are smooth functions.
If we take the parameter t as time variable, then f(s, t), g(s, t) and h(s, t) can be viewed as
directed marching distances of a point unit at the time t in the directions T (s), N(s) and
B(s), respectively. In the sense , f(s, t), g(s, t) and h(s, t) are said to be the marching-scale
functions in the directions, respectively [8].

Some known simple examples are to be mentioned, namely
(1) If the marching-scale functions f(s, t), g(s, t) and h(s, t) are linear functions with

the only parameter t, then the parametric surface X(s, t) is a ruled surface.
(2) If γ is a circle and f(s, t) = 0, g(s, t) = g̃(t), h(s, t) = h̃(t), then the surface X(s, t)

is a usual surface of revolution.
(3) If the marching-scale functions are given by f(s, t) = 0, g(s, t) = r0 cos t, h(s, t) =

r0 sin t with a constant r0, then the surface is a tubular surface.
Definition 2.1. If X(s, t) satisfies E = G and F = 0, then X(s, t) is called an isothermal
surface, where E, F and G denote the coefficients of the first fundamental form of a surface
X(s, t).

Definition 2.2. If X(s, t) satisfies ∂2X
∂s2 + ∂2X

∂t2 = 0, then X(s, t) is called a harmonic
surface.
Lemma 2.3. (cf. [9]) The surface with an isothermal parameter is minimal if and only
if it is a harmonic surface.

For the future analysis of a parametric surface, we now consider the marching-scale
functions f(s, t), g(s, t) and h(s, t) expressed by

f(s, t) = l(s) + u(t), g(s, t) = m(s) + v(t), h(s, t) = n(s) + w(t), (2.2)
where l(s), m(s), n(s), u(t), v(t), w(t) are smooth functions. In this case, the surface (2.1)
does not pass through the curve γ(s).

The following theorem is useful to construct minimal surfaces of a parametric surface
X(s, t) with the marching-scale functions given as (2.2).
Theorem 2.4. Let γ be a unit speed curve with the Frenet frame {T, N, B} in Euclidean
3-space. A surface parameterized by

X(s, t) = γ(s) + f(s, t)T (s) + g(s, t)N(s) + h(s, t)B(s) (2.3)
with the marching-scale functions f, g and h given by (2.2) is minimal if and only if the
functions f , g and h satisfy the following conditions:

[1 + l′(s) − κ(s)(m(s) + v(t))]2 + [m′(s) + κ(s)(l(s) + u(t)) − τ(s)(n(s) + w(t))]2

+ [n′(s) + τ(s)(m(s) + v(t))]2 − u′2(t) − v′2(t) − w′2(t) = 0,
(2.4)

u′(t)[1 + l′(s) − κ(s)(m(s) + v(t))]
+ v′(t)[m′(s) + κ(s)(l(s) + u(t)) − τ(s)(n(s) + w(t))]
+ w′(t)[n′(s) + τ(s)(m(s) + v(t))] = 0,

(2.5)
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l′′(s) + u′′(t) − κ′(s)(m(s) + v(t)) − 2κ(s)m′(s) − κ2(s)(l(s) + u(t))
+ κ(s)τ(s)(n(s) + w(t)) = 0,

(2.6)

m′′(s) + v′′(t) + κ′(s)(l(s) + u(t)) − τ ′(s)(n(s) + w(t)) + 2κ(s)l′(s)
− 2τ(s)n′(s) − (κ2(s) + τ2(s))(m(s) + v(t)) + κ(s) = 0,

(2.7)

n′′(s) + w′′(t) + τ ′(s)(m(s) + v(t)) + 2τ(s)m′(s)
+ κ(s)τ(s)[l(s) + u(t)] − τ2(s)[n(s) + w(t)] = 0,

(2.8)

where κ(s) and τ(s) are the curvature and the torsion of the curve γ(s), respectively.

Proof. After computations of the first fundamental form and the second derivative of
the surface (2.3), if we apply the conditions of the isothermal surface and the harmonic
surface, equations (2.4)−(2.8) are obtained. �

If we are able to solve the system of ordinary differential equations, we can find the
minimal surface generated by a curve. But it is not easy for us to find exact solutions
satisfying (2.4)−(2.8) for minimal surfaces. So we will consider partial solutions in terms
of the curvature κ(s) and the torsion τ(s) of the curve γ(s).

3. Minimal surfaces generated by a circle
Let γ be a unit speed curve in Euclidean 3-space and X be a minimal surface parame-

terized by
X(s, t) = γ(s) + f(s, t)T (s) + g(s, t)N(s) + h(s, t)B(s), (3.1)

where f, g and h satisfy (2.2).
Suppose that the curve γ is a circle with κ = 1 and τ = 0. Then, (2.8) implies

n′′(s) + w′′(t) = 0.

Since n = n(s) and w = w(s), it follows that there exists a constant c1 such that
n′′(s) = c1, w′′(t) = −c1,

that is,
n(s) = 1

2
c1s2 + c2s + c3,

w(t) = −1
2

c1t2 + c4t + c5,

(3.2)

where ci (i = 1, ..., 5) are constants. Also, (2.7) gives
m′′(s) + 2l′(s) − m(s) + v′′(t) − v(t) + 1 = 0,

which implies that there is a constant b1 such that
m′′(s) + 2l′(s) − m(s) = b1,

v′′(t) − v(t) + 1 = −b1.
(3.3)

Also, equation (2.6) can be rewritten as
l′′(s) − 2m′(s) − l(s) + u′′(t) − u(t) = 0,

it follows that there is a constant a1 such that
l′′(s) − 2m′(s) − l(s) = a1,

u′′(t) − u(t) = −a1.
(3.4)

The solutions of the second equations of (3.3) and (3.4) are
v(t) = b2et + b3e−t + 1 + b1,

u(t) = a2et + a3e−t + a1
(3.5)

for constants ai and bi, i = 1, 2, 3, respectively.
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After taking the second derivative of the first equation of (3.3) and the first derivative
of the first equation of (3.4) if we combine the two equations, then one finds

m(4)(s) + 3m′′(s) + 2l′(s) = 0.

Thus, the last equation with the help of the first equation of (3.3) becomes

m(4)(s) + 2m′′(s) + m(s) + b1 = 0,

and its solution is given by

m(s) = (d1 + d2s) cos s + (d3 + d4s) sin s − b1, (3.6)

where di (i = 1, ..., 4) are constants. Applying the same method in (3.3) and (3.4) for a
function l(s), one finds

l(4)(s) + 2l′′(s) + l(s) + a1 = 0,

it follows that its general solution is

l(s) = (d5 + d6s) cos s + (d7 + d8s) sin s − a1, (3.7)

where di (i = 5, ..., 8) are constants.
If we substitute (3.6) and (3.7) into the first equations of (3.3) and (3.4), we get

d5 = −d3, d6 = −d4, d7 = d1, d8 = d2, a1 = 0, b1 = 0, (3.8)

it follows that the functions m(s) and l(s) can be written as
m(s) = (d1 + d2s) cos s + (d3 + d4s) sin s,

l(s) = −(d3 + d4s) cos s + (d1 + d2s) sin s.
(3.9)

Now, we must check that the marching-scale functions determined by (2.2) satisfy (2.4)
and (2.5). If we first substitute (3.2), (3.5) and (3.9) into (2.5), we get the following
equations to be satisfied:

c1 = 0,

c2c4 + 2a3b2 − 2a2b3 = 0 (3.10)

as the coefficients of st term and constant term, respectively, and we also obtain
b2d2 + a2d4 = 0,

a2d2 − b2d4 = 0,
(3.11)

b3d2 + a3d4 = 0,

a3d2 − b3d4 = 0,
(3.12)

a2(d2 + 2d3) + b2(2d1 − d4) = 0,

a2(−2d1 + d4) + b2(d2 + 2d3) = 0,
(3.13)

a3(d2 + 2d3) + b3(2d1 − d4) = 0,

a3(−2d1 + d4) + b3(d2 + 2d3) = 0
(3.14)

because the coefficients of the exponential function and the trigonometric function are all
zero.
In order to solve the system (3.11)−(3.14), we split it into two cases.

Case 1: a2 ̸= 0 or b2 ̸= 0.
In this case, (3.11) implies d2 = 0 and d4 = 0. It follows that from (3.13)
we also obtain d1 = 0 and d3 = 0. Therefore, the functions m(s) and l(s)
are identically zero. Thus, (2.4) leads to the condition that the constants
satisfy

4a2a3 + 4b2b3 + c2
2 − c2

4 = 0.

Case 2: a2 = 0 and b2 = 0.
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In the case, the second equation of (3.10) gives c2c4 = 0 and (3.11) implies
that d2 and d4 are arbitrary constants. It follows that from (3.12) one finds
a3 = 0 and b3 = 0. Equation (2.4) with the help of a2 = 0, a3 = 0, b2 = 0
and b3 = 0 gives

d2 = 0, d4 = 0,

4d2
1 + 4d2

3 + c2
2 − c2

4 = 0,

It follows that the marching-scale functions are reduced to
f(s, t) = d1 sin s − d3 cos s,

g(s, t) = d1 cos s + d3 sin s + 1,

h(s, t) = c2s + c4t + c3 + c5,

(3.15)

and thus c4 must be a non-zero constant. Since c2c4 = 0, one find c2 = 0.
In such a case, the coefficients of the first fundamental form of the surface
are given by E = 0, F = 0 and G = c2

4. Therefore, there exist no surfaces
for Case 2.

Consequently, since the functions m(s) and l(s) vanish, by renaming the constants we
have following theorem.

Theorem 3.1. Let γ be a circle parameterized by arc-length with radius 1 in Euclidean
3-space and let X be a regular surface parameterized by

X(s, t) = γ(s) + f(s, t)T (s) + g(s, t)N(s) + h(s, t)B(s) (3.16)
with f(s, t) = l(s) + u(t), g(s, t) = m(s) + v(t) and h(s, t) = n(s) + w(t). Then the surface
X is minimal if and only if the marching-scale functions f, g and h are expressed in the
form: 

f(s, t) = a1et + a2e−t,

g(s, t) = b1et + b2e−t + 1,

h(s, t) = c1s + c2t + c3,

(3.17)

where constants ai, bi, ci (i = 1, 2) satisfy the following equations:
c1c2 − 2a1b2 + 2a2b1 = 0,

4a1a2 + 4b1b2 + c2
1 − c2

2 = 0,

(a1, a2) ̸= (0, 0), (b1, b2) ̸= (0, 0), (c1, c2) ̸= (0, 0).
(3.18)

Example 3.2. Consider a circle with radius 1 on xy-plane and take

a1 = 0, a2 = 1, b1 = −1
2

, b2 = 0, c1 = 1, c2 = 1, c3 = 0

in Theorem 3.1. Then the minimal surface X(s, t) with the help of (3.17) is parameterized
as

X(s, t) =
(1

2
et cos s − e−t sin s,

1
2

et sin s + e−t cos s, s + t

)
.

This surface is given in Figure 1.

By using Theorem 3.1 with the following theorem, we can characterize a catenoid and
a helicoid as minimal surfaces.

Theorem 3.3. Let X(s, t) be a minimal surface determined by Theorem 3.1 with the
marching-scale functions (3.17). If c1 = 0 and a1, a2, b1, b2 are nonzero constants with the
relations

a1 = a2 = c2
2

cos θ0, b1 = b2 = c2
2

sin θ0 (3.19)

for a constant θ0, then the surface is part of a catenoid.
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Fig. 1: A minimal surface generated by the circle with radius 1.

Proof. Since the relations in (3.18) are satisfied by (3.19), the marching-scale functions
f, g and h are reduced to

f(s, t) = c2 cos θ0 cosh t,

g(s, t) = c2 sin θ0 cosh t + 1,

h(s, t) = c2t + c3.

(3.20)

Suppose that γ(s) is a unit circle in Euclidean 3-space. By a rigid motion, we consider γ
parameterized by

γ(s) = (cos s, sin, 0) . (3.21)
Thus, the minimal surface X(s, t) with the help of (3.20) and (3.21) is expressed as

X(s, t) = (−c2 cosh t sin(s + θ1), c2 cosh t cos(s + θ1), c2t + c3)

with a constant θ1. By a rigid motion, the surface is obtained by rotating the curve
y = c2 cosh z in the yz-plane around the z-axis and it is a catenoid. Thus, the theorem is
proved. �

Theorem 3.4. Let X(s, t) be a minimal surface determined by Theorem 3.1 with the
marching-scale functions (3.17). If c2 = 0 and a1, a2, b1, b2 are nonzero constants with the
relations

a1 = −a2 = c1
2

cos θ0, b1 = −b2 = c1
2

sin θ0 (3.22)

for a constant θ0, then the surface is part of a helicoid.

Proof. A similar computation as in Theorem 3.2 gives

X(s, t) = (−c1 sinh t sin(s + θ1), c1 sinh t cos(s + θ1), c1s + c3)

with constant θ1. It is a ruled surface and a helicoid. Thus, the theorem is proved. �

4. A minimal surface generated by a helix
We mentioned in Chapter 2 that it is difficult to find the exact solution of the system of

the ordinary differential equations in Theorem 2.4. So, we want to find a partial solution
of the system for a minimal surface in some special cases.
In this section, we consider a helix parameterized by

γ(s) = ( 1√
2

cos s,
1√
2

sin s,
1√
2

s), (4.1)

then the helix has the curvature κ = 1√
2 and the torsion τ = 1√

2 .
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4.1. Case f(s, t) = h(s, t)
In this case, equation (2.8) implies

l′′(s) +
√

2l′(s) + u′′(t) = 0.

It follows that there exists a constant c1 such that
l′′(s) +

√
2l′(s) = c1,

u′′(t) = −c1,

and its general solutions of ODEs are

l(s) = −
√

2
2

d1e−
√

2s +
√

2
2

c1s + d2,

u(t) = −1
2

c1t2 + c2t + c3,

(4.2)

for some constants c2, c3, d1, d2, respectively. Also, equation (2.7) leads to

m′′(s) − m(s) + v′′(t) − v(t) + 1√
2

= 0,

from this, there exists a constant a1 satisfying
m′′(s) − m(s) = a1,

v′′(t) − v(t) + 1√
2

= −a1.

Then, its general solutions are given by
m(s) = a2es + a3e−s − a1,

v(t) = a4et + a5e−t + a1 +
√

2
2

,
(4.3)

for constants a2, a3, a4, a5, respectively. Substituting (4.2) and (4.3) into (2.6), we have
a2 = 0, a3 = 0, c1 = 0, d1 = 0.

From this, (2.5) implies c2 = 0 and (2.4) also gives 8a4a5 + 1 = 0. If a4 ̸= 0, we have the
marching-scale functions in the form

f(s, t) = d2 + c3 = c,

g(s, t) = a4et − 1
8a4

e−t +
√

2
2

.

Thus, a surface (3.1) is parameterized as

X(s, t) =
(

−(a4et − 1
8a4

e−t) cos s, −(a4et − 1
8a4

e−t) sin s,
1√
2

s +
√

2c

)
(4.4)

and it is a helicoid as a minimal ruled surface.

4.2. Case f(s, t) = −h(s, t)
By using the same method used in the previous part, equation (2.8) implies

l(s) = −a2e
√

6−
√

2
2 s − a3e−

√
6+

√
2

2 s + a1,

u(t) = −a4et − a5e−t − a1,
(4.5)

where ai (i = 1, ..., 5) are constants. Also, equation (2.7) gives

m(s) = b2es + b3e−s − 2a2e
√

6−
√

2
2 s − 2a3e−

√
6+

√
2

2 s − b1,

v(t) = b4et + b5e−t + 1√
2

+ b1
(4.6)
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for some constants bi (i = 1, ..., 5).
On the other hand, we can determine constants ai and bi (i = 1, ..., 5) in (2.4), (2.5) and
(2.6) with the help of (4.5) and (4.6), and they are given by

a2 = 0, a3 = 0, b2 = 0, b3 = 0,

a4b5 − a5b4 = 0, 2a4a5 + b4b5 = 0.
(4.7)

• If a4 ̸= 0 and b4 ̸= 0, there exists a constant k such that a5 = ka4 and
b5 = kb4. It follows that k(2a2

4 + b2
4) = 0, from this k = 0, that is, a5 = 0

and b5 = 0. In this case, the marching-scale functions f and g are reduced
to

f(s, t) = −a4et, g(s, t) = b4et + 1√
2

.

Thus, a surface (3.1) is parameterized as

X(s, t) =
(

p0et cos(s + θ0), p0et sin(s + θ0), 1√
2

s

)
for some constants p0 and θ0, and it is a helicoid.

• If a4 = 0, equation (4.7) implies that either b4 = 0 or a5 = 0 and
b5 = 0. In both cases, we can show that a surface (3.1) is also a helicoid.

Thus, we have the following result.

Theorem 4.1. Let γ be a helix given by (4.1) in Euclidean 3-space and let X be a surface
parameterized by

X(s, t) = γ(s) + f(s, t)T (s) + g(s, t)N(s) + εf(s, t)B(s), (4.8)
where ε = ±1 and f(s, t) = l(s) + u(t), g(s, t) = m(s) + v(t). If the surface X is minimal,
it is part of a helicoid.
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