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Introduction 

In gravitational theory, one has inevitably to introduce 
some kind of hypothesis concerning the properties of 
space as a whole. The simplest and at the same time the 
most important of these hypotheses is the assumption 
that, at infinity, space is Galilean. Both properties of 
uniformity and the whole theory of Galilean space may be 
formulated in arbitrary coordinates. However, the 
privileged character of Galilean coordinates manifests 
itself and in particular simplicity (linearity) of the 
transformations that relate to the inertial coordinate 
system, that class of system within which the physical 
principle of relativity holds. Pseudo-Galilean space 
possesses a pseudo-Euclidean metric [6]. In pseudo-
Galilean space, there are three types of curves, namely 
spacelike, timelike and null (lightlike) curves. The theory 
of curves and surfaces in pseudo-Galilean space can be 
seen in [2, 3, 4, 5, 7, 10, 11, 12, 13, 14]. 

The theory of involute and evolute was firstly 
introduced by C. Huygens in 1673 when he tried to build 
an accurate clock called the isochronous pendulum clock. 
He found that the isochronous curve is an arc of cycloid 
and that involute of cycloid [9]. In classical differential 
geometry, a curve 𝛼∗(𝑠)is called an involute of 𝛼(𝑠) if it is 
lying in the tangent surface of 𝛼(𝑠) and their tangent lines 
are perpendicular in all points on the curves. The theory 
of involutes of curves in Euclidean space has been 
provided in many books and articles. In this article the 
author refers to [1, 7, 8]. 

We organized our present work as follows: after the 
introduction in Section 1, we provide the basic properties 
of curves in pseudo-Galilean space in the second section. 
Then, we define and investigate the properties of the 
involutes of admissible non-lightlike curves in pseudo-
Galilean space 𝐺1

3 in the next section. To close this paper, 

we give numerical examples of admissible non-lightlike 
curves in pseudo-Galilean space with their properties. 
 

Preliminaries 
 
The Pseudo-Galilean geometry is one of the real Cayley-

Klein spaces whose projective signature (0, 0, +, +) (see 
[10]). The absolute of the pseudo-Galilean geometry is an 
ordered triple {𝜔, 𝑓, 𝐼}, where 𝜔 is the ideal (absolute) 
plane, 𝑓 the line in 𝜔 and 𝐼 the fixed elliptic involution of 
the points of 𝑓. 

In appropriate affine coordinates for points and vectors 
(point pairs), the group 𝐵6  

 
�̅� = 𝑎 + 𝑥,  
�̅� = 𝑏 + 𝑑𝑥 + 𝑦 cosh 𝜑 + 𝑧 sinh 𝜑,  
�̅� = 𝑐 + 𝑒𝑥 + 𝑦 sinh 𝜑 + 𝑧 cosh 𝜑  
 
of pseudo-Galilean proper notions will preserve the 

absolute. Let the group  
 

𝐵6
̅̅ ̅ ≔ 〈𝐵6, [

1 0 0
0 −1 0
0 0 −1

]〉 

be called the motion group of the pseudo-Galilean 
space 𝐺3

1. The motion group 𝐵6
̅̅ ̅ leaves invariant the 

absolute figure and defines the other invariants of this 
geometry. 

In the affine coordinates, the group 𝐵6
̅̅ ̅ acts as follows 

 
�̅� = 𝑎 + 𝑥,  
�̅� = 𝑏 + 𝑑𝑥 + 𝑦𝜂 cos 𝜑 + 𝑧𝜂 sin 𝜑,  
�̅� = 𝑑 + 𝑒𝑥 + 𝑦𝜂 sin 𝜑 + 𝑧𝜂 cos 𝜑,  
 
where 𝜂 is +1 or −1. 
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Distance between two distinct proper points 
𝑃(𝑥1, 𝑦1, 𝑧1) and 𝑄(𝑥2, 𝑦2, 𝑧2) is given by 

 

𝑑(𝑃, 𝑄) = {
|𝑥2 − 𝑥1|                                         𝑖𝑓 𝑥1 ≠ 𝑥2,

√|(𝑦2 − 𝑦1)2 − (𝑧2 − 𝑧1)2        𝑖𝑓 𝑥1 = 𝑥2.
 

 
According to the group 𝐵6

̅̅ ̅ there are non-isotropic and 
isotropic vectors. A vector 𝒗(𝑥, 𝑦, 𝑧) is called non-isotropic 
if 𝑥 ≠ 0 and its unit vector can be expressed in (1, 𝑦, 𝑧) 
form. On the other hand, vector  𝒗(𝑥, 𝑦, 𝑧) is called 
isotropic if 𝑥 = 0. In the case of isotropic vector, there are 
for types of vectors: spacelike (𝑦2 − 𝑧2 > 0), timelike 
(𝑦2 − 𝑧2 < 0) and two types of lightlike (𝑦 = ±𝑧). A non-
lightlike vector is a unit vector if 𝑦2 − 𝑧2 = ±1. 

Scalar product of two vectors 𝒗(𝑥1, 𝑦1, 𝑧1) and 
𝒘(𝑥2, 𝑦2, 𝑧2) in the pseudo-Galilean 3-space is defined by  

 

𝑔(𝒗, 𝒘) = {
𝑥1𝑥2                   𝑖𝑓 𝑥1 ≠ 0 𝑜𝑟 𝑥2 ≠ 0,

𝑦1𝑦2 − 𝑧1𝑧2        𝑖𝑓 𝑥1 = 0 𝑎𝑛𝑑 𝑥2 = 0.
 

 
The norm of 𝑃 is given by 
 

‖𝑥‖ = {

|𝑥1|                      𝑖𝑓 𝑥1 ≠ 0,

√|𝑦1
2 − 𝑧1

2|        𝑖𝑓 𝑥1 = 0.
 

 
The vector product of 𝒗 and 𝒘 in 𝐺3

1 is defined by 
 

𝒗 × 𝒘 = |
0 −𝑒2 𝑒3

𝑥1 𝑦1 𝑧1

𝑥2 𝑦2 𝑧2

| 

 
where 𝑒2 = (0, 1, 0) and 𝑒3 = (0,0,1). 

A curve 𝛼(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) is said admissible if it 

has no inflection points (𝛼′ × 𝛼′′ ≠ 0), no isotropic tangent 
(𝑥′ = 0) or normal whose projections on the absolute plane 
would be lightlike vectors (𝑦′′ = ±𝑧′′). For an admissible 
curve 𝛼(𝑡), the curvature 𝜅(𝑡) and the torsion 𝜏(𝑡) are 
defined by 

 

𝜅(𝑡) =

√|(𝑦′′(𝑡))
2

− (𝑧′′(𝑡))
2

|

(𝑥′(𝑡))
2

 
, 

 

𝜏(𝑡) =
𝑦′′(𝑡)𝑧′′′(𝑡) − 𝑦′′′(𝑡)𝑧′′(𝑡)

𝜅2(𝑡)
. 

 

An admissible curve 𝛼: 𝐼 ⊂ ℝ → 𝐺3
1 which is parametrized 

by arc length 𝑠 can be written the form of 

 

𝛼(𝑠) = (𝑠, 𝑦(𝑠), 𝑧(𝑠)). 
 

Then, the curvature and torsion of 𝛼(𝑠) are given by 

𝜅(𝑠) = √|(𝑦′′(𝑠))
2

− (𝑧′′(𝑠))
2

|, 

 

𝜏(𝑠) =
𝑦′′(𝑠)𝑧′′′(𝑠) − 𝑦′′′(𝑠)𝑧′′(𝑠)

𝜅2(𝑠)
. 

 

The orthonormal trihedron of non-null cure 𝛼(𝑠) in 

pseudo-Galilean 3-space is given by 

 

𝑇(𝑠) = 𝛼′(𝑠), 𝑁(𝑠) =
𝛼′′(𝑠)

𝜅(𝑠)
,

𝐵(𝑠) =
(0, 𝜖𝑧′′(𝑠), 𝜖𝑦′′(𝑠))

𝜅(𝑠)
 

 

where 𝜖 = +1 if 𝛼(𝑠) is a spacelike curve and 𝜖 = −1 

if 𝛼(𝑠) is a timelike curve. Here 𝑇, 𝑁, 𝐵 are called the 

tangent, principal normal, and binormal vector fields of 𝛼, 

respectively. Indeed, curve 𝛼(𝑠) is spacelike (resp. 

timelike) if 𝑁(𝑠) is spacelike (resp. timelike) vectors. 

Furthermore, the Frenet formulas of the curve are given by 

  

𝑇′(𝑠) = 𝜅(𝑠)𝑁(𝑠), 𝑁′(𝑠) = 𝜏(𝑠)𝐵(𝑠),
𝐵′(𝑠) = 𝜏(𝑠)𝑁(𝑠). 

 
(see [2, 3, 11, 13].) 

 

Involutes of Admissible Curves in Pseudo-Galilean 
Space 

 
In this section, we will define the involute of 

admissible curves in pseudo-Galilean 3-space and 
investigate the casual properties of the involute of 
admissible non-lightlike curves in pseudo-Galilean 3-
space. 

Definition 3.1. Let 𝛼: 𝐼 ⊂ ℝ → 𝐺3
1 and 𝛽: 𝐼 ⊂ ℝ → 𝐺3

1 
be curves in pseudo-Galilean space. For all 𝑠 ∈ 𝐼, 𝛽(𝑠) is 
called the involute of 𝛼(𝑠) if and only if the tangent of 𝛼 
at the point 𝛼(𝑠) passes through the tangent at the point 
𝛽(𝑠) of the curve 𝛽 and  

 
𝑔(�̅�, 𝑇) = 0, 
 
where 𝑇 and  �̅� are the tangent of curves 𝛼 and 𝛽, 

respectively. 
Theorem 3.1. Let 𝛽(𝑠) be the involute of an admissible 

non-lightlike curve 𝛼(𝑠) parametrized by arc length 𝑠 and 
𝑐 be a constant real number. Then, 

  
𝛽(𝑠) = 𝛼(𝑠) + (𝑐 − 𝑠)𝑇(𝑠)   (1) 
 
Proof.  
Let 𝛼(𝑠) be an admissible non-lightlike curve in 

pseudo-Galilean 𝐺3
1 space. The tangent line of curve 𝛼(𝑠) 

will construct a tangent surface. If 𝛽(𝑠) is the involute of 
𝛼(𝑠), then 𝛽(𝑠) lies on the tangent surface and is 
orthogonal to all tangent line of 𝛼(𝑠). Suppose  �̅� be the 
point of 𝛽(𝑠) which crosses the tangent line 𝑇(𝑠) of 𝛼(𝑠) 
at point 𝑝. Then,  �̅� − 𝑝 is proportional to 𝑇(𝑠). 
Consequently, 𝛽(𝑠) can be expressed in the form of  

 
𝛽(𝑠) = 𝛼(𝑠) + 𝜆(𝑠)𝑇(𝑠).   (2) 
 
Taking the derivative of (2) yields 
 
𝛽′(𝑠) = 𝛼′(𝑠) + 𝜆′(𝑠)𝑇(𝑠) + 𝜆(𝑠)𝜅(𝑠)𝑁(𝑠)  
 



Arfah / Cumhuriyet Sci. J., 43(1) (2022) 82-87 

84 

= 𝑇(𝑠) + 𝜆′(𝑠)𝑇(𝑠) + 𝜆(𝑠)𝜅(𝑠)𝑁(𝑠)  
 

= (1 + 𝜆′(𝑠))𝑇(𝑠) + 𝜆(𝑠)𝑁(𝑠).  

 
Consequently, by definition 3.1, we have 
 

𝑔(𝛽′(𝑠), 𝑇(𝑠)) = (1 + 𝜆′(𝑠))𝑔(𝑇(𝑠), 𝑇(𝑠)) +

𝜆(𝑠)𝜅(𝑠)(𝑁(𝑠), 𝑇(𝑠)) = 1 + 𝜆′(𝑠) = 0.  (3) 

 
Integrating (3) gives 𝜆(𝑠) = −𝑠 + 𝑐, where 𝑐 is the real 

constant. Thus, by (1) there exist an infinite family of 
involutes of 𝛼(𝑠) given by  

 
𝛽(𝑠) = 𝛼(𝑠) + (𝑐 − 𝑠)𝑇(𝑠).   (4) 

 
Theorem 3.2. Let 𝛽(𝑠) be the involute of an admissible 

non-lightlike curve 𝛼(𝑠) parametrized by arc-length 𝑠 in 
pseudo-Galilean 𝐺3

1. Suppose {𝑇(𝑠), 𝑁(𝑠), 𝐵(𝑠)} and 
{�̅�(𝑠), 𝑁(𝑠), �̅�(𝑠)} are the orthonormal trihedron of the 
curve 𝛼(𝑠) and 𝛽(𝑠) respectively. Then,  

 

[

�̅�(𝑠)

𝑁(𝑠)

�̅�(𝑠)

] = [
0 1 0
0 0 1
0 0 0

] [
𝑇(𝑠)

𝑁(𝑠)

𝐵(𝑠)
]   (5) 

 
Proof.  
First, taking the derivative of (1) gives 
 
𝛽′(𝑠) = 𝑇(𝑠) − 𝑇(𝑠) + (𝑐 − 𝑠)𝜅(𝑠)𝑁(𝑠)

= (𝑐 − 𝑠)𝜅(𝑠)𝑁(𝑠). 
 
So that, 

�̅� =
(𝑐 − 𝑠)𝜅(𝑠)𝑁(𝑠)

‖(𝑐 − 𝑠)𝜅(𝑠)𝑁(𝑠)‖
=

(𝑐 − 𝑠)𝜅(𝑠)𝑁(𝑠)

|(𝑐 − 𝑠)𝜅(𝑠)|
= ±𝑁(𝑠). 

 
Since  �̅� and 𝑁 are both unit vectors, then we can 

assume that  
 
�̅�(𝑠) = 𝑁(𝑠).     (6) 
 
Taking the derivative of (6) gives  
 
�̅�′(𝑠) = 𝜏(𝑠)𝐵(𝑠), 
 
and  
 
‖�̅�(𝑠)‖ = |𝜏(𝑠)|.    (7) 
So that 

 

𝑁(𝑠) =
𝜏(𝑠)𝐵(𝑠)

|𝜏(𝑠)|
= ±𝐵(𝑠). 

 
Again since  𝑁 and 𝐵 are both unit vectors, then we 

can assume that 
 
𝑁(𝑠) = 𝐵(𝑠).     (8) 
 

Since 𝛼(𝑠) is an admissible curve, then it can be 

expressed as 𝛼(𝑠) = (𝑠, 𝑦(𝑠), 𝑧(𝑠)). As a consequence, 

we have 
�̅�(𝑠) = �̅�(𝑠) × 𝑁(𝑠) = 𝑁(𝑠) × 𝐵(𝑠) =

|
|

0 −𝑒2 𝑒3

0
𝑦′′(𝑠)

𝜅(𝑠)

𝑧′′(𝑠)

𝜅(𝑠)

0
𝜖𝑧′′(𝑠)

𝜅(𝑠)

𝜖𝑦′′(𝑠)

𝜅(𝑠)

|
|    (9)  

 
Remark 3.1. The theorem above shows that binormal 

vector of the curve 𝛽(𝑠) vanishes which imply that 𝛽(𝑠) is 
a plane curve.  

Theorem 3.3. Let 𝛽(𝑠) be the involute of an admissible 
non-lightlike curve 𝛼(𝑠) parametrized by arc-length 𝑠 in 
pseudo-Galilean 𝐺3

1. Suppose 𝜅 and 𝜏 are the curvature 
and torsion of 𝛼, respectively while  �̅� and  �̅� are the 
curvature ad torsion of 𝛽, respectively, then 

 
�̅�(𝑠) = |𝜏(𝑠)|,       𝜏(𝑠) = 0.   (10) 
 
Proof.  
It is easy to see that  
 
�̅�(𝑠) = ‖�̅�′(𝑠)‖ = |𝜏(𝑠)|. 
 
Since 𝛽(𝑠) might be a curve not parametrized by arc 

length so as in the preliminary part, 
 

�̅� =
det(𝛽′(𝑠), 𝛽′′(𝑠), 𝛽′′′(𝑠))

|𝛽′|5  �̅�2(𝑠)
. 

 
From the proof of theorem 3.2 we have 

 
𝛽′ = (𝑐 − 𝑠)𝜅𝑁. 
 
Taking the derivative of 𝛽′(𝑠) twice again yields 
 

𝛽′′(𝑠) = ((𝑐 − 𝑠)𝜅)
′
𝑁 + (𝑐 − 𝑠)𝜅𝜏𝐵  

= (((𝑐 − 𝑠)𝜅)
′′

+ (𝑐 − 𝑠)𝜅𝜏2)𝑁 + (((𝑐 − 𝑠)𝜅)
′
𝜏 +

        ((𝑐 − 𝑠)𝜅𝜏)
′
)𝐵.  

 
So that 
 

𝛽′′ × 𝛽′′′ = −(𝑐 − 𝑠)𝜅𝜏(((𝑐 − 𝑠)𝜅)
′′

+ (𝑐 −

        𝑠)𝜅𝜏2)𝑇 + ((𝑐 − 𝑠)𝜅)
′
(((𝑐 − 𝑠)𝜅)

′′
+ (𝑐 −

       𝑠)𝜅𝜏2)𝑇 + ((𝑐 − 𝑠)𝜅)
′
𝑇  

This implies 
 
det(𝛽′ , 𝛽′′ , 𝛽′′′) = 𝛽′ ∙ (𝛽′′ × 𝛽′′′) = 0 
 
Since 𝑔(𝑇, 𝑁) = 0. Consequently,  �̅� = 0. 
Corollary 3.1. Let 𝛽(𝑠) be the involute of an admissible 

non-lightlike curve 𝛼(𝑠) parametrized by arc-length 𝑠 in 
pseudo-Galilean 𝐺3

1, then 𝛽(𝑠) is a plane curve. 
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Corollary 3.2. Let 𝛼(𝑠) be an admissible non-lightlike 
curve parametrized by arc length 𝑠 in pseudo-Galilean 𝐺3

1. 
𝛼(𝑠) has no involute if it is a plane curve. 

Corollary 3.3. Let 𝛽(𝑠) be the involute of an admissible 
non-lightlike curve 𝛼(𝑠) parametrized by arc length 𝑠 in 
pseudo-Galilean 𝐺3

1. If 𝛼(𝑠) is a plane curve with constant 

torsion, then 𝛽(𝑠) is a circle with radius 𝑟 =
1

|𝜏(𝑠)|
. 

Theorem 3.4. Involute of the admissible curve 
parametrized by arc length 𝑠 in pseudo-Galilean space is 
not admissible. 

Proof. 
Let 𝛼(𝑠) be an admissible non-lightlike curve 

parametrized by arc length 𝑠 in pseudo-Galilean space. 
Therefore, 𝛼(𝑠) can be written as 

 

𝛼(𝑠) = (𝑠, 𝑦(𝑠), 𝑧(𝑠)). 

 
Then, by (1) we have 
 
𝛽(𝑠) = 𝛼(𝑠) + (𝑐 − 𝑠)𝑇(𝑠)  
 = (𝑠, 𝑦(𝑠), 𝑧(𝑠)) + (𝑐 − 𝑠)(1, 𝑦′(𝑠), 𝑧′(𝑠))  

 = (𝑐, 𝑦(𝑠) − (𝑐 − 𝑠)𝑦(𝑠), 𝑧(𝑠) − (𝑐 − 𝑠)𝑧′(𝑠)). 

 
Taking the first derivative of the last equation above yields 

zero in the first component. Hence, its tangent vector is isotropic, 
and it implies the curve 𝛽(𝑠) is a non-admissible curve.  

Theorem 3. 5. 
The involute of an admissible spacelike curve in pseudo-

Galilean space is a timelike curve and the involute of the timelike 
curve in pseudo-Galilean space is a spacelike curve. 

Proof. 
Let 𝛼(𝑠) be an admissible spacelike curve parametrized by 

arc length 𝑠 in pseudo-Galilean space and expressed by 𝛼(𝑠) =
(𝑠, 𝑦(𝑠), 𝑧(𝑠)). Then, the principal normal vector field 𝑁(𝑠) of 

𝛼(𝑠) is spacelike and (𝑦′′(𝑠))
2

− (𝑧′′(𝑧))
2

> 0. It implies the 

binormal vector field 𝐵(𝑠) of 𝛼(𝑠) become timelike since 

(𝜖𝑧′′(𝑠))
2

− (𝜖𝑦′′(𝑠))
2

= (𝑧′′(𝑠))
2

− (𝑦′′(𝑠))
2

< 0. By 

equation (5) we have  𝑁(𝑠) = 𝐵(𝑠) which means that the 
principal normal vector field 𝑁(𝑠) of 𝛽(𝑠) is also timelike. Hence, 
by definition 𝛽(𝑠) is a timelike curve. In the same way, if we set 
𝛼(𝑠) be timelike curve parametrized in pseudo-Galilean space 
then its involute will be spacelike. 

 
Numerical Examples 
 
Example 4.1. Let 𝛼: 𝐼 ⊂ ℝ → 𝐺3

1 be an admissible non-
lightlike curve parametrized by arc length 𝑠 in pseudo-
Galilean space and defined by  

 
𝛼(𝑠) = (𝑠, cosh 𝑠 , sinh 𝑠). 
 
Taking the derivative of 𝛼(𝑠) three times yields 
𝛼′(𝑠) = (1, sinh 𝑠 , cosh 𝑠), 
𝛼′′(𝑠) = (0, cosh 𝑠 , sinh 𝑠), 
𝛼′′′(𝑠) = (0, sinh 𝑠 , cosh 𝑠). 
 

Since (𝛼′′(𝑠), 𝛼′′(𝑠)) = cosh2 𝑠 − sinh2 𝑠 = 1 > 0 

then 𝛼(𝑠) is a spacelike curve. The curvature and torsion 
of 𝛼(𝑠) are given by 

 

𝜅(𝑠) = √|(𝑦′′(𝑠))
2

− (𝑧′′(𝑧))
2

| = √|cosh2 𝑠 − sinh2 𝑠| = 1 

 

𝜏(𝑠) =
𝑦′′(𝑠)𝑧′′′(𝑧) − 𝑦′′′(𝑠)𝑧′′(𝑠)

𝜅2(𝑠)
=

cosh2 𝑠 − sinh2 𝑠

1
= 1 

 
and the orthonormal trihedron of 𝛼(𝑠) are 
 
𝑇(𝑠) = 𝛼′(𝑠) = (1, sinh 𝑠 , cosh 𝑠)  
 

𝑁(𝑠) =
1

𝜅(𝑠)
𝛼′′(𝑠) = (0, cosh 𝑠 , sinh 𝑠)  

 

𝐵(𝑠) =
1

𝜅(𝑠)
(0, 𝜖𝑧′′(𝑠), 𝜖 𝑦′′(𝑠)) = (0, sinh 𝑠 , cosh 𝑠).  

 
Note that 𝜖 = 1 since 𝛼(𝑠) is a spacelike curve. 
Consequently, the involute of the curve 𝛼(𝑠) is given 

by 
 
𝛽(𝑠) = 𝛼(𝑠) + (𝑐 − 𝑠)𝑇(𝑠)  
 = (𝑠, cosh 𝑠 , sinh 𝑠) + (𝑐 − 𝑠)(1, sinh 𝑠 , cosh 𝑠)  

 = (
𝑐, cosh 𝑠 + (𝑐 − 𝑠) sinh 𝑠 , sinh 𝑠 +

(𝑐 − 𝑠) cosh 𝑠
). 

 
The orthogonal dihedron of 𝛽(𝑠) are 
 
�̅�(𝑠) = 𝑁(𝑠) = (0, cosh 𝑠 , sinh 𝑠)  
 
𝑁(𝑠) = 𝐵(𝑠) = (0, sinh 𝑠 , cosh 𝑠)  
 
And the curvature of 𝛽(𝑠) is �̅�(𝑠) = |𝜏(𝑠)| = 1. 
 
Example 4.2. Let 𝛾: 𝐼 ⊂ ℝ → 𝐺3

1 be an admissible non-
lightlike curve parametrized by arc length 𝑠 in pseudo-
Galilean space and defined by 

 

𝛾(𝑠) = (𝑠,
𝑠5

80
+

1

2𝑠
,
𝑠5

80
−

1

2𝑠
). 

 
Taking the derivative of 𝛾(𝑠) three times yields 

𝛾′(𝑠) = (1,
𝑠4

16
−

1

2𝑠2 ,
𝑠4

16
+

1

2𝑠2
),  

𝛾′′(𝑠) = (0,
𝑠3

4
+

1

𝑠3 ,
𝑠3

4
−

1

𝑠3
),  

𝛾′′′(𝑠) = (0,
3𝑠2

4
−

3

2𝑠4 ,
3𝑠2

4
+

3

2𝑠4 ).  

 
Since 

 (𝛾′′(𝑠), 𝛾′′(𝑠)) = (
𝑠3

4
+

1

𝑠3
)

2

 − (
𝑠3

4
−

1

𝑠3
)

2

= 1 > 0,  

then 𝛼(𝑠) is a spacelike curve. The curvature and 
torsion of 𝛾(𝑠) are given by 

 

𝜅(𝑠) = √
|(𝑦′′(𝑠))

2
− (𝑧′′(𝑧))

2
|
 

   = √|(
𝑠3

4
+

1

𝑠3
)

2
 − (

𝑠3

4
−

1

𝑠3
)

2
| = 1  
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𝜏(𝑠) =
𝑦′′(𝑠)𝑧′′′(𝑧)−𝑦′′′(𝑠)𝑧′′(𝑠)

𝜅2(𝑠)
  

 

= (
𝑠3

4
+

1

𝑠3

𝑠3

4
+

1

𝑠3
) (

3𝑠2

4
+

3

2𝑠4
) − (

𝑠3

4
−

1

𝑠3
) (

3𝑠2

4
−

3

2𝑠4
) =

3

𝑠
  

 

and the orthonormal trihedron of 𝛾(𝑠) are 

𝑇(𝑠) = 𝛾′(𝑠) = (1,
𝑠4

16
−

1

2𝑠2 ,
𝑠4

16
+

1

2𝑠2
)  

 

𝑁(𝑠) =
1

𝜅(𝑠)
𝛾′′(𝑠) = (0,

𝑠3

4
+

1

𝑠3 ,
𝑠3

4
−

1

𝑠3
)  

 

𝐵(𝑠) =
1

𝜅(𝑠)
(0, 𝜖𝑧′′(𝑠), 𝜖 𝑦′′(𝑠)) = (0,

𝑠3

4
−

1

𝑠3 ,
𝑠3

4
+

1

𝑠3
).  

 
Note that 𝜖 = 1 since 𝛾(𝑠) is a spacelike curve. 

Consequently, the involute of the curve 𝛾(𝑠) is given by 
 
�̅�(𝑠) = 𝛾(𝑠) + (𝑐 − 𝑠)𝑇(𝑠)  
 

 = (𝑠,
𝑠5

80
+

1

2𝑠
,

𝑠5

80
−

1

2𝑠
) + (𝑐 − 𝑠) (1,

𝑠4

16
−

1

2𝑠2 ,
𝑠4

16
+

1

2𝑠2
)  

 

 = (
𝑐,

𝑠5

80
+

1

2𝑠
+ (𝑐 − 𝑠) (

𝑠4

16
−

1

2𝑠2
) ,

𝑠5

80
−

1

2𝑠
+

(𝑐 − 𝑠) (
𝑠4

16
+

1

2𝑠2
)

). 

 
The orthogonal dihedron of �̅�(𝑠) are 
 

�̅�(𝑠) = 𝑁(𝑠) = (0,
𝑠3

4
+

1

𝑠3 ,
𝑠3

4
−

1

𝑠3
)  

 

𝑁(𝑠) = 𝐵(𝑠) = (0,
𝑠3

4
−

1

𝑠3 ,
𝑠3

4
+

1

𝑠3
)  

 

And the curvature of �̅�(𝑠) is �̅�(𝑠) = |𝜏(𝑠)| = |
3

𝑠
| 

Example 4.3. Let 𝑟: 𝐼 ⊂ ℝ → 𝐺3
1 be an admissible non-

lightlike curve parametrized by arc length 𝑠 in pseudo-
Galilean space and defined by 

𝑟(𝑠) = (𝑠,
𝑒2𝑠

4
−

𝑠3

6
,
𝑒2𝑠

4
+

𝑠3

6
). 

Taking the derivative of 𝑟(𝑠) three times yields 

𝑟′(𝑠) = (1,
𝑒2𝑠

2
−

𝑠2

2
,

𝑒2𝑠

2
+

𝑠2

2
),  

𝑟′′(𝑠) = (0, 𝑒2𝑠 − 𝑠, 𝑒2𝑠 + 𝑠),  
𝑟′′′(𝑠) = (0,2𝑒2𝑠 , 2𝑒2𝑠  ).  
Since (𝑟′′(𝑠), 𝑟′′(𝑠)) = (𝑒2𝑠 − 𝑠)2  − (𝑒2𝑠 + 𝑠)2 =

−4𝑒2𝑠 < 0 then 𝛼(𝑠) is a timelike curve. The curvature 
and torsion of 𝑟(𝑠) are given by 

𝜅(𝑠) = √|(𝑦′′(𝑠))
2

− (𝑧′′(𝑧))
2

| =

√|(𝑒2𝑠 − 𝑠)2  − (𝑒2𝑠 + 𝑠)2| = √|−4𝑒2𝑠| = 2𝑒𝑠  

𝜏(𝑠) =
𝑦′′(𝑠)𝑧′′′(𝑧)−𝑦′′′(𝑠)𝑧′′(𝑠)

𝜅2(𝑠)
  

=
(𝑒2𝑠−𝑠)(2𝑒𝑠)−(2𝑒𝑠)(𝑒2𝑠+𝑠)

4𝑒2𝑠 = −𝑠  

and the orthonormal trihedron of 𝑟(𝑠) are 

𝑇(𝑠) = 𝑟′(𝑠) = (1,
𝑒2𝑠

2
−

𝑠2

2
,

𝑒2𝑠

2
+

𝑠2

2
)  

𝑁(𝑠) =
1

𝜅(𝑠)
𝑟′′(𝑠) = (0,

𝑒2𝑠−𝑠

2𝑒𝑠 ,
𝑒2𝑠+𝑠

2𝑒𝑠
)  

𝐵(𝑠) =
1

𝜅(𝑠)
(0, 𝜖𝑧′′(𝑠), 𝜖 𝑦′′(𝑠)) =

(0, −
𝑒2𝑠+𝑠

2𝑒𝑠  , −
𝑒2𝑠−𝑠

2𝑒𝑠
).  

Note that 𝜖 = −1 since 𝑟(𝑠) is a timelike curve. 
Consequently, the involute of the curve 𝑟(𝑠) is given 

by 
�̅�(𝑠) = 𝑟(𝑠) + (𝑐 − 𝑠)𝑇(𝑠)  

 = (𝑠,
𝑒2𝑠

4
−

𝑠3

6
,

𝑒2𝑠

4
+

𝑠3

6
) + (𝑐 − 𝑠) (1,

𝑒2𝑠

2
−

𝑠2

2
,

𝑒2𝑠

2
+

𝑠2

2
)  

 = (𝑐,
𝑒2𝑠

4
−

𝑠3

6
+ (𝑐 − 𝑠) (

𝑒2𝑠

2
−

𝑠2

2
) ,

𝑒2𝑠

4
+

𝑠3

6
+ (𝑐 −

𝑠) (
𝑒2𝑠

2
+

𝑠2

2
)). 

The orthogonal dihedron of �̅�(𝑠) are 

�̅�(𝑠) = 𝑁(𝑠) = (0,
𝑒2𝑠−𝑠

2𝑒𝑠 ,
𝑒2𝑠+𝑠

2𝑒𝑠
)  

𝑁(𝑠) = 𝐵(𝑠) = (0, −
𝑒2𝑠+𝑠

2𝑒𝑠  , −
𝑒2𝑠−𝑠

2𝑒𝑠
)  

And the curvature of �̅�(𝑠) is �̅�(𝑠) = |𝜏(𝑠)| = |𝑠| 

 
 

  

(a) (b) 

Figure 1. Plot of curves in example 4.1, (a) plot of 𝛼(𝑠), (b) plot of 𝛽(𝑠) 
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(a) (b) 

Figure 2. Plot of curves in example 4.2, (a) plot of 𝛾(𝑠), (b) plot of �̅�(𝑠). 
 
 

  

(a) (b) 

Figure 3. Plot of curves in example 4.3, (a) plot of r(s), (b) plot of r (̅s). 
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