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Abstract − This paper aims to discuss the theory of evolutes of null Cartan curves
in Minkowski 4-space. In the second part, we present the basic concepts of curves
in Minkowski 4-space with its Frenet equations. In the next section, the definition
of evolutes of null Cartan curves in Minkowski 4-space is given, and we derive some
theorems related to casual characters of those evolute curves. The last part provides
an example for the theorems in the preceding section.
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1. Introduction

Applications of geometry in many aspects of human life have motivated many mathematicians to find
and develop many new theories of local and general properties of curves and surfaces in geometry.
Many theories in classical differential geometry are extended to non-classical differential geometry, such
as Lorentzian manifold. It started at the beginning of the twentieth century, when Einstein’s theory
opened a door for the use of new geometries. One of the theories in classical differential geometry
which can be extended to Lorentzian space is the theory of involute-evolute of curves. The concept
of involute and evolute of curves in Riemannian manifold was firstly introduced by Huygens in 1973
when he tried to create an accurate clock called isochronous pendulum clock [1]. There are many
books and research articles providing explanations about the involute and evolute of curves both in
Riemannian space and semi-Riemannian space [2–10].

In Lorentz-Minkowski space, a curve can locally be time-like, space-like or null depending on the
casual character of the tangent vector of the curves. For non-null curves (time-like, space-like) it can
easily analogue with the curve in Euclidean space. However, geometry of null curves is different from
that of non-null curves since the arc length vanishes, so that it is not possible to normalize the tangent
vector in the usual way. The theory of null curves in Minkowski space has been studied by many
mathematicians such as Ferrandez, Gimenez and Lucas [11], Inoguchi and Lee [12], and Qian and
Kim [13]. Application of null curves has been studied by Duggal [14] and Mohajan [15].

In this study, we will discuss the theory of evolute curves of null Cartan curves in Minkowski
4-space. In the second part, we focus on the basic concepts of curves in Minkowski 4-space with its
Frenet equations. In the next section, we introduce and give the general formula of evolute curves of
null Cartan curves in Minkowski 4-space. We also provide some theorems and corollaries related to
the casual characteristics of the evolute curves which are derived from the null Cartan curves. In the
last part, an example is given as an application of the theorems in the previous section.
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2. Preliminary

Minkowski space E4
1 is the real vector space R4 equipped with the standard indefinite metric 〈, 〉 defined

as
〈x, y〉 = −x1y1 + x2y2 + x3y3 + x4y4 (1)

for any vectors x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4). In Minkowski space, any vector v 6= 0 is
said to be time-like if 〈v, v〉 < 0, space-like if 〈v, v〉 > 0 or v = 0 and null if 〈v, v〉 = 0 and v 6= 0. The
norm of a vector in E3

1 is defined by ‖v‖ =
√
|〈v, v〉|.

Let α : I → E3
1 be a curve in Minkowski space. Locally, α can be time-like, space-like or null if

its tangent vector is time-like, space-like or null, respectively. For non-null curves, the arc length s is
defined by s =

∫ t
0

√
|〈α′, α′〉|dt. If 〈α′, α′〉 = 1 the non-null curve is called the curve parametrized by

the arc length. For null curves, since 〈α′, α′〉 = 0, the pseudo-arc length is defined by s =
∫ t
0 〈α

′′, α′′〉
1
4dt,

and if 〈α′′, α′′〉 = 1, then the null curve is parametrized by pseudo-arc length.
Let {T (s), N(s), B1(s), B2(s)} be the Frenet frame along the curve α(s) in E4

1. T,N,B1 and B2

are the tangent, principal normal, first binormal and second binormal vector fields, respectively. If α
is a pseudo-null unit speed curve i.e., a space-like curve with light-like principal normal vector field
parametrized by arc length s in E4

1, the Frenet equations of α are given by

T ′ = κN, N ′ = τB1, B′1 = σN − τB2, B′2 = −κT − σB1 (2)

where κ and σ denote the curvature and bitorsion of α, respectively. T,N,B1 and B2 are mutually
orthogonal vectors satisfying equations

〈T, T 〉 = 〈B1, B1〉 = 1, 〈N,N〉 = 〈B2, B2〉 = 0, 〈N,B2〉 = 1,

〈T,N〉 = 〈T,B1〉 = 〈T,B2〉 = 〈N,B1〉 = 〈B1, B2〉 = 0
(3)

The curvature κ in (2) has value 0 when α is a straight line and 1 in all other cases [16].
Let γ : I → (s) be an arbitrary null Cartan curve in E4

1. Then, there exists a unique Cartan frame
{T,N,B1, B2} given by

T =
γ′

ϕ
, N =

(
1

ϕ

)′
γ′ +

1

ϕ
γ′′, B1 = − 1

ϕ
γ′′′ − 〈γ

′′′, γ′′′〉
2ϕ3

γ′, B2 =
1

ϕ3
(γ′ × γ′′ × γ′′′) (4)

for any given ϕ =
√
〈ϕ′′, ϕ′′〉 > 0. The Frenet equations of the null curve γ is given by

T ′ = N, N ′ = −k1T −B1, B′ = −k1N + k2B2, B′2 = −k2T (5)

where

k1 =
1

2ϕ2
(〈γ′′′, γ′′′〉+ 2ϕϕ′′ − 4(ϕ′)2), k2 = − 1

ϕ4
det
(
γ′, γ′′, γ′′′, γ4

)
(6)

Here, k1 and k2 are called the first and the second null curvatures of γ. The Cartan Frame {T,N,B1, B2}
satisfies the equations

〈T, T 〉 = 〈B1, B2〉 = 0, 〈T,N〉 = 〈N,N〉 = 〈B2, B2〉 = 1,

〈T,N〉 = 〈T,B2〉 = 〈B1, N〉 = 〈B1, B2〉 = 〈B2, N〉 = 0,
(7)

and
N × T ×B1 = B2, N ×B2 × T = T, N ×B1 ×B2 = B1, T ×B2 ×B1 = N (8)

(see [17]).
A null curve lies on pseudo-sphere in E4

1 with radius r if and only if k2 = ±1
r [18]. In addition, a

null curve which has non-zero constant k1 and k2 in E4
1 are called null helices [14]. Furthermore, a null

Cartan curve in E4
1 is a Bertrand null curve if and only if k1 is non-zero constant and k2 is zero [19].

In Euclidean case, if β is an evolute of α, then for a given point P on β and the corresponding point
P ′ on α the principal normal line of β at P is parallel to the tangent line of α at P ′ [8].
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3. Evolutes of Null Cartan Curves

Definition 3.1. The curve γ∗(s) is the evolute of null Cartan curve γ(s) if and only if for all s ∈ I ⊆ R,
the the tangent line of γ∗(s) intersects γ(s) orthogonally.

Let γ(s) be a null Cartan curve parametrized by pseudo-arc length s and γ∗ be its evolute curves.
If x∗ be the point of contact on the evolute to the tangent line which intersects γ at x(s), then x∗− x
lies on the tangent line of γ∗ and perpendicular to the tangent vector of γ. Since γ is a null Cartan
curve, x∗ − x can be represented as linear combination of the principal normal vector N(s) and the
second binormal vector B2(s) of curve γ(s). Therefore, it can be written as

x∗ = x(s) + p(s)(s)N(s) + q(s)B2(s) (9)

Next, we will find the function p(s) and q(s) by considering the causal characters of the curves.

Theorem 3.2. Let γ∗(s) be the evolute of a null Cartan curve γ(s) parametrized by pseudo-arc length
s. Then,

γ∗(s) = γ(s) +
1

k2
B2(s) (10)

Proof. If we take the derivative of equation (9), we have

(γ∗)′ =T + p′N + p(−k1T −B1) + q′B2 + q(−k2T )

=(1− pk1 − qk2)T + p′N − pB1 + q′B2
(11)

Since (γ∗)′(s) is the tangent of γ∗(s), which is perpendicular to the tangent vector T of γ, γ∗(s) is
proportional to γ∗(s)− γ(s) = pN + qB2. Therefore, we get

1− pk1 − qk2 = 0 p′ = λp, p = 0, q′ = λq (12)

for some smooth real function λ in E4
1. Consequently, From Equation (12) we have

p = 0, q =
1

k2
(13)

Substituting these value into Equation (9) obtains Equation (10).

Theorem 3.3. Let γ∗(s) be the evolute of a null Cartan curve γ(s) parametrized by pseudo-arc length
s. Then, the distance between γ∗(s) and γ(s) is 1

k2
.

Proof. From equation (10), we have

γ∗(s)− γ(s) =
1

k2
B2(s) (14)

Therefore,

‖γ∗(s)− γ(s)‖ =

√〈
1

k2
B2(s),

1

k2
B2(s)

〉
=

1

k2

Theorem 3.4. Let γ∗(s) be the evolute of a null Cartan curve γ(s) parametrized by pseudo-arc length
s. Then, γ∗(s) is a space-like curve.

Proof. From Equations (11) and (13) we have

(γ∗(s))′ = −k
′
2

k22
B2 (15)

Therefore,

〈(γ∗(s))′, (γ∗(s))′〉 =

〈
−k
′
2

k22
B2,−

k′2
k22
B2

〉
=

(
k′2
k22

)2

> 0

Thus, the proof is completed



Journal of New Theory 34 (2021) 37-44 / On Evolutes of Null Cartan Curves in Minkowski 4-Space 40

Theorem 3.5. Let γ∗(s) be the evolute of a null Cartan curve γ(s) parametrized by pseudo-arc length
s and {T ∗, N∗, B∗1 , B∗2} be the Frenet frame of γ∗(s). If {T,N,B1, B2} and k2 are the Frenet frame
and the non-constant second null curvature of γ(s), then

T ∗ = −B2, N∗ =
k32
k′2
T, B∗1 =

3(k′2)
2 − k2k′′2
k2k′2

T +N, B∗2 =
k′2
k32
B1 (16)

Proof. Let s∗ be the arc length parameter of γ∗. Therefore, by Equation (15) we have

dγ∗

ds∗
· ds

∗

ds
= −k

′
2

k22
B2 =⇒ T ∗

ds∗

ds
= −k

′
2

k22
B2

Taking the norm of the Equation above yields ds∗

ds = ±k′2
k22

. As a result we get

T ∗ = −B2 (17)

Differentiating (17) towards parameter s yields

dT ∗

ds∗
ds∗

ds
= k2T =⇒ κN∗ =

k32
k′2
T (18)

From (18) we find that N∗ is a null principal normal vector field since T is a null vector. Therefore,
γ∗ is a pseudo-null curve in E4

1. Take κ = 1 by assuming that γ∗ is a non-straight line.
Taking the derivative of N∗ towards s∗ yields,

dN

ds∗
=
dN∗

ds

ds

ds∗
=

(
3k22(k′2)

2 − k32k′′2
(k′2)

2
T +

k32
k′2
N

)
k22
k′2

=
3k42(k′2)

2 − k52k′′2
(k′2)

3
T +

k52
(k′2)

2
N

As a consequence, we have

‖dN
ds∗
‖ =

k52
(k′2)

2
(19)

Using Equation (2) we find

B∗1 =
dN
ds∗

‖ dNds∗ ‖
=

3(k′2)
2 − k2k′′2
k2k′2

T +N (20)

and

B∗2 =
k′2
k32
B1 (21)

satisfying Equation (3).

Theorem 3.5 results in the following corollary.

Corollary 3.6. Let γ∗(s) be the evolute of a null Cartan curve γ(s) parametrized by pseudo-arc
length s. Then, γ∗(s) is a pseudo-null curve i.e., a space-like curve with light-like principal normal
vector field.

Theorem 3.7. Let γ∗(s) be the evolute of a null Cartan curve γ(s) parametrized by pseudo-arc length
s. If γ∗ is a non-straight line, then the curvature, torsion and bitorsion of γ∗ are given by

κ = 1, τ =
k52

(k′2)
2
, σ = − 1

k2

(
3(k′2)

2 − k2k′′2
k2k′2

)2

− k1 (22)

Proof. Since γ∗(s) is a pseudo-null in E4
1 and a non-straight line, from Equations (2) and (19), we

have

κ = 1, τ = ‖dN
∗

ds∗
‖ =

k52
(k′2)

2
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Differentiating Equation (21) towards parameter s∗, we have

dB∗2
ds∗

=
dB∗2
ds

ds

ds∗
=

(
k32k
′′
2 − 3k22(k′2)

2

k62
B1 +

k′2
k22

(−k1N + k2B2)

)
k22
k′2

= −k1N +
k2k
′′
2 − 3(k′2)

2

k22k
′
2

B1 +k2B2

Therefore, using (2), we find

σ =−
〈
B∗1 ,

B∗2
ds∗

〉
=

〈
3(k′2)

2 − k2k′′2
k2k′2

T +N,−k1N +
k2k
′′
2 − 3(k′2)

2

k22k
′
2

B1 + k2B2

〉
=− 1

k2

(
3(k′2)

2 − k2k′′2
k2k′2

)2

− k1

Theorem 3.7 results in some corollaries as follow:

Corollary 3.8. If γ(s) lies on pseudo-sphere in E4
1 with radius r, γ(s) has no evolute curve.

Corollary 3.9. Let γ(s) be a planar null Cartan curve. Then, there is no evolute of γ(s).

Corollary 3.10. If γ(s) is a Bertrand null curve, γ(s) has no evolute curve.

The proof of corollaries 3.8, 3.9, and 3.10 is clear since k2 is a constant, which implies the tangent
vectors of γ∗ vanish everywhere.

4. Example

In this section, an example of the evolute of the null Cartan curves is provided as an application of
the theorems in the previous section.

Example 4.1. Let γ : I → E3
1 be a null Cartan curve parametrized by pseudo-arc length s and given

as

γ(s) =

(
1√
56

(
s2+

3
√
6

2

2 + 3
√
6

2

+
s2−

3
√
6

2

2− 3
√
6

2

)
,

1√
56

(
s2+

3
√
6

2

2 + 3
√
6

2

− s2−
3
√
6

2

2− 3
√
6

2

)
,

2s2

9
√

14

(
2 cos

(√
2

2
ln s

)
+

√
2

2
sin

(√
2

2
ln s

))
,

2s2

9
√

14

(
2 sin

(√
2

2
ln s

)
−
√

2

2
cos

(√
2

2
ln s

)))

By direct calculation using (4), we find

T =

(√
14

28

(
s2+

3
√
6

2

s
+
s2−

3
√
6

2

s

)
,

√
14

28

(
s2+

3
√
6

2

s
− s2−

3
√
6

2

s

)
,
s
√

14

14
cos

(√
2

2
ln s

)
,
s
√

14

14
sin

(√
2

2
ln s

))
,

N =

(√
14

56

(
(2 + 3

√
6)s2+

3
√
6

2

2s2
+

(2− 3
√

6)s2−
3
√
6

2

2s2

)
,

√
14

56

(
(2 + 3

√
6)s2+

3
√
6

2

2s2
− (2− 3

√
6)s2−

3
√
6

2

2s2

)
,

−
√

14

28

(
√

2 sin

(√
2

2
ln s

)
− 2 cos

(√
2

2
ln s

))
,

√
14

28

(
√

2 cos

(√
2

2
ln s

)
+ 2 sin

(√
2

2
ln s

)))
,
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B1 =

(
−3
√

14

56s3

(
(5 +

√
6)s2+

3
√
6

2 + (5−
√

6)s2−
3
√
6

2

)
,−3
√

14

56s3

(
(5 +

√
6)s2+

3
√
6

2 − (5−
√

6)s2−
3
√
6

2

)
√

7

28s

(
13
√

2 cos

(√
2

2
ln s

)
+ 2 sin

(√
2

2
ln s

))
,

√
7

28s

(
13
√

2 sin

(√
2

2
ln s

)
− 2 cos

(√
2

2
ln s

)))
,

B2 =

(
−
√

7

28s2

(
−s2+

3
√
6

2 − s2−
3
√
6

2

)
,−
√

7

28s2

(
−s2+

3
√
6

2 + s2−
3
√
6

2

)
,−3
√

21

14
sin

(√
2

2
ln s

)
,

3
√

21

14
cos

(√
2

2
ln s

))
By using (6), we find

k1 = − 6

s2
, k2 = −3

√
3

2s2

Substituting k2 and B2 into (9), we find the evolute curve of γ as

γ∗(s) =

(√
14

28

(
s2+

3
√
6

2

2 + 3
√
6

2

+
s2−

3
√

6
2

2− 3
√
6

2

)
+

√
21

126

(
s2+

3
√
6

2 − s2−
3
√
6

2

)
,

√
14

28

(
s2+

3
√
6

2

2 + 3
√
6

2

− s2−
3
√
6

2

2− 3
√
6

2

)

+

√
21

126

(
s2+

3
√
6

2 + s2−
3
√
6

2

)
,
s2
√

14

63

(
2 cos

(√
2

2
ln s

)
+

√
2

2
sin

(√
2

2
ln s

))

+
s2
√

7

7
sin

(√
2

2
ln s

)
,
s2
√

14

63

(
2 sin

(√
2

2
ln s

)
−
√

2

2
cos

(√
2

2
ln s

))

−s
2
√

7

7
cos

(√
2

2
ln s

))
By using Equation (16), we get the Frenet frame of γ∗(s) as follows:

T ∗ =

√7

28

(
s2+

3
√

6
2 − s2−

3
√
6

2

s2

)
,

√
7

28

(
s2+

3
√
6

2 + s2−
3
√
6

2

s2

)
,
3
√

21 sin
(√

2
2 ln s

)
14

,−
3
√

21 cos
(√

2
2 ln s

)
14

 ,

N∗ =

s√14

112

(
s2+

3
√
6

2 + s2−
3
√
6

2

)
,
s
√

14

112

(
s2+

3
√
6

2 − s2−
3
√
6

2

)
,
s3
√

14 cos
(√

2
2 ln s

)
56

,
s3
√

14 sin
(√

2
2 ln s

)
56

 ,

B∗1 =

(
−
√

14

168

(
(3
√

6− 4)s2+
3
√
6

2

s2
− (3
√

6 + 4)s2−
3
√
6

2

s2

)
,

√
14

56

(
(3
√

6− 4)s2+
3
√

6
2

s2
+

(3
√

6 + 4)s2−
3
√
6

2

s2

)
,

−
√

7

14

(
2
√

2 cos

(√
2

2
ln s

)
+ sin

(√
2

2
ln s

))
,

√
7

14

(
−2
√

2 sin

(√
2

2
ln s

)
+ cos

(√
2

2
ln s

)))
,

B∗2 =

(√
14

63

(
(5 +

√
6)s2+

3
√
6

2 + (5−
√

6)s2−
3
√
6

2

)
,−
√

14

63

(
(5 +

√
6)s2+

3
√
6

2 − (5−
√

6)s2−
3
√
6

2

)
−2s2

√
7

189

(
13
√

2 cos

(√
2

2
ln s

)
+ 2 sin

(√
2

2
ln s

))
,

−2s2
√

7

189

(
13
√

2 sin

(√
2

2
ln s

)
− 2 cos

(√
2

2
ln s

)))
,
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Finally, by using Equation (20), we get

κ = 1, τ = −81
√

3

32s4
, σ = 2

√
3 +

3

s2

5. Conclusion

Based on the definitions, theorems, and an example in the previous section, we find that the evolute
of the null Cartan curve in Minkowski 4-space is a pseudo-null curve - i.e., a space-like curve with
light-like principal normal vector field. Furthermore, there is no evolute of null Cartan helices, null
Bertrand curves, and null curves lying on the pseudo-sphere in E4
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