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Abstract: In this paper, matrix diffusion equations with boundary conditions and jump conditions on

[0, π] / {a} are considered. Under these conditions, the asymptotic of the eigenvalues of the matrix diffusion

operator is obtained, while the Rouche theorem and the Gaussian elimination method are used.
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1. Introduction

In this paper, we purpose the diffusion equation

−Y ′′ +R (x)Y = λ2Y x ∈ [0, π] / {a} (1)

with the boundary conditions

Y ′ (0) = θ , Y (π) = θ (2)

and the jump condition

Y (a + 0) = αY (a − 0) , Y ′ (a + 0) = α−1Y ′ (a − 0) (3)

where Y = (y1, y2, ...ym)T is an m-dimensional vector function, λ is the spectral parameter,

I is the m × m unit matrix. Moreover α > 0 , α ≠ 1 and a ∈ (0, π) . The potential matrix

functions P (x) = [pij]i,j=1,m , Q (x) = [qij]i,j=1,m and R (x) = [rij]i,j=1,m = [2λpij + qij]i,j=1,m are

m ×m matrices with entires P (x) ∈ W 1
1 [0, π] , Q (x) ∈ W 0

1 [0, π] . K is an orthogonal projector,

K ∈ Cm×m , K� = Im −K . L = L† ∈ Cm×m , L = KLK . The space Cm is the m-vectors space.

The space Cm×m is the space of m ×m matrices. IfA = [ajk] , A† = [akj] , namely, the symbol †

denotes as the conjugate transpose.

We consider on spectral theory of matrix diffusion equation of the form
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−Y ′′ + (2λP (x) +Q (x))Y = λ2Y

where P (x) = [pij]i,j=1,m , Q (x) = [qij]i,j=1,m and R (x) = [rij]i,j=1,m = [2λpij + qij]i,j=1,m are

m ×m matrix function. Differential operators are defined as singular and regular. Titchmarsh

studied spectral theory of second order singular differential operators in [1]. In 1984, the studies

on the spectral theory of singular differential operators were conducted by [3], differential operators

whose coefficients depend on spectral parameters; used in applications of mathematics, physics and

engineering. The fundamental studies on the spectral theory of the Sturm-Liouville equations were

performed in [1–11]. In particular, on the spectral theory for matrix Sturm-Liouville operators is

used in the major part of the literature. Generally, Drichlet or Robin boundary conditions have

been considered, since they are the simplest ones. In [11], they proved that uniqueness theorems

for inverse problems of scalar quadratic pencil of the Sturm-Liouville operators. In [5], Shen and

Shieh studied the multiplicity of eigenvalues of the m-dimensional vectorial SL problem

−y′′ +Q (x) y = λy , y (0) = y (1) = θ

where Q is continuous m ×m Jacobi matrix-valued function defined on 0 ≤ x ≤ 1.

In [4, 5], asymptotic formulas have been obtained for the eigenvalues of the Matrix Sturm-

Liouville operators. In [3, 6, 11], inverse spectral problems have been obtained using the eigenval-
ues.

Matrix Sturm-Liouville operators are used frequently in many fields of engineering or physics.

For example, heat conduction and reaction-diffusion systems. In [6], such operators are used

in elastic theory. In [7, 8], authors studied for electromagnetic waves and nuclear structure.

However, many physical systems that describe important problems change their states abruptly,

have discontinuous orbits. These operators are similarly used in metric and quantum graphs [9, 10].

In this study, matrix diffusion equations with boundary conditions and jump conditions on

[0, π] are considered. Under these conditions, the asymptotic of the eigenvalues of the matrix

diffusion operator is obtained, while the Rouche theorem and the Gaussian elimination method

are used.

2. Main Results

We will examine the eigenfunctions corresponding to the Y (x) solutions of the L problem. Let us

give the following expressions in order to obtain the asymptotic of eigenvalues. We suppose that

if

K = ( Ik 0
0 0

) , K� = ( 0 0
0 Im−k

) (4)

then k = rank (K) (1 ≤ k ≤m − 1) can be defined. Thus, rank (K�) =m − k .
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Here let’s define the transformation D = (D†)−1 as follows:

K̃ =D†KD, K̃� =D†K�D, R̃ (x) =D†R (x)D, Ỹ (x) =D†Y (x)D. (5)

Denote

ω = 1

2
∫

π

0
R (x)dx = ( ω11 ω12

ω21 ω22
)

where ω11 ∈ Ck×k , ω22 ∈ C(m−k)×(m−k) . Obviously, this matrix is Hermitian: ω11 = ω†
11 , ω22 = ω†

22 .

Let φ (x,λ) and ψ (x,λ) be the solutions of equation (1)that satisfy the boundary condition

(2) and jump condition (3) and conditions φ (0, λ) = 0, φ′ (0, λ) = Im, ψ (0, λ) = Im, ψ′ (0, λ) =

0.

If x ∈ (0, a) ,

φ (x,λ) = cosλxIm +
1

λ
∫

x

0
sinλ (x − t)R (t)φ (t, λ)dt,

if x ∈ (a, π) ,

φ (x,λ) = α+eiλxIm + α−eiλ(2a−x)Im
+α+ ∫

a
0

sinλ(x−t)
λ

R (t)φ (t, λ)dt + α− ∫
a
0

sinλ(x+t−2a)
λ

R (t)φ (t, λ)dt
+ ∫

x
0

sinλ(x−t)
λ

R (t)φ (t, λ)dt

where α± (x) = 1
2
(α ± 1

α
) .

Definition 2.1 ∆ (λ) will be called the characteristic function of the eigenvalues of the problem

(1) − (3) .

Eigenvalues for (1)− (3) are real. The boundary value problem (1)− (3) has a countable number

of eigenvalues that grow unlimitedly, when that are ordered according to their absolute value. The

zeros of the characteristic function ∆ (λ) are also the eigenvalues of the (1) − (3) problem (see

[11]). Since the functions φ (x,λ) and ψ (x,λ) and their first order derivatives are complete, the

function ∆ (λ) is complete. Because, ∆ (λ) = W (φ (x,λ) , ψ (x,λ)) is the Wronskian of solution

matrices φ (x,λ) and ψ (x,λ) .

We aim to reach the asymptotic expressions of the eigenvalues with the help of the following

representations of the functions φ (x,λ) and ψ (x,λ) .

φ (x,λ) = cos (λx) Im +O (∣λ∣−1 e∣τ ∣x)
φ (x,λ) = α+ cos (λx − β+ (x)) Im + α− cos (λ (2a − x) − β− (x)) Im +O (∣λ∣−1 e∣τ ∣x)

⎫⎪⎪⎬⎪⎪⎭
(6)

where τ ∶ Imλ , ∫
∞
−∞O (∣λ∣

−1
e∣τ ∣x)dλ <∞ for ∀λ . This representations are obtained as in [2] .

We know that due to the Euclidean norm, if s is the eigenvalue of A†A , then ∥A∥ =
√
s .
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Theorem 2.2 The problem (1) − (3) has a countable number of eigenvalues {λrs}s=1,m (r ∈ N) ,

that grow unlimitedly, which λr(i+1),s(i+1) ≥ λri,si ; where (r(i+1), s(i+1)) > (ri, si) . Moreover,

eigenvalues can also be shown asymptotically as the following:

λrs = (r +
1

π
) + zs

π (r − 1/2)
+ ςrs
r
, s = 1, p, (7)

λrs = r +
zs
πr
+ ςrs
r
, s = p + 1,m (8)

where (ω11 −D) and ω22 are Hermitian matrices, (zs) in equations (7) and (8) are their

eigenvalues, respectively, (ςnk) ∈ l2 .

In the scalar case, applying the Rouche theorem, we came to the conclusion that there is a

sufficiently large n in counter {λ ∶ ∣λ∣ = ∣λ0n∣ + 1
2α
, n = 0, 1, ...} , the characteristic function has

number of zeros counting their multiplicities. Thus, det (K) , det (K +L) scalar cases are also

evaluated in the same way the matrix functions K and L .

Lemma 2.3 The problem (1)−(3) has a countable number of eigenvalues {λrs}s=1,m (r ∈ N) , that

grow unlimitedly, and eigenvalues have asymptotically as the following:

λrs = r − 1
π
+ ηrs , s = 1, p

λrs = r + ηrs , s = p + 1,m
(9)

where ηrs = O (r−1) , r →∞ .

Proof Under initial conditions the function ∆ (λ) = W (φ (x,λ) , ψ (x,λ)) can be expressed

as W (φ (π,λ)) . Using (6) for the eigenvalues of the problem (1) − (3) as well as the zeros of

W (φ (π,λ))

W (φ,ψ)∣x=π =W (λ) =
K (α+ cos (λπ − β+ (π))O ( e

∣τ ∣π

λ
))

−K� (α− 1
λ
sin (λ (2a − π) − β− (π))O ( e

∣τ ∣π

λ2 )) , ∣λ∣→∞.
(10)

Let K (α+ cos (λπ − β+ (π))) −K� (α− 1
λ
sin (λ (2a − π) − β− (π))) =X (λ) .

In this case, the roots of det (X (λ)) can be written as

λ0rs = r −
1

π
, s = 1, ..., p λ0rs = r, s = p + 1, ...,m. (11)

Denote Γδ = {λ ∶ ∣λ − λ0∣ ≥ δ, δ > 0} where δ is sufficiently small number as in [3].
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∣α+ cos (λπ − β+ (π))∣ ≥ ce(∣τ ∣π), ∣α− 1
λ
sin (λ (2a − π) − β− (π))∣ ≥ ce(∣τ ∣π), λ ∈ Γδ,

X−1 (λ) (W (λ) −X (λ)) =
K (α+ cos (λπ − β+ (π)))−1O ( e

∣τ ∣π

λ
)

+K� (α− 1
λ
sin (λ (2a − π) − β− (π)))−1O ( e

∣τ ∣π

λ2 ) = O ( 1λ).

Thus, we get ∥X−1 (λ) (W (λ) −X (λ))∥ < 1.

Applying Rouche’s theorem we conclude that for sufficiently large δ inside the contour Γδ the

functions det (X (λ)) and det (W (λ)) have the same number of zeros counting their multiplicities.

Thus, ηrs = o (1) as r →∞ and ηrs = O (r−1) as r →∞ for s = 1,m.

For s = 1, p , λrs = λ and using the expression (10) ;

W (λ) =W (λrs) =
K (α+ cos (λπ − β+ (π))O ( e

∣τ ∣π

λ
))

−K� (α− 1
λ
sin (λ (2a − π) − β− (π))O ( e

∣τ ∣π

λ2 ))
= (−1)n (K� ( cosηrsπ

λ
) +K (sinηrsπ +O (r−1))) , r ∈ N.

As a result, (−1)
rm

nm−p Srs (sinηrsπ) = det (W (λnk)) = 0, der (Srs) = p .

◻

Proof [Proof of Theorem 2.2] We will use Lemma 2.3 to prove the Theorem 2.2. Let’s give the

proof of the (8) asymptotic expression. Let’s examine the zeros of the W (λ) function by writing

(7) more clearly.

Let’s define the k -plane, such that r + k
πr
∶= λr (k) is provided on the circle ∣k∣ ≤ n for n > 0.

Let

∞
∑
r=1
∥Pr (k)∥2 ≤ T, ∣k∣ ≤ n

where the sequence (Pr (k))n∈N of matrix functions depend on T but does not depends on k .

Thus,

sin (λr (k)π) = (−1)
rk

r
(1 +O (r−2)) ,

cos (λr (k)π) = (−1)r (1 +O ((r−2))) , r →∞.
(12)

We obtain the following asymptotic expression using (6) and (12) .

W (λ2r (k)) = (−1)
r (K (Im +

Pr (k)
r
) −K� (kIm − ω

r2
+ Pr (k)

r2
)) . (13)

Using equation (13)

Hr (k) ∶= (−1)r (K + r2K�)W (λ2r (k)) (14)
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can be written. Clearly,

Hr (k) =K (Im +
Hr (k)
r
) −K� (kIm − ω +Hr (k)) . (15)

Let’s write the form below from equation (15) .

H (k) ∶=K −K� (kIm − ω) . (16)

If we write the H (k) expression in matrix form we obtain

H (k) = ( Ip 0
ω21 − (kIm−p − ω22)

) . (17)

Hence, detH (z) = (−1)m−p det (kIm−p − ω22) .

Real {ks}ms=p+1 are eigenvalues of matrix ω22 = ω†
22 and also zeros of detH (z) .

Define the region

Gδ ∶= {z ∈ C ∶ ∣k∣ ≤ r, ∣k − ks∣ ≥ δ, s = p + 1, ...,m} , δ > 0 and ∣ks − kl∣ < δ for all l ≠ k , where δ > 0 is

so small that ∣zk − zl∣ < δ for l ≠ k, l, k = p + 1, ...,m .

Using equation (17)

H−1 (k) = ( Ip 0

(kIm−p − ω22)−1 ω21 − (kIm−p − ω22)−1
) (18)

can be written. As a result, ∥H−1 (k)∥ ≤ T for k ∈ Gδ . Equations (15) and (16) imply

Hr (k) −H (k) = Pr (k) , r ∈ N. Thus, ∥Hr (k)∥ ⋅ ∥Hr (k) −H (k)∥ < 1 for k ∈ Gδ .

The {ks}ms=p+1 , which are the zeros of the function det (H (k)) , are (m − p) and have the following

asymptotic expression:

krs = ks + υrs, υrs = o (1) , r →∞, s = p + 1, ...,m. (19)

Let D = (D†)−1 ∈ C(m−p)x(m−p) and D̃ ∈ Cmxm , such that

Dω22D
† =D ∶= diag {ks}ms=p+1 , D̃ ∶= ( Ip 0

0 D
) . (20)

Using (15) we obtain

D̃Hr (k) D̃† = ( Ip 0
Dω21 − (zIm−p −D)

) +Kr (k) .

Thus,

Jr (k) = (
Ip 0
0 − (kIm−p −D)

) +Kr (k) , s ∈ {p + 1, ...,m} . (21)
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We get Jr (k) by Gaussian method. Obviously, the zeros of the det (H (k)) function are multi-

plicity. Let this multiplicity be mk where mk = {t ∶ kt = ks, p + 1 ≤ t ≤m} . Using (19)and (21) ,

det (Jr (krs)) = Rrs (ϑrs) , where der (Rrs) = mk . In that case, the zeros of det (Jr (k)) and

W (λ2r (k)) are equal. We proved the equation (8) .

Similarly to obtain the equation (7) , the proof is made by taking for λr (k) λ̃r (k) ∶= r− 1
2
+ k

π(r−1/2)

and

H̃r (k) ∶= (−1)r (r −
1

2
)W (λ2r (k)) =K (kIm − ω + Pr (k)) + T � (Im +

Pr (k)
r
)

for Hr (k) . ◻
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