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 Abstract  

There are many extensions and generalizations of Gamma and Beta functions in the literature. 

However, a new extension of the extended Beta function 𝐵𝜁,   𝛼1

𝛼2; 𝑚1, 𝑚2(𝑎1, 𝑎2) was introduced 

and presented here because of its important properties. The new extended Beta function has 

symmetric property, integral representations, Mellin transform, inverse Mellin transform and 

statistical properties like Beta distribution, mean, variance, moment and cumulative 

distribution which ware also presented. Finally, the new extended Gauss and Confluent 

Hypergeometric functions with their propertied were introduced and presented.    
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1.  Introduction  

Functions like factorial and others attracted the attention of Mathematicians for a long period of time. For 

example, in 1729 a Swiss Mathematician, Leonard Euler generalized factorial function from the domain of natural 

numbers to the domain over the positive complex plane. Also, in 1811, French Mathematician Adrien-Marie 
Legendre decomposed Euler’s Gamma function into incomplete gamma functions and later in 1814 he introduced 

the notation of   𝛤 for gamma function. In 1730, Euler also introduced beta function, 𝐵(𝑎1, 𝑎2)  for a pair of 

complex numbers 𝑎1 and 𝑎2 with real positive parts through the integrand. Later on, various extensions of 

classical gamma and beta functions were studied by renowned Mathematicians and proved to be significantly 
important in different areas of Applied Mathematics, Statistics, Physics and Engineering such as heat conduction, 

probability theory, Fourier, Laplace, K-transforms and so on [1-20]. 

Definition 1. [21] Oraby et al., proposed the following extended beta function:  

  𝐵𝜁,   𝛼1

𝛼2;  𝑚1(𝑎1, 𝑎2) = ∫ 𝑡𝑎1−1(1 − 𝑡)𝑎2−11

0
𝐸𝛼1, 𝛼2

(−
𝜁

𝑡𝑚1(1−𝑡)𝑚1
) 𝑑𝑡,           (1) 

 (𝑅𝑒(𝑎1) > 0, 𝑅𝑒(𝑎2) > 0, 𝑅𝑒(𝜁) ≥ 0, 𝑅𝑒(𝛼1) > 0, 𝑅𝑒(𝛼2) > 0, 𝑅𝑒(𝑚1) > 0), 

𝐸𝛼1,𝛼2
(; ) is two parameters Mittag-leffler function. 

 Definition 2. [22, 23] Wiman function or two parameters Mittag-Leffler function is defined by 

      𝐸𝛼1,  𝛼2
(𝑧) = ∑

𝑧𝜘

𝛤(𝜘𝛼1+𝛼2)
∞
𝜘=0 , (𝛼1,  𝛼2 ∈ ℂ, 𝑅𝑒(𝛼1) > 0, 𝑅𝑒(𝛼2) > 0).               (2) 

 Definition 3. [24 -26] Classical Mittag-Leffler or one parameter Mittag-Leffler function is defined by 

      𝐸𝛼1
(𝑧) = ∑

𝑧𝜘

𝛤(𝜘𝛼1+1)
∞
𝜘=0 ,  (𝛼1 ∈ ℂ, 𝑅𝑒(𝛼1) > 0).                                                          (3) 
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 Definition 4. [27] Classical gamma function is defined using integral representation as 

    𝛤(𝛼1) = ∫ 𝑡𝛼1−1𝑒−𝑡∞

0
𝑑𝑡,    (𝑅𝑒(𝛼1) > 0).                                                                     (4) 

With the Euler reflection formula 

           𝛤(𝛼1) 𝛤(1 − 𝛼1) =
𝜋

𝑠𝑖𝑛𝜋𝛼1
,        (𝛼1 > 0).                                                                       (5) 

Definition 5. [27] Classical beta function is defined as 

            𝐵(𝛼1, 𝛼2) = {
∫ 𝑡𝛼1−1(1 − 𝑡)𝛼2−11

0
𝑑𝑡,    (𝑅𝑒(𝛼1) > 0, 𝑅𝑒(𝛼2) > 0),

    𝛤(𝛼1)  𝛤(𝛼2)

𝛤(𝛼1+𝛼2)
,                         (𝛼1,  𝛼2 ∈ ℂ\ℤ0

−).                    
                         (6) 

The relation also holds 

           𝐵(𝛼1,  𝛼2 − 𝛼1) =
𝛼2

𝛼1
𝐵(𝛼1 + 1,  𝛼2 − 𝛼1),  (𝑅𝑒(𝛼2) > 𝑅𝑒(𝛼1) > 0).              (7)                       

Definition 6. [20, 28] Classical pochhammer symbol is defined as 

             (𝛼1)𝜘 =
  𝛤(𝛼1+𝜘)

𝛤(𝛼1)
= {

𝛼1(𝛼1 + 1)(𝛼1 + 2) ⋯ (𝛼1 + 𝜘 − 1),             (𝜘 ≥ 1),

1,                                                             (𝜘 = 0, 𝛼1 ≠ 0),
               (8) 

with the well-known binomial theorem 

             ∑  (𝛼1)𝜘
∞
𝜘=0

(𝑧𝑡)𝛼1

𝜘!
= (1 − 𝑧𝑡)−𝛼1 .                                                                                    (9) 

 Definition 7. [29, 30] The Mellin transform of integrable function 𝑓(𝑧) with index 𝑙 is defined by 

              𝑓∗(𝑙) = 𝑀{𝑓(𝜁); 𝑙} = ∫ 𝜁𝑙−1∞

0
𝑓(𝜁)𝑑𝜁.                                                                  (10)     

The inverse Mellin transform is defined by 

             𝑓(𝜁) = 𝑀−1{𝑓(𝜁); 𝑙} =
1

2𝜋𝑖
∫𝐵𝑆   𝜁−𝑙𝑓∗(𝑙)𝑑𝑙.                                                                    (11) 

Definition 8. [31] Classical Gauss hypergeometric function is defined  

              𝐹(𝛼1, 𝛼2;   𝛼3;  𝑧) = ∑
(𝛼1)𝜘(𝛼2)𝜘

(𝛼3)𝜘

𝑧𝜘

𝜘!
∞
𝜘=0 ,                                                                            (12) 

             (𝑅𝑒(𝛼1) > 0, 𝑅𝑒(𝛼2) > 0, 𝑅𝑒(𝛼3) > 0, |𝑧| < 1). 

And  

             𝐹(𝛼1, 𝛼2;  𝛼3;  𝑧) =
1

𝐵(𝛼2, 𝛼3−𝛼2)
∫ 𝑡𝛼2−1(1 − 𝑡)𝛼3−𝛼2−11

0
(1 − 𝑧𝑡)−𝛼1𝑑𝑡,                         (13) 

            (𝑅𝑒(𝛼3) > 𝑅𝑒(𝛼2) > 0, |arg(1 − 𝑧)| < 1). 
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Definition 9. [31] Classical confluent hypergeometric function is defined as 

            𝛷(𝛼2;  𝛼3;  𝑧) = ∑
(𝛼2)𝜘

(𝛼3)𝜘

𝑧𝜘

𝜘!
∞
𝜘=0 ,   (𝑅𝑒(𝛼2) > 0, 𝑅𝑒(𝛼3) > 0, |𝑧| < 1).                              (14) 

And 

           𝛷( 𝛼2;  𝛼3;  𝑧) =
1

𝐵(𝛼2,   𝛼3−𝛼2)
∫ 𝑡𝛼2−1(1 − 𝑡)𝛼3−𝛼2−11

0
𝑒𝑧𝑡 𝑑𝑡,                                        (15) 

               (𝑅𝑒(𝛼3) > 𝑅𝑒(𝛼2) > 0, |arg(1 − 𝑧)| < 1). 

Definition 10. [32] The relations between Mittag-Leffler and gamma function is 

         ∫ 𝑢𝑙−1𝐸𝛼1, 𝛼2

𝛼3 (−𝜇𝑢)𝑑𝑢 =
𝛤(𝑙) 𝛤(𝛼3−𝑙)

𝜇𝑙  𝛤(𝛼3) 𝛤(𝛼2−𝑙𝛼3)

∞

0
.                                                               (16) 

Setting 𝛼3 = 𝜇 = 1 in equation (16), becomes 

                  ∫ 𝑢𝑙−1𝐸𝛼1, 𝛼2
(−𝑢)𝑑𝑢 =

𝛤(𝑙) 𝛤(1−𝑙).

𝛤(,𝛼2−𝑙)

∞

0
                                                                              (17) 

Definition 11. The extended beta function is defined as  

 𝐵𝜁,   𝛼1

𝛼2; 𝑚1, 𝑚2(𝑎1, 𝑎2) = ∫ 𝑡𝑎1−1(1 − 𝑡)𝑎2−11

0
𝐸𝛼1, 𝛼2

(−
𝜁

𝑡𝑚1(1−𝑡)𝑚2
) 𝑑𝑡,          (18) 

  

 is two parameters Mittag-Leffler function.  

 Definition 12. The extended Gauss hypergeometric function is defined as 

 ,                                 (19)                   

(   

Definition 13. The extended Gauss hypergeometric function is defined as 

                                      (20)                      

        

2.   Special Cases  

Some special cases of the new extended beta function are  
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Cases 1: When  then the new extended beta function reduces to the beta function [21]: 

               (21) 

      . 

Cases 2: If and  then the new extended beta function reduces to the beta function [33]: 

,  (22)     

  . 

Cases 3: If and  then the new extended beta functions reduce to the beta function [34]: 

   ,            (23)  

  . 

Cases 4: When   then the new extended beta function reduces to the beta function as in [35]: 

 ,        (24)   

  . 

Cases 5: When  and  then the new extended beta function reduces to the beta function as 

in [36]: 

 ,           (25)  

  . 

Cases 6: If  then the new extended beta function reduces to the beta function as in 

[37]: 

  ,                               (26)    
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    . 

Cases 7: If  and  then the new extended beta function reduces to the classical 

beta function as in [27]: 

 ,                           (27) 

    . 

3.  Generalized Beta Function 

Theorem 1.  

                              (28) 

Proof. On setting left hand side of (28) to be L and direct calculation 

                        (29) 

On simplification of the equation (29),  

                        (30) 

Applying equation (18) to (30), the desired result in (28) is obtained. 

Theorem 2.  

                                         (31) 

Proof. By direct calculation 

                          (32) 

Applying equation (9) to (32), yield 

                        (33) 

 On interchanging the order of summation and integration in equation (33), 
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                              (34) 

Applying equation (18) to (34), the desired result is obtained. 

Theorem 3. 

                                              (35) 

Proof. By direct calculation 

 .              (36) 

Applying equation (9) to (36), yield 

                             (37) 

On interchanging the order of summation and integration in equation (37), we have 

                       (38) 

 Applying equation (18) to (38), gives the desired result. 

Theorem 4. For the new extended beta function, 

                         (39) 

Proof. Setting  in equation (18), gives the required result in (39). 

4.  Integral Representations 

Theorem 5.  

,          (40)  

,                      (41) 

 ,  (42) 
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.                  (43) 

Proof.  Equations (40), (41), (42) and (43) can be obtained by putting    

 and , respectively in equation (18) and by changing of variable. 

Theorem 6.  

 ,               (44) 

 .                        (45) 

Proof.  Equations (44) and (45) can be obtained by putting  and   respectively in equation (18) 

and change of variable. 

5.  Mellin Transform 

Theorem 7.  

 .                            (46) 

Proof. Using definition of Mellin transform in equation (10), we have 

                                              (47) 

Substituting equation (18) into (47), we get 

                           (48) 

Interchanging the order of integrations in equation (48), yield 

             (49) 

On setting  in equation (49), we obtain 

                             (50) 

On applying equations (4), (5) and (17) to (50), the desired result can be obtained. 
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Corollory 8. The inverse Mellin transform: 

 =                     

where 

. 

6.  Beta Distribution  

The beta distribution of the new extended beta function is 

       (51) 

    

The moment of X, is given by: 

   .                           (52) 

On setting  in (52), we obtained the mean of the distribution as  

                                                                                    

The variance of the distribution given in equation (51) is  

    

Cumulative distribution is  

                                                                                          

where  is the new extended incomplete beta function defined by: 
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7.   Gauss and Confluent Hypergeometric Function  

Theorem 9.  

    

              (53) 

Proof. Applying equation (18) to (19), gives 

  

                                                                                (54) 

Interchanging the order of summation and integration in equation (54), we have 

   

                                                      (55) 

Applying equation (9) to (55), give the desired result in (53).  

Theorem 10.  

      (56) 

 

                                                                       (57) 

 

                                                                              (58) 
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which are the new extended hypergeometric function integral representations. 

Proof. Equations (56), (57) and (58) can be obtained by substituting   and 

, respectively in to (53). 

Theorem 11.  

        (59) 

which is the new extended confluent hypergeometric function integral representation. 

Proof. Applying equation (18) to (20), gives 

.    (60) 

Interchanging the order of summation and integration in equation (60), we have 

  

                                                              .      (61) 

Corollary 12. For the new extended confluent hypergeometric function, the following formula hold. 

 .  

Theorem 13. 

                     (62) 

                                  (63) 

which are differential formulas.  

Proof. Using equation (19), we have 

              .                 (64) 

Setting  in equation (64), we get 
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                     (65)  

Applying equation (7) to (65), the desired result in equation (62) is obtained. On successive differentiation of 

equation (62), also the required result in (63) is obtained. 

Corollary 14.  

                                           

                                          

8.  Mellin Transform 

Theorem 15.  

        (66) 

Proof. Using definition of the Mellin transform in equation (10), we have 

                (67) 

Substituting equation (19) into (67), we have 

  

                                                                (68) 

Interchanging the order of integrations in equation (68), yields 

   

                                                                     (69) 

On setting  in (69), we obtain 

  

                                                                                    (70) 
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On applying equations (4), (5) and (17) to (70), the desired result obtained. 

Corollary 16.  

 =     

                                                                    

where 

 

 

Corollary 17.  

                         

                                                                    

 =     

                                                                        

Where 

  

 

. 

Theorem 18.  

                         (71) 

                                      (72) 
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which are the transformation formulas for the extended Gauss hypergeometric and Kumar confluent 

hypergeometric functions. 

Proof. Setting  in equations (53) and (59), we obtained the required results in (71) and (72), 

respectively. 

Theorem 19.  

                                                   (73) 

is the extended Gauss summation formula. 

Proof. Taking  in equation (53), the required result in (73) is obtained. 

9.   Conclusions 

The new extension of the extended beta function  B
ζ,   α1

α2; m1, m2 (a1,  a2), Gauss hypergeometric 

function 𝐹𝜁,   𝛼1

𝛼2; 𝑚1, 𝑚2(𝑎1, 𝑎2; 𝑎3;  𝑧) and confluent hypergeometric function 𝛷𝜁,   𝛼1

𝛼2; 𝑚1, 𝑚2(𝑎2; 𝑎3;  𝑧)  were 

obtained and presented with their important properties. The extended beta, Gauss and confluent hypergeometric 

functions and their special cases proposed in [21, 33-37] can be regained from the newly proposed functions. It 

is hoped that it will be useful in Science and Technology [38-40].  
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