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Abstract 

 

In this paper, the mathematical model which describes the glucose-insulin homeostasis in healthy rats is 

considered. The model is discretized by constructing a nonstandard finite difference (NSFD) scheme to 

obtain the numerical solutions. The equilibrium point of the discretized model is determined and stability 

analysis of the discretized model is discussed. The effect of time step sizes on 4th order Runge-Kutta 

method and NSFD method is presented. Also, comparison of NSFD scheme solution, Runge-Kutta-

Fehlberg Method (RKF45) solution and analytical solution are presented in graphical form. The 

effectiveness of the proposed method in the solution and interpretation of the model is observed. 

 

Keywords: Glucose-Insulin homeostasis, nonstandard finite difference scheme, stability analysis. 

 

1. Introduction 

 

In mathematical biology, a lot of studies for patients 

with diabetes are proposed. The relationship between 

glucose and insulin has been mathematically modeled, 

improved and studied. Some of the studies can be listed 

as follows:  

 

Chen et. al. developed a physiological glucose–insulin 

dynamic system on diabetics [1]. They aimed to 

examine dynamic behavior of plasma glucose and 

insulin on diabetic subject. They constructed a modified 

delay differential equation system. Dereouich and 

Boutayeb examined the importance of physical activity 

on the dynamics of glucose and insulin [2]. 

Neatpisarnvanit and Boston derived and evaluated two 

plasma insulin estimators in [3]. They used forward 

Euler discretization to discrete the continuous model. 

Finally, they compared the performances of estimator 

by using computer simulations and clinical data. Li and 

Kuang [4] generalized the dynamic model on interaction 

of glucose and insulin to the delay model. They 

proposed some lemmas, propositions and theorems 

about the local and global stability of the model. Also, 

they gave periodic solutions for the discrete delay 

model. Hussian and Zadeng analyzed the stability of the 

general glucose-insulin model [5]. They examined the 

importance of insulin in the disappearance of glucose by  

 

 

doing numerical simulations. Wang et.al [6] proposed a 

delay model of the insulin therapies. They studied the 

dynamics of the model. They showed that the numerical 

results and the findings of the clinical studies agree 

well. 

 

There are a lot of classical numerical methods for 

solving these kinds of models such as Euler Method, 

Runge-Kutta Method etc. But, the studies show that, it 

is better to prefer nonstandard discretization methods 

for biological models. Al-Kahby et.al. present the basic 

stability results of some biological models, 

shortcomings of some classical discretization methods 

and the advantage of nonstandard discretization 

methods [7]. In this study, because of the advantages, 

we prefer to use NSFD schemes developed by Mickens 

[8-11]. One of the advantages compared to classical 

discretization methods is that while classical 

discretization often produces difference equations which 

don’t share their dynamics, NSFD produce difference 

equations that share their dynamics. In this 

discretization method, the critical points are same with 

the continuous model and the positivity solutions under 

positive initial conditions are preserved. Since NSFD 

schemes can preserve all properties of the continuous 

models for any discretization parameter, the method is 

successful on dynamical consistency. Also, while NSFD 

schemes give convergence results for the big step-size,  
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the other traditional methods don’t. Since there are 

numerical instabilities in the classical methods, this 

method provide an advantage of choosing suitable 

denominator function. One can be referred to [12] for 

the detailed analysis about determining denominator 

function.  Some studies about NSFD schemes are listed 

below: 

 
Mickens studied a nonlinear reaction-advection 

equation which is a partial differential equation [13]. 

Arenas et. al. analyzed the SIRS model for modelling 

transmission of respiratory syncytial virus [14]. 

Khalsaraei and Khodadosti made some applications of 

NSFD to ordinary and partial differential equations [15].  

Their comparisons between the standard methods and 

NSFD showed that nonstandard schemes perform better. 

Ongun and Turhan applied NSFD schemes to the HIV 

infection model which is a nonlinear ordinary 

differential equation system [16]. They examined 

stability analysis of the model and gave qualitative 

results for the fixed points which have biological 

meanings. Also, Ongun etc. applied NSFD schemes to a 

fractional-order Brusselator system [17]. They presented 

the dynamics of the Brusselator model and trajectories 

by NSFD scheme. A very detailed literature survey is 

presented by Patidar in [18,19]. Some of the main rules 

about designing NSFD schemes are summarized and 

some of the applications of the method in other areas are 

mentioned.  

 
This study consist of six sections: in Section 2, the 

model is introduced and discretized through NSFD 

schemes. In Section 3, Jury Stability test and a theorem 

about the local asymptotic stability of the model are 

presented. Equilibrium point of the discrete system is 

determined, the expression of Jacobian matrix at the 

equilibrium point and characteristic equation are given. 

In Section 4, the analytical solution of the linear 

ordinary differential equation system is given.  Section 

5 presents the numerical simulations. Considering the 

optimized values, stability analysis of the problem is 

given.  The effect of time step sizes on the convergence 

of the 4th order Runge-Kutta method and NSFD scheme 

is given in tabular form. The graphics for the numerical 

solutions of the model are presented.  Finally, phase 

portrait of the system is given. The last section 

concludes the study with a summary. 

 
2. Discretization of the Model 

 
In this section, the model proposed by [20] is 

considered. The model describing glucose–insulin 

homeostasis in healthy rats is given as:  

 

( )

6 1

2 4 0 3 4

,

pi

a

dI
k I k G

dt

dG
k k I k D k k I

dt

dD
k D

dt

= − +

= − + + − +

= −

                         (2.1) 

where, I, G and D denote to variation of blood insulin 

concentration, blood glucose concentration and amount 

of glucose in the intestine, respectively.  The parameters 

in Eq. (2.1) are given in Table 1.  
 

Table 1. The meaning of the parameters in epidemic 

model (2.1). 

Parameters Meanings 

k0 the rate constant of blood glucose 

incorporation from diet 

k1 the rate constant of insulin secretion 

k2 the rate constant of insulin-dependent 

glucose uptake by the tissues 

k3 the rate constant of insulin-independent 

glucose uptake by the tissues 

k4 the rate constant of liver glucose transfer 

k6 the rate constant of blood insulin 

clearance 

ka the rate constant of glucose absorption   

Ipi the blood insulin concentration when the 

liver changes from the uptake to the 

production of glucose 
 

The discretization has an important role on dynamic 

behavior of epidemic models; because the data’s are 

collected in discrete-time. Since the classical 

discretization methods often lead to difference equations 

which don’t share their dynamics, it is more suitable to 

discretize the models by nonstandard discretization 

methods. In the light of this information, the model 

given by Equations (2.1) is discretized by nonstandard 

finite difference method proposed by Mickens [8,-11]. 

This discretization method is preferred because of the 

advantages of choosing denominator function arbitrary 

by local discretization. Also, NSFD method has 

advantage on removing numerical instabilities obtained 

by standard finite difference procedures.  
 

The discretization of the model (2.1) has been done by 

NSFD scheme in the view of positivity conditions. To 

satisfy the positivity condition, the discretized 

procedure for the first equation of Eq. (2.1) is given as

( ) ( ) ( ) ( ) and 1 .G t G n I t I n→ → +  Later on, the 

discretized terms ( ) ( ) ( ) ( ) and 1I t I n D t D n→ → +  are 

applied to the second equation of Eq. (2.1). Finally, by 

using the ( ) ( )1D t D n→ +  discretization for the last 

equation of Eq. (2.1), the model is rewritten as 
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( )
( ) ( )

( ) ( ) ( ) ( )

( )

( )
( )

1 1

6 1

2 4 2

0 3 4

3

1 ,
1

1

                ,

1 ,
1

pi

a

I n k G n
I n

k

G n G n k k I n

k D n k k I

D n
D n

k









+
+ =

+

+ = + − +

+ − + 

+ =
+

                  (2.2) 

where 𝜙𝑖 , 𝑖 = 1,2,3 are denominator functions and 

determined as 

 

6

1
6

2

3

1
,

,

1
.

a

k h

k h

a

e

k

h

e

k







−
=

=

−
=

 

 

For detailed information of finding denominator 

functions, one can check the reference [10]. 

 

3. Stability Analysis of the Discretized Model 

 

Lemma 3.1 From the positivity of the parameters, the 

solution of discrete system (2.2) is positive with positive 

initial conditions under the assumption of  

 

( )
( ) ( ) ( )4 2 0 3 4

2
pi

G n
k k I n k D n k k I


 + − + − . 

 

Proof 

i) For 6 0k  , 0h   and 1 2 3, , 0    , it is obvious 

that 6 1
k h
e  . So, 6 1 0

k h
e −   is obtained. Dividing 

this expression into the term  6k  leads to 

6

1
6

1
0

k h
e

k


−
=  . So, the solution 

( )
( ) ( )1 1

6 1

1 0
1

I n k G n
I n

k





+
+ = 

+
 is positive. 

 

ii) If 
( )

( ) ( ) ( )4 2 0 3 4
2

pi

G n
k k I n k D n k k I


 + − + −  then, 

for 2 0h =  , 

( ) ( ) ( ) ( )2 4 2 0 3 4 piG n k k I n k D n k k I   + − + −   

 is obtained. So the solution 

 

( ) ( ) ( ) ( )

( )

2 4 2

0 3 4

1

                0pi

G n G n k k I n

k D n k k I

 + = + − +

+ − +   
is positive.  

 

iii) For 0ak  and 0h   , it is obvious that 1ak he  . 

So, 1 0ak he −   is obtained. Dividing this expression 

into the term ak leads to 3

1
0

ak h

a

e

k


−
=  . So, the 

solution  ( )
( )

3

1 0
1 a

D n
D n

k 
+ = 

+
  is positive.  

 

Lemma 3.2 From the positivity of the parameters and 

Lemma 3.1, if 
( )

( )
6

1

G n k

I n k
 , the solution of discrete 

system (2.2) decreases monotonically.  

 

Proof From the third equation of discrete system (2.2), 

( )

( ) 3

1 1 1
1

1 ak h
a

D n

D n k e

+
= = 

+
 is obtained. Rewritten 

the second equation of system (2.2) as, 

( )

( )

( ) ( ) ( )

( )
2 4 2 0 3 41

1
pik k I n k D n k k IG n

G n G n

  − + + − ++  
= +

and considering the assumption in Lemma 3.1, for  

( ) ( ) ( ) ( )
2

4 2 0 3 4

1

piG n k k I n k D n k k I




+ − + −
,  

it is obtained that  

( )

( )

( ) ( ) ( )

( )
2 4 2 0 3 41

1

                0 1.

pik k I n k D n k k IG n

G n G n

  − + + − ++  
= +

 

 

Finally, from the first equation of the system (2.2) and 

the assumption
( )

( )
6

1

G n k

I n k
 , 

( )

( )

( ) ( )

( ) ( ) ( )
1 1 1 1 6

6 1 6 1 6 1 1

1 1
1

1 1 1

I n I n k G n k k

I n k I n k k k

 

  

+ +
=  + =

+ + +
 

 
is obtained.  

 

Locally asymptotic stability of the system depends on 

the eigenvalues of the Jacobian matrix at the 

equilibrium points. The eigenvalues are the zeros of the 

following characteristic polynomial 

 

( ) 1 2
1 2 ...n n n

np a a a   − −= + + + + ,                (3.1) 

                                          

where 𝑎1, 𝑎2, … , 𝑎𝑛   are constants.  

 

Theorem 3.1 If the solutions 𝜆𝑖 , 𝑖 = 1,2, … , 𝑛 of 

Equation (3.1), ( ) 0p  =  satisfy 1i  , then 

i) ( ) 1 21 1 ... 0np a a a= + + + +  , 

ii) ( ) ( ) ( )1 21 1 1 ... 1 0
n n

np a a a− − = − + − + −  , 

(alternate in sign), 

iii) 1na  . [21]  
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Jury Stability Test  

 

Let us consider the characteristic polynomial  

 

( ) 1
0 1 1 0... ,     0n n

n np z a z a z a z a a−
−= + + + +  . 

 

The conditions of stability of the system are: 

 

i) 0na a , 

ii) ( )1 0p  , 

iii)
( )
( )

1 0,  for n is even
 

1 0, for n is odd

 − 


− 

p

p
, 

iv) ( )

1 0

2 0

2 0

 2  constraints

n

n

b b

c c
n

q q

−

−




 
−


 

, 

where, 

1

0 1

,    0, 1
n n k

k
k

a a
b k n

a a

− −

+

= = − , 

1 2

0 1

,    0, 2
n n k

k
k

b b
c k n

b b

− − −

+

= = − , 

  ⋮ 

3 2

0 1

,    0,2
k

k
k

p p
q k

p p

−

+

= =  [21,22]. 

 

For the stability analysis of model, equilibrium point of 

Equations (2.2) are obtained as 

 

( )
( )
( )

3 4 63 4* * * *

4 2 4 2 1

, , , ,0
pipi

k k I kk k I
E I G D

k k k k k

 − +− +
 = =
 + +
 

. 

 

Note that, the equilibrium points of continuous model 

(2.1) and discrete model (2.2) are same.  

 

The Jacobian matrix is determined as 

( ) ( ) ( )( ) ( )

1 1

6 1 6 1

2 4 2 2 0

3

1
0

1 1

, , 1 .

1
0 0

1 a

k

k k

J I n G n D n k k k

k



 

 



 
 + +
 
 = − +
 
 
 + 

 

 

The value of Jacobian matrix at the equilibrium point 

and obtained characteristic polynomial are given below:  

 

( ) ( )

1 1

6 1 6 1

* * *
2 4 2 2 0

3

1
0

1 1

, , 1

1
0 0

1 a

k

k k

J I G D k k k

k



 

 



 
 + +
 
 = − +
 
 
 + 

, 

( )
( )( )

( ) ( )

( )( )

( )

( )( )

3 26 1 3 6 1 3

3 6 1

3 1 2 1 2 4 6 1 3

3 6 1

1 1 2 4 2

3 6 1

3 2 2

1 1

1 3
 

1 1

1
,                                   

1 1

a a

a

a a

a

a

k k k k
p

k k

k k k k k k

k k

k k k

k k

   
  

 

    


 

 

 

+ + +
= −

+ +

+ − − − −
−

+ +

− + −
+

+ +

 (3.2) 

 

where the eigenvalues are  

 

( )( )

( )

( )( )

( )

1

3

2 2
6 1 6 1 1 1 2 4 2 6 1

2

6 1

2 2
6 1 6 1 1 1 2 4 2 6 1

3

6 1

1
,

1

2 4 1
,

2 1

2 4 1
.

2 1

ak

k k k k k k

k

k k k k k k

k




    




    




=
+

+ + − − +
=

+

− − + − − +
=

+

 

Now, let us analyze the stability of the model at the 

equilibrium point. 

 

Theorem 3.2 The system is locally asymptotically 

stable at the equilibrium point 
*E , if the following 

conditions are satisfied 

 

i) 
( )( )
1 4 1 2 1 2 1 2

3 6 1

1
1

1 1a

k k k k

k k

   

 

− + −


+ +
. 

ii) 
( )

( )( )
1 4 2 1 2 3

3 6 1

0
1 1

a

a

k k k k

k k

  

 

−


+ +
 . 

iii)
( ) ( )

( )( )
1 1 2 3 2 4 6 1 3 6 1 3

3 6 1

2 3 2
0.

1 1

a a a

a

k k k k k k k k

k k

      

 

 − − + + + 


+ +
 

iv) 

( ) ( )( )( ) ( (

) ( ) ) ( ) ( ) 
( ) ( )( ) ((

) ( ) ( )

( )) ( ) ( )( )

1 1 2 2 4 6 1 3 1 1 2 2

2 2

4 6 1 3 3 3 6 1

2 2
4 2 1 2 1 1 6 3 3 3

2 2 2
3 6 1 3 1 4 2 2 6 1 6 1

2 2

1 3 6 6 1 3 3 6 1

1 1 1

1 / 1 1

1 2 2

2

4 / 1 1 .

a

a a a

a a a

a a

a a a

k k k k k k k

k k k k k k

k k k k k k k

k k k k k k k k

k k k k k k

     

    

     

     

     

− − + + −

− + + + + +

 − − + − −

+ + − + − +

+ − + − + +
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Proof Considering Jury stability test [21,22] and the 

coefficients of characteristic polynomial (3.2) obtained 

as 

 

( )( )
6 1 3 6 1 3

1
3 6 1

3 2 2

1 1

a a

a

k k k k
a

k k

   

 

+ + +
= −

+ +
, 

( ) ( )

( )( )
3 1 2 1 2 4 6 1 3

2
3 6 1

1 3

1 1

a a

a

k k k k k k
a

k k

    

 

+ − − − −
= −

+ +
 and

( )

( )( )
1 1 2 4 2

3
3 6 1

1

1 1a

k k k
a

k k

 

 

− + −
=

+ +
, 

 

it is obvious that, if the conditions (i-iv) are satisfied, 

the equilibrium point is locally asymptotically stable. 

 

In addition, as is known, the order of convergence in 

Mickens’ method generally matches the order of the 

differential equation [23]. Also, in the view of [23,24], 

it can be easily seen that the order of convergence for 

NSFD schemes we proposed is one.  

 

4. The Analytical Solution of the System  

 

In this section, to compare the results obtained by the 

NSFD schemes, the analytical solution of the system of 

ordinary differential equations is presented under the 

initial conditions ( ) 00 0I I=  , ( ) 00 0,  G G= 

( ) 00 0= D D . The model (2.1) is solved by 

elimination method. In the view of the elimination 

method, the system is converted to the following 

differential equations, 

 

( ) ( )

( )

( ) ( ) ( )

( )
( ) ( )

2 *
6 1 2 4 0 1

3 4 1

2 *
6 1 2 4 0 6

3 4 6

D D

                                               ,

D D

                                                ,

D t 0,

a

a

k t

pi

k t
a

pi

a

k k k k I t k k c e

k k I k

k k k k G t k c k k e

k k I k

k D

−

−

 + + + =
 

+ − +

 + + + = −
 

+ − +

+ =

(4.1)  

                                      

where D  is the derivation operator and 
*c  is the 

arbitrary parameter obtained from the solution of the 

third equation of Eq. (4.1). The characteristic equation 

of the first and second equations of Eq. (4.1) is obtained 

for the homogeneous solution as 

 

( )2
6 6 1 2 4

1,2

4

2

k k k k k
m

− − +
= . 

 

 

 

 

 

For the different cases of characteristic equation, the 

homogeneous solutions are obtained. Later, private 

solutions are obtained by using the method of 

undetermined coefficients. So, we can summarize the 

solution of system (2.1) as follows: 

i) If ( )2
6 1 2 44 0k k k k− +  ,  

( )2
6 6 1 2 44

2
a

k k k k k
k

− − +
 −  and 

( )2
6 6 1 2 44

0
2

k k k k k− − +
 , then 

( )
( )

( )
( ) ( )

( )

( )

( )
( )

( )

1 2

1 2

0 1 3
1 2 2

6 1 2 4

3 4

2 4

1 1 6 2 2 6

1 1

6 3 40 3 6

2
1 2 46 1 2 4

3

        ,

       ,

,

a

a

a

k tm t m t

a a

pi

m t m t

pia k t

a a

k t

k k c
I t c e c e e

k k k k k k

k k I

k k

c m k c m k
G t e e

k k

k k k Ik c k k
e

k k kk k k k k k

D t c e

−

−

−

= + +
− + +

− +
+

+

+ +
= +

− +−
+ +

+− + +

=

 

 

where, the coefficients 1 2 3, ,c c c  are obtained from 

initial conditions as, 

 

( )

( )

( )
( )

( )

( )
( )

0 1 0 6
1 1 0 2

1 2 6 1 2 4

6 3 4

2 6 0
2 4

3 40 1 0

2
2 46 1 2 4

0 1 0
2 1 6 0 2

2 1 6 1 2 4

3 4

2 4

1

      

       ,

1

      

a

a a

pi

pi

a a

a a

pi

k k D k k
c k G

m m k k k k k k

k k k I
m k I

k k

k k Ik k D

k kk k k k k k

k k D
c m k I

m m k k k k k k

k k I

k k

 −
= −

− − + +

− +
− − + 

+

− + 
− − 

+− + + 


= − + −

− − + +

− + 
−

+

( )

( )

( )

0 1 0 6
1 0 2

6 1 2 4

6 3 4

2 4

3 0

       ,

.

a

a a

pi

k k D k k
k G

k k k k k k

k k k I

k k

c D

−
+ −

− + +

− + − 
+ 

=

 

 

ii) If ( )2
6 1 2 44 0k k k k− + =  , 6

2
a

k
k  and 6 0k = , then 
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6 1 2 6 2

1 1

6 3 40 3 6

2
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k k k k k k
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k c c k c
G t t e
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k k k Ik c k k
e

k k kk k k k k k
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−
−

−

−

−

= + +
− + +

− +
+

+

 +
= + 
 

− +−
+ +

+− + +

=

 

 

where, the coefficients 1 2 3, ,c c c  are obtained from 

initial conditions as, 

 

( )

( )
( )

( )

( )

( )

( )

3 40 1 0
1 02

2 46 1 2 4
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2
2 46 1 2 4
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− +
= − − +

+− + +

 − + −
= − −

+ − + +

− + 
+ + 

+− + + 

=

 

 

iii)  If ( )2
6 1 2 44 0k k k k− +  , 

( ) ( ) ( )( )
( )

( ) ( ) ( )

( )

( )
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( )
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6

6
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1 2 2

6 1 2 4

3 4
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e
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−
−

−

−
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− +
+

+

    
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    

− +−
+ +

+− + +

3 ,ak tc e
−

=

 

where, the coefficients 1 2 3, ,c c c  are obtained from 

initial conditions as, 

 

( )
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( )
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2 46 1 2 4

6 3 4 0 0 6
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k k Ik k D k
I
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c D

− +
= − − +

+− + +

  − + −  = − −
 + − + +  

 − + 
− − − + 

+− + +  

=

 

 

5.  Results and Discussion 

 

In this study, since discrete-time dynamic systems have 

advantages over continuous-time dynamic systems, we 

convert a continuous time dynamic system to a discrete-

time dynamic system. One of them is that the data in 

real life are collected in discrete time. Also discrete-

time dynamic systems present more complicated 

dynamical behaviors. 

 

In this section, first, we analyze the stability of the 

discretized model. Then, we approached the problem by 

4-th order Runge-Kutta method and NSFD scheme to 

observe the convergence of the methods. The numerical 

solution of the epidemic model is also obtained by 

RKF45 method. The effectiveness of the numerical 

methods is compared in Fig. 1-3 with obtained 

analytical solutions. Finally, the graphics for different 

glucose intake are presented. Maple package 

programme is used in all calculations. 

 

The numerical calculations are carried out for the 

parameters: 

0 1 2 3 4 60.01,  0.7,  0.0005,  1,  0.05,  0.5

0.15,  800,   0.01.a pi

k k k k k k

k I h

= = = = = =

= = =

 

These parameters are chosen approximately from the 

optimized parameters in [20]. 

  

Now, let us analyze the stability of the problem. By 

considering Jury stability test, 

 

i) Since 0 1a =  and 3 0.99352a = , 3 0a a . 

ii) ( ) 8
0 1 2 31 0.5 10 0p a a a a x −= + + + =  . 

iii) ( ) 0 1 2 31 5.98702 0p a a a a− = − + − + = −  . 

iv)Since 0 0.01290894300b = and 2 0.01290900830b = , 

2 0b b . 

 

So from the conditions (i- iv), the equilibrium point is 

locally asymptotically stable.  

 

Table 2. Effect of time step sizes on the numerical 

methods 

 

h 4-th order Runge-

Kutta method 

NSFD scheme 

0.001 Convergence Convergence 

0.01 Convergence Convergence 

0.1 Convergence Convergence 

0.5 Convergence Convergence 

1 Convergence Convergence 

5 Convergence Convergence 

10 Divergence Convergence 

100 Divergence Divergence 
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Table 2 present the effect of time step size on 4-th order 

Runge-Kutta method and NSFD scheme. As is seen 

from Table 2, the nonstandard discretization is more 

effective than the classical method for bigger step-size. 

 

Also, since the model is a system of linear ordinary 

differential equation, the comparisons of analytical and 

numerical solutions are done. The results obtained by 

NSFD scheme, RKF45 method and analytical solution 

are presented in Figures 1-3.  

 

 
 

Figure 1.  Numerical comparison for I(𝑡). 

 

 
 

Figure 2.  Numerical comparison for 𝐺(𝑡). 

 

 

 
 
Figure 3.  Numerical comparison for 𝐷(𝑡). 

 

Clearly, these figures show us the stability of the model 

and effectiveness of the NSFD scheme. Figures 4-6 

present the variation of blood insulin concentration, 

blood glucose concentration and amount of glucose in 

the intestine on time for different amount of glucose 

intake (𝐷0). So, when the glucose intake increases, 

levels of blood insulin and blood glucose increase too.  

 

 

 

 

 

Figure 4. I(𝑡) for different glucose intake (mg). 

 

 
 

Figure 5. 𝐺(𝑡) for different glucose intake (mg). 

 

 
 

Figure 6. 𝐷(𝑡) for different glucose intake (mg). 
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Finally, the phase portrait of the system is generated by 

Figure 7.  

 

 
 

Figure 7. Phase portrait of the system. 

 

6. Conclusion 

 

In this study, a model of glucose–insulin homeostasis in 

healthy rats is handled. The system is discretized by 

NSFD schemes. It is seen that the solutions are positive 

for all positive initial values. The stability analysis of 

the model is done and it is concluded that equilibrium 

point is locally asymptotically stable. Convergence is 

achieved for larger step-size than fourth-order Runge-

Kutta method. Since the considered biological model is 

a system of linear ordinary differential equation, it gives 

a chance to compare the approximate values with 

analytical values. So, the effectiveness of the results 

obtained by NSFD schemes can be seen from figures. 

Also, biologically, the effect of the glucose intake on 

blood insulin concentration, blood glucose 

concentration and glucose in the intestine can be seen 

from figures. This study shows the effectiveness of the 

NSFD scheme in many aspects like stability, positivity, 

preservation of critical points and convenience.   
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