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ABSTRACT

We charecterize three-dimensional Riemannian manifolds endowed with a special type of vector
field if the Riemannian metrices are gradient Yamabe solitons and gradient Einstein solitons
respectively.
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1. Introduction

There was a problem for a compact Riemannian manifold (M, g) of dim n ≥ 3 to find a metric conformal to g
such that the scalar curvature of the new metric is constant. In 1960, H. Yamabe [19] claimed that he had found
a solution of the problem. Eight years later, Trudinger [17] found some errors to this solution. However, the
problem was named ’Yamabe problem’ in keeping with his name. In 1988, R. S. Hamilton [9] introduced the
notion of Yamabe flow. Yamabe flow is an intrinsic geometric flow and this is the process to deform the metric
of the Riemannian manifold, and which satisfies

∂

∂t
g = −rg, g(0) = g0,

where r(t) is the scalar curvature of the metric g(t). Yamabe soliton metrices stay self-similar under the Yamabe
flow for noncompact manifold.
According to Hamilton, a Riemannian metric g of an n-dimensional complete Riemannian manifold (M , g) is
said to be a Yamabe soliton if it satisfies

£Xg = (r − λ)g, (1.1)

for a real number λ and a smooth vector field X , where r is the scalar curvature of g and £ denotes the Lie-
derivative operator. The vector field is called soliton field of the Yamabe soliton. A Yamabe soliton is said to be
shrinking, steady or expanding according to λ > 0, λ = 0 or λ < 0, respectively.
In this matter, Deshmukh and Chen [8] briefly studied Yamabe soliton to find adequate conditions on the
soliton vector field X so that the metric of the Yamabe soliton is of constant scalar curature. For further studies
one can see ([6], [18]).

If X = Df for some smooth function f where D is the gradient operator of g, then (1.1) takes the form

∇2f = (r − λ)g, (1.2)

where∇2 denotes the Hessian of g. So gradient Yamabe soliton is a special type of Yamabe soliton. The function
f is called potential function, and if f is constant, then the gradient Yamabe soliton is said to be trivial.
To understand the existence of gradient Yamabe solitons one can see the paper [4]. Also, Gradient Yamabe
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solitons have been investigated by several authors such as ([1], [2], [3], [7], [11], [15]) and many others. In [10],
Hsu proved that for dimension n ≥ 3, the metric of any compact Yamabe gradient soliton (Mn, g) is of constant
scalar curvature.

The notion of gradient Einstein soliton on a Riemannian manifold was introduced by Catino and Mazzieri
[5], which is defined as follows:
If (M, g) be a Riemannian manifold satisfying

S(X,Y )− 1

2
rg(X,Y ) +∇2f = λg, (1.3)

for some function f :M → R and some constant λ, then the metric g is called gradient Einstein soliton.
Gradient Einstein soliton is said to be trivial when f is conatant. Catino et al. [5] proved that all compact
gradient Einstein soliton is trivial. So, removing the term compactness our interest on investigation gradient
Einstein solitons on Riemannian three manifolds.

Motivated by the above works, in the present paper we characterize three dimensional Riemannian
manifolds admitting gradient Yamabe solitons and gradient Einstein solitons. Precisely we prove the following
Theorems:

Theorem 1.1. If the metric of a three dimesional Riemannian manifold M3 endowed with a special type of vector field is
a gradient Yamabe soliton, then the soliton is trivial. Moreover, the manifold is locally isometric to the unit sphere S3(1).

Theorem 1.2. If the metric of a three dimensional Riemannian manifold M3 endowed with a special type of vector field
is a gradient Einstein soliton, then the manifold is of constant curvature.

2. Preliminaries

In this section we shall recall some fundamental results on Riemannian manifolds. Let (Mn, g) be a
Riemannian manifold of dimension n. In (Mn, g) the Riemann curvature tensor, Ricci tensor and scalar
curvature are denoted by R, S and r respectively. It is known that Riemannian metrics have interesting
properties. In particular in a three dimensional Riemannian manifold (M3, g) the Riemannian curvature tensor
has a special form which is given by

R(X,Y )Z = S(Y,Z)X − S(X,Z)Y + g(Y, Z)LX − g(X,Z)LY +

− r

2
[g(Y,Z)X − g(X,Z)Y ], (2.1)

L being the Ricci operator defined by g(LX, Y ) = S(X,Y ). Due to this expression of the curavature tensor in
(M3, g) the Weyl curvature tensor vanishes. Several authors have characterized (M3, g) with various structures
such as contact structure and complex structure in ([12], [13], [14]) and many others.

It may be mentioned that every compact, orientable three-dimensional manifold M has a contact structure
[16], i.e., there exist a global 1-form A such that A ∧ dA 6= 0 everywhere.
Throughout the paper we assume that the three dimensional Riemannian manifold M3 admits a unit vector
field V such that

∇XV = X +A(X)V, (2.2)

where A is a 1-form associated to the vector field V such that

A(X) = g(X,V ), (2.3)

for any vector field X in M3 and ∇ is the Levi-civita connection with respect to g.
From (2.2) it can be easily seen that

R(X,Y )V = A(Y )X −A(X)Y, (2.4)

(∇XA)Y = g(X,Y ) +A(X)A(Y ), (2.5)
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S(X,V ) = 2A(X). (2.6)

If we substitute Y = Z = V in (2.1) and using (2.4) and (2.6), then we infer

LX = (
r

2
− 1)X + (3− r

2
)A(X)V. (2.7)

This implies

S(X,Y ) = (
r

2
− 1)g(X,Y ) + (3− r

2
)A(X)A(Y ). (2.8)

3. Proof of our main results

Before providing the detail proof of our main Theorems, we need the following:
Lemma 3.1. For a three-dimensional Riemannian manifold, we have

V r = 6(6− r). (3.1)

Proof: Taking covarient derivative of (2.7) with respect to an arbitrary vector field Y we have

(∇Y L)X =
Y r

2
X − Y r

2
A(X)V + (3− r

2
)[g(X,Y ) +A(X)A(Y )]V

+ (3− r

2
)A(X)[Y +A(Y )V ]. (3.2)

Operating inner product with an arbitrary vector field Z in the above equation, we obtain

g((∇Y L)X,Z) =
Y r

2
g(X,Z)− Y r

2
A(X)A(Z) + (3− r

2
)[g(X,Y ) +A(X)A(Y )]A(Z)

+ (3− r

2
)A(X)[g(Y,Z) +A(Y )A(Z)], (3.3)

and substituting Y = Z = ei, 1 ≤ i ≤ 3, where {ei} is an orthonormal basis for the tangent space of M and
keeping in mind the well known result div L = 1

2gradr, the foregoing relation reduces to

V rA(X) = 6(6− r)A(X), (3.4)

which easily follows (3.1). This completes the proof.

Proof of Theorem 1.1: The gradient Yamabe soliton equation (1.2) can be written as

∇XDf = (r − λ)X. (3.5)

Taking covariant derivative of the above equation along an arbitrary vector field Y we have

∇Y∇XDf = (Y r)X + (r − λ)∇YX.

Applying the foregoing equation repeatedly and (3.5) in the well known expression R(X,Y )Z = ∇X∇Y Z −
∇Y∇XZ −∇[X,Y ]Z we obtain

R(X,Y )Df = (Xr)Y − (Y r)X. (3.6)

Contracing X in the above equation yields S(Y,Df) = −2Y r, and relating this with (2.8) gives

(
r

2
− 1)Y f + (3− r

2
)(V f)A(Y ) + 2Y r = 0. (3.7)

For Y = V the foregoing equation provides

V r = −V f. (3.8)
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Taking inner product with the vector field V in (3.6) and making use of (2.4) we can easily obtain

(Y f)A(X)− (Xf)A(Y ) = (Xr)A(Y )− (Y r)A(X).

Replacing Y = V in the above equation we have

Xf = −Xr. (3.9)

Making use of (3.8) and (3.9) in the Eq. (3.7) and keeping in mind V r = 6(6− r) we can find

(3− r

2
)[Y r − 6(6− r)A(Y )] = 0.

This implies either (i) r = 6 or (ii) Y r = 6(6− r)A(Y ).

Case (i): If r = 6, then from (3.9) we can write Xf = 0 , i.e., f = constant. Also, using r = 6 in (2.8) we reveal
that

S(X,Y ) = 2g(X,Y ). (3.10)

Again using the above equation in (2.1) we get

R(X,Y )Z = g(Y,Z)X − g(X,Z)Y. (3.11)

Hence the manifold M3 is of constant curvature 1. This means that the manifold M3 is locally isometric to the
unit sphere S3(1).

Case (ii): If Y r = 6(6− r)A(Y ), and since Xf = −Xr, we have

Df = −6(6− r)V.

Taking covarient derivative with respect to V and using (2.2) infer that

∇VDf = 24(6− r)V. (3.12)

On the other hand, the Eq. (3.5) provides

∇VDf = (r − λ)V,

and this equation together with (3.12) we can conclude r = 1
25 (λ+ 144). Hence, from (3.9) we obtain

f = contant.
This completes the proof.

Proof of Theorem 1.2: The equation (1.3) of gradient Einstein soliton becomes

∇XDf = −QX +
1

2
rX + λX. (3.13)

By remembering the expression of curvature tensor R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ], the above equation provides

R(X,Y )Df = (∇YQ)X − (∇XQ)Y +
1

2
(Xr)Y − 1

2
(Y r)X. (3.14)

Contracing X in the foregoing equation we have

S(Y,Df) = −1

2
Y r, (3.15)

and relating this relation with (2.6) we have

V f = −1

4
V r. (3.16)
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Now, keeping in mind the relation (3.2), the Eq. (3.14) can be rewritten as

R(X,Y )Df =
Xr

2
A(Y )V − Y r

2
A(X)V + (3− r

2
)[A(X)Y −A(Y )X],

and taking inner product with the vector field V in the foregoing equation we get

g(R(X,Y )Df, V ) =
Xr

2
A(Y )− Y r

2
A(X).

On the other side, (2.4) gives

g(R(X,Y )V,Df) = A(Y )Xf −A(X)Y f.

For X = V , the previous two equations yields

(
V r

2
+ V f)A(Y ) =

Y r

2
+ Y f. (3.17)

Now, if we use V f = − 1
4V r, the above equation is transformed to

Y r

2
=

3

2
(6− r)A(Y )− Y f. (3.18)

By setting X = Df in (2.8) and connecting with (3.15) we have

(
r

2
− 1)Y f + (3− r

2
)A(Y )(V f) +

1

2
Y r = 0. (3.19)

Using (3.16) and (3.18) in the foregoing equation yields

(
r

2
− 2)[Y f +

3

2
(6− r)A(Y )] = 0.

Hence, either r = 4 or Y f = 3
2 (r − 6)A(Y ).

Case (i): If r = 4, then V r = 0, so V f = 0. Hence from (3.17) we get f = constant, and using this in (3.13) we
can conclude that the manifold becomes an Einstein manifold.

Case (ii): If Y f = 3
2 (r − 6)A(Y ), then Df = 3

2 (r − 6)V . This implies

∇VDf = 6(6− r)V, (3.20)

and by setting X = V in (3.13) we have

∇VDf = (
r

2
+ λ− 2)V. (3.21)

Equating (3.20) and (3.21) we obtain r = 76−2λ
13 = constant. Using this in (3.17) we can conclude f = constant.

Hence the manifold becomes an Einstein manifold. Being three dimensional the manifold is a manifold of
constant curvature.
This finishes the proof.
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