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 Abstract  

For any two regular summability methods (𝑈) and (𝑉), the condition under which 𝑉 −
lim𝑥𝑛 = 𝜆 implies 𝑈 − lim𝑥𝑛 = 𝜆 is called a Tauberian condition and the corresponding 

theorem is called a Tauberian theorem. Usually in the theory of summability, the case in which 

the method 𝑈 is equivalent to the ordinary convergence is taken into consideration. In this 

paper, we give new Tauberian conditions under which ordinary convergence or Cesàro 

summability of a sequence follows from its Euler summability by means of the product 

theorem of Knopp for the Euler and Cesàro summability methods. 
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1. Introduction  

We consider throughout complex sequences 𝑥 = {𝑥𝑛} 

and discuss the relations of Euler and Cesàro 

summability methods. We say that a sequence {𝑥𝑛} is 

summable to 𝜆 by the 

1.  Cesàro method 𝐶1, briefly 𝐶1 − lim𝑥𝑛 = 𝜆, if  

𝑥𝑛
(1)

: =
1

𝑛 + 1
∑

𝑛

𝑘=0

𝑥𝑘 → 𝜆    as  𝑛 → ∞; 

2.  Euler method 𝐸𝑝 of order 𝑝, briefly 𝐸𝑝 − lim𝑥𝑛 =

𝜆, if  

∑

𝑛

𝑘=0

(
𝑛
𝑘

) 𝑝𝑘(1 − 𝑝)𝑛−𝑘𝑥𝑘 → 𝜆    as  𝑛 → ∞. 

Cesàro method and Euler method of order 𝑝 ∈ (0,1) 

are regular (see [1]). In other words, they sum a 

convergent sequence to its limit. 

For any sequence {𝑢𝑛}, the symbols 𝑢𝑛 = 𝑂(𝑛𝛼) and 

𝑢𝑛 = 𝑜(𝑛𝛼) denote, as usual, that limsup|𝑛−𝛼𝑢𝑛| <
∞ and lim𝑛−𝛼𝑢𝑛 = 0, respectively. The backward 

difference of {𝑢𝑛} is defined for all 𝑛 ≥ 0 by Δ𝑢0 =
𝑢0 and Δ𝑢𝑛 = 𝑢𝑛 − 𝑢𝑛−1. 

The difference of a sequence and its arithmetic mean is 

given with the Kronecker identity (see [2]) 

𝑥𝑛 − 𝑥𝑛
(1)

= 𝛿𝑛                                                         (1) 

where  

𝛿𝑛: =
1

𝑛 + 1
∑

𝑛

𝑘=0

𝑘Δ𝑥𝑘 = 𝑛Δ𝑥𝑛
(1)

. 

The 𝑟 −times iterated arithmetic mean of sequences 

{𝑥𝑛} and {𝛿𝑛} are defined respectively as  

𝑥𝑛
(𝑟)

: =
1

𝑛 + 1
∑

𝑛

𝑘=0

𝑥𝑘
(𝑟−1)

 

and  

𝛿𝑛
(𝑟)

: =
1

𝑛 + 1
∑

𝑛

𝑘=0

𝛿𝑘
(𝑟−1)

 

where 𝑥𝑛
(0)

= 𝑥𝑛 and 𝛿𝑛
(0)

= 𝛿𝑛. 

A sequence {𝑥𝑛} is called slowly oscillating, if  

𝑥𝑚 − 𝑥𝑛 = 𝑜(1) 

as 𝑛 → ∞, 𝑚 > 𝑛 and 𝑚/𝑛 → 1. 
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Historically, the concept ‘slow oscillation’ goes back 

to Schmidt [3]. 

For any two regular summability methods (𝑈) and (𝑉), 

the condition under which 𝑉 − lim𝑥𝑛 = 𝜆 implies 𝑈 −
lim𝑥𝑛 = 𝜆 is called a Tauberian condition and the 

corresponding theorem is called a Tauberian theorem. 

Usually in the theory of summability, the case in which 

the method 𝑈 is equivalent to the ordinary convergence 

is taken into consideration. 

Tauberian theorems for various methods of summation 

have a long history; see the classical books [4,5] and 

they found new attention recently in (see e.g., [6-8]). 

In the present paper, we consider Tauberian conditions 

on {𝑥𝑛} under which 𝐸𝑝 − lim𝑥𝑛 = 𝜆 implies 𝐶1 −

lim𝑥𝑛 = 𝜆 or lim𝑥𝑛 = 𝜆. 

The major Tauberian results for Euler method of 

summation were proved by Knopp [9]. We use these 

theorems as a stepping stone to obtain stronger results. 

Theorem 1.1  If 𝐸𝑝 − lim𝑥𝑛 = 𝜆 for some 0 < 𝑝 < 1 

and 𝛥𝑥𝑛 = 𝑂(𝑛−1/2), then lim𝑥𝑛 = 𝜆.  

Theorem 1.2  If 𝐸𝑝 − lim𝑥𝑛 = 𝜆 for some 0 < 𝑝 < 1 

and 𝛥𝑥𝑛 = 𝑜(𝑛−1/2), then lim𝑥𝑛 = 𝜆.  

2. Auxilary Results 

We shall make use of the following four lemmas. 

Lemma 2.1 ([10]) If {𝑥𝑛} is slowly oscillating, then 

𝛿𝑛 = 𝑂(1) and {𝛿𝑛} is slowly oscillating.  

Lemma 2.2 ([3])  If 𝐶1 − lim𝑥𝑛 = 𝜆 and {𝑥𝑛} is slowly 

oscillating, then 𝑙𝑖𝑚𝑥𝑛 = 𝜆.  

Lemma 2.3 ([9]) Let 0 < 𝑝 < 1. Then 𝐸𝑝 ⊂ 𝐸𝑝𝐶1; 

that is, if {𝑥𝑛} is Euler summable to 𝜆, then so is {𝑥𝑛
(1)

}.  

The next lemma proposes a relation between Euler and 

Cesàro methods.  

Lemma 2.4 ([9]) If 𝐸𝑝 − lim𝑥𝑛 = 𝜆 for some 0 < 𝑝 <

1 and 𝛥𝑥𝑛 = 𝑜(1), then 𝐶1 − lim𝑥𝑛 = 𝜆.  

3.   Main Results 

In this section, we establish Tauberian conditions for 

an Euler summable sequence to be Cesàro summable 

or convergent. 

Our first result is a 𝐸𝑝 → 𝐶1 type theorem. 

Theorem 3.1  Let 0 < 𝑝 < 1. Then 𝐸𝑝 − lim𝑥𝑛 = 𝜆 

and  

𝛿𝑛 = 𝑂(𝑛1/2)                                                 (2) 

imply 𝐶1 − lim𝑥𝑛 = 𝜆.  

 Proof. By the assumption and Lemma 2.3, we have  

𝐸𝑝 − lim𝑥𝑛
(1)

= 𝜆.                                           (3) 

 Besides, since  

𝛿𝑛 = 𝑛Δ𝑥𝑛
(1)

= 𝑂(𝑛1/2) 

by (2), we obtain  

Δ𝑥𝑛
(1)

= 𝑂(𝑛−1/2).                                            (4) 

 Therefore, combining (3) and (4) together with 

Theorem 1.1 imply our result.  

Remark 3.1 Note that condition (2) may be replaced 

with the weaker condition 𝛿𝑛 = 𝑂(1).  

Corollary 3.1 ([9]) Let 0 < 𝑝 < 1. Then 𝐸𝑝 −

lim𝑥𝑛 = 𝜆 and  

𝑥𝑛 = 𝑂(𝑛1/2)                                                         (5) 

imply 𝐶1 − lim𝑥𝑛 = 𝜆.  

 Proof. It is enough to prove 𝛿𝑛 = 𝑛Δ𝑥𝑛
(1)

= 𝑂(𝑛1/2) 

or equivalently  

𝜓𝑛: = 𝑛1/2Δ𝑥𝑛
(1)

= 𝑂(1). 

 In view of (5), we observe  

𝜓𝑛 = 𝑛1/2[
1

𝑛 + 1
∑

𝑛

𝑘=0

𝑥𝑘 −
1

𝑛
∑

𝑛−1

𝑘=0

𝑥𝑘] 

        = 𝑛1/2[
1

𝑛 + 1
𝑥𝑛 −

1

𝑛 + 1

1

𝑛
∑

𝑛−1

𝑘=0

𝑥𝑘] 

         = 𝑛1/2[
1

𝑛 + 1
𝑂(𝑛1/2) −

1

𝑛 + 1
𝑂(𝑛1/2)] 

         = 𝑂(1), 

which completes the proof.  

Now, we prove some 𝐸𝑝 → 𝑐 type theorems. 

Theorem 3.2  Let 0 < 𝑝 < 1. Then 𝐸𝑝 − lim𝑥𝑛 = 𝜆 

and  

Δ𝛿𝑛 = 𝑂(𝑛−1/2)                                            (6) 

imply lim𝑥𝑛 = 𝜆.  

 Proof. Plainly, we have 𝐸𝑝 − lim𝑥𝑛
(1)

= 𝜆 from 

Lemma 2.3. We observe using (1) that  

𝐸𝑝 − lim𝛿𝑛 = 0.                                            (7) 

 Combining (6) and (7) with Theorem 1.1, we get  

𝛿𝑛 = 𝑛Δ𝑥𝑛
(1)

= 𝑜(1), 

that necessiates  
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Δ𝑥𝑛
(1)

= 𝑜(𝑛−1/2). 

 Further, applying Theorem 1.2 to {𝑥𝑛
(1)

}, we conclude  

lim𝑥𝑛
(1)

= 𝜆. 

 Therefore, the proof follows from (1).  

Theorem 3.3  Let 0 < 𝑝 < 1. Then 𝐸𝑝 − lim𝑥𝑛 = 𝜆 

and  

Δ𝛿𝑛
(1)

= 𝑜(𝑛−1)                                            (8) 

imply lim𝑥𝑛 = 𝜆.  

 Proof. From the hypothesis, it is clear that 𝐸𝑝 −

lim𝑥𝑛
(1)

= 𝜆 and 𝐸𝑝 − lim𝑥𝑛
(2)

= 𝜆. We may write the 

identity  

𝑥𝑛
(1)

− 𝑥𝑛
(2)

= 𝛿𝑛
(1)

                                            (9) 

by taking Cesàro mean of both sides of the Kronecker 

identity (1). Then, it follows from (9) that  

𝐸𝑝 − lim𝛿𝑛
(1)

= 0.                                          (10) 

 Taking (8) and (10) into account together with 

Theorem 1.2, we observe  

𝛿𝑛
(1)

= 𝑛Δ𝑥𝑛
(2)

= 𝑜(1),                                          (11) 

which also implies  

Δ𝑥𝑛
(2)

= 𝑜(𝑛−1/2). 

 Now, applying Theorem 1.2 to {𝑥𝑛
(2)

}, we conclude  

lim𝑥𝑛
(2)

= 𝜆.                                                      (12) 

 Using (11) and (12), we get via the identity (9) that  

lim𝑥𝑛
(1)

= 𝜆. 

 Since  

𝛿𝑛 − 𝛿𝑛
(1)

= 𝑛Δ𝛿𝑛
(1)

, 

we find 𝛿𝑛 = 𝑜(1) from (8) and (11). Consequently, it 

is easy to obtain lim𝑥𝑛 = 𝜆 by using (1).  

Corollary 3.2  Let 0 < 𝑝 < 1. Then 𝐸𝑝 − lim𝑥𝑛 = 𝜆 

and  

𝛿𝑛 = 𝑜(1)                                                       (13) 

imply lim𝑥𝑛 = 𝜆.  

Proof. Assuming (13), we have 𝛿𝑛
(1)

= 𝑜(1). Hence, 

by the identity 𝛿𝑛 − 𝛿𝑛
(1)

= 𝑛Δ𝛿𝑛
(1)

, it follows Δ𝛿𝑛
(1)

=
𝑜(𝑛−1). Thus, the proof follows from Theorem 3.3.  

Remark 3.2 In (8) and (13) 𝑜-type condition can not 

be replaced with 𝑂-type condition.  

The following theorem is first proved by Tam [11]. 

Here, we give an alternative proof. 

Theorem 3.4  Let 0 < 𝑝 < 1. If 𝐸𝑝 − lim𝑥𝑛 = 𝜆 and 

{𝑥𝑛} is slowly oscillating, then lim𝑥𝑛 = 𝜆.  

 Proof. Taking Lemma 2.1 and the slow oscillation of 

{𝑥𝑛} into account, we clearly have 𝛿𝑛 = 𝑂(𝑛1/2) and 

the slow oscillation of {𝑥𝑛
(1)

}. Hence, we obtain  

𝐶1 − lim𝑥𝑛 = 𝜆 

from Theorem 3.1. Thus, the proof is completed via 

Lemma 2.2.  

Corollary 3.3  Let 0 < 𝑝 < 1. Then 𝐸𝑝 − lim𝑥𝑛 = 𝜆 

and  

Δ𝑥𝑛 = 𝑂(𝑛−1)                                                       (14) 

imply lim𝑥𝑛 = 𝜆.  

Proof. The proof is completed from the fact that (14) 

implies the slow oscillation of {𝑥𝑛}.  

Theorem 3.5  Let 0 < 𝑝 < 1. If 𝐸𝑝 − lim𝑥𝑛 = 𝜆 and 

{𝛿𝑛} is slowly oscillating, then lim𝑥𝑛 = 𝜆.  

 Proof. By the definition of slow oscillation, obviously 

Δ𝛿𝑛 = 𝑜(1). Further, since 𝐸𝑝 − lim𝑥𝑛 = 𝜆 we have 

𝐸𝑝 − lim𝛿𝑛 = 0. Then, from Lemma 2.4, we find 𝐶1 −

lim𝛿𝑛 = 0. Now, by Lemma 2.2, we obtain lim𝛿𝑛 = 0 

which leads us to  

Δ𝑥𝑛
(1)

= 𝑜(𝑛−1/2). 

 By applying Theorem 1.2 to {𝑥𝑛
(1)

}, we have 𝐶1 −
lim𝑥𝑛 = 𝜆. Therefore, using (1) we conclude lim𝑥𝑛 =
𝜆.  
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