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Abstract  

In this article, a four-parameter Nakagami Weibull distributions (NW) is proposed. We study 

a few statistical properties such as quantile function, moments, moment generating function, 

entropy, and order statistics have been derived. The maximum likelihood estimate is used to 

estimate the parameter of the NW distribution. We fit the proposed NW distribution to a real-

life data set to examine its potential and flexibility. Our findings showed that the NW 

distribution performs much better than its competitors, with favorable comparisons to existing 

distributions in terms of goodness-of-fit. 
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1. Introduction  

The continuous probabilities distribution has some 

essential problems and limitations in modeling real-life 
data set, has led statistician by adding at least one shape 

parameter to the baseline distribution to developed new 

flexible distributions. Methods for generating new 
families of distributions have been developed by many 

mathematical statisticians. The beta-generalized 

family of distribution was developed by [1], the 

exponentiated generalized class of distributions by [2], 
Exponentiated Weibull distribution: statistical 

properties and applications  by [3], Beta-Nakagami 

distribution by [4], Weibull generalized family of 
distributions by [5], On the exponentiated generalized 

inverse exponential distribution by [6], Beta generated 

Kumaraswamy and many compound families of 

distribution by [7], Exponentiated half-logistic family 
of distributions by [8], additive Weibull generated 

distributions by [9], Kummer beta generalized family 

of distributions by [10], The generalized odd inverted 
exponential-G family of distributions by [11], the 

Marshall-Olkin odd Burr III-G family of distributions 

by [12] and the generalized odd Gamma-G family of 
distributions by [13]. 

 

 

The Nakagami distribution is a continuous probability 

distribution with applications in measuring alternation 
of wireless signal traversing multiple paths, and 

Weibull distribution is one of the continuous 

probability distributions used to model a variety of life 
behaviors.  

  

2. Theoretical Framework of Nakagami 

Weibull (NW) Distribution 

If X is a continuous random variable from the 

Nakagami distribution with two parameter   and β, 

then the cdf  Eq. (1) and pdf Eq. (2) of the Nakagami 

generalized family of distribution (OGNak-G) due to 

[14] is given by: 
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The probability density function of the OGNak-G is 

given by: 
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2.1. The proposed NW Distribution   

The Weibull distribution is our parent distribution, 

with two parameters.  is the scale parameter and 
is the shape parameter that has its cdf and pdf given by: 
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Using the generator propose by [14] in Eq. (1), the cdf 

of the proposed Nakagami Weibull distribution is 

given by: 
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where ( , )    

and its corresponding pdf is given by: 

2.2. Investigation of the proposed NW distribution for a PDF 
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To demonstrate that the NW distribution is a pdf, we proceed as follows: 
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Figure 1. The pdf of the NW distribution for different set of values of the parameters. 

 

 

Figure 2. The cdf of the NW distribution for different set of values of the parameters. 

 

2.3. Linear representation 

Using generalized binomial and Taylor expansion in Eq. (6) one can obtain 
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2.4. Reliability analysis for the new Nakagami Weibull Distribution 

We proposed new survival function and the hazard function of the Nakagami Weibull distribution are provided 

as follows: 

Survival function is given by: 
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Figure 3. The survival function of the NW distribution for different set of  values of the parameters. 

 

Hazard function is given by: 
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Figure 4. The hazard function of the NW distribution for different set of  values of the parameters. 

 

2.5. Mathematical and statistical properties 

Moment play an important role in statistical analysis when a new probability distribution is developed. 

Using Eq. (8), we obtain the following: 
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The mean and variance of NW distribution are obtained, respectively as follows 
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Moment generating function of NW will take this form: 
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2.5.1. Incomplete moments of NW distribution 

The main applications of the first incomplete moment refer to the mean deviations  and the Bonferroni and Lorenz 

curves. These curves are very useful in reliability, medicine, economics, insurance and demography (see [15]). 

Considering the NW distribution discussed in Eq. (8) the rth incomplete moment for NW is derived by using Eq. 
(16) as follows: 
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2.5.2. Entropy

 The entropy of a random variable X is a measure of variation of the uncertainly. The Renyi entropy is defined 

as
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Using generalized binomial and taylor expansion in Eq. (18), one can obtain 
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2.5.3. The mode 

The mode of the NW density function can be derived by differentiating the natural logarithm of  Eq. (6)  with 
respect to x as follows:  
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Solving the Eq. (22) numerically we can find the mode(s). 

If x0 is a root of the Eq.(22), then it must be  
2

02
log 0,

d
f x

dx
  

 
   

 

     

2

2

2

2 2

2 1 1 11
1

1

2
2 1 1 2 1

x x

x

x x x x

x e e x
x

x
e

x x e x e x e e

 



   

   





       

    
 


       



  





 

       
     



       

 

 

 

(23) 

The Eq. (23) is a nonlinear and does not have an analytic solution with respect to x therefore we have to solve it 

numerically.  

2.5.4. Order statistics 

Let .,,, )()2()1( nXXX  represent random sample for  the order statistic, nXXX ,,, 21   from a continuous 

population with cdf  xFX  and pdf  xf X . Then the pdf of  jX is  
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(See [16]). 

Hence, the 
thj order statistic for the NW distribution is given by using Eq. (5) and Eq. (6), we obtain 
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2.5.5. Quantile Function 

The quantile function of the NW distribution is obtained by inverting the distribution function defined 

in Eq. (5) as follows: 
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2.6. Maximum likelihood estimates of the parameters of Nakagami Weibull Distribution 

Many approaches of estimating parameter were introduced in the literature. In this section, we deal with the 
estimation of the unknown parameters for the NW distributions based on complete samples only by maximum 

likelihood. Let nXXX ,,21,  be observed values from the NW distribution with set of parameters 

 , , ,   


 . The log-likelihood function for parameter vector  , , ,   


   is obtained from (6) as 

follows:  
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(29) 

 

(30) 

 

(31) 

 

(32) 

 

These estimates can’t be be solved algebraically, and statistical software can be used to solve them numerically 
via iterative technique in the AdequacyModel package available in the R. 

 

3.   Results and Discussion 

 

In this section, fitting NW distribution. We provide two applications to real life data set to demonstrate the 

potentiality of the NW distribution and compare its performance, to other generated models. The Akaike 

information criterion (AIC), Consistent Akaikes Information Criterion (CAIC), Bayesian information criterion 
(BIC), Anderson-Darling (A), Kolmogorov Smirnov test (K.S), and the P-Value of K.S test, have been chosen 

for the comparison of the models. The distributions: Odd Generalize Gamma Frechet (OGGFr) [117], Odd 

Generalized Gamma Weibull (OGGW) [17], the generalized odd inverted exponential-G family of distributions 
[11], Exponentiated Weibull Weibull (EWW) [3], Weibull-Exponential (WE) [18] have been selected for 

comparison. The parameters of models have been estimated by the MLE method. 

The first data, we used the breaking stress of carbon fibers of 50 mm length (GPa) from [19],  [20] and [14]. The 
data is as follows: 0.39, 0.85, 1.08 ,1.25, 1.47, 1.57, 1.61, 1.61, 1.69, 1.80, 1.84, 1.87 ,1.89, 2.03, 2.03 ,2.05, 2.12 

,2.35 ,2.41, 2.43, 2.48, 2.50, 2.53 ,2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 2.79, 2.81, 2.82, 2.85, 2.87 ,2.88, 2.93, 

2.95 ,2.96 ,2.97, 3.09, 3.11 ,3.11, 3.15, 3.15 ,3.19 ,3.22, 3.22, 3.27, 3.28, 3.31 ,3.31, 3.33 ,3.39, 3.39, 3.56 ,3.60 

,3.65, 3.68 ,3.70 ,3.75 ,4.20 ,4.38, 4.42, 4.70, 4.90. 

Table 1 displays a summary of goodness-of-fit measures for the stress of carbon fibers of 50 mm length (GPa) 

and MLEs for this data with different models, respectively. The NW with the smallest AIC criteria is selected 

as the best model with all other criteria. As you see, the P-Value for NW is also more than all other 

distributions. 

Table 1: Summary of MLEs and goodness-of-fit statistics for the first data set 

Models MLE   AIC CAIC BIC A.D K.S P Value 

NW 

 =1.6103057 


=1.1390558 

 =0.2809454 
 =0.8761429 

86.190 180.381 181.037 189.140 0.528 0.109 0.413 

OGGFr 

 =1.9147482 


=1.2807083 

 =1.7515636 
 =0.9275479 

 

91.388 

 

190.776 191.432 199.534 1.249 

 

0.166 

 

0.052 

OGGW 

 =1.5477753 


=1.5594958 

 =0.2641594 

 =1.0745220 

 

86.277 

 

 

180.555 

 

181.210 189.313 0.511 0.11583 0.339 
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Figure 5. Histogram and estimated pdfs for data sets 1. 

 

 
Figure 6. Plots of estimated cdf for data Sets 1. 

The second data, we used  thirty successive values of March precipitation in Minneapolis/St Paul from  [21] 
and [22]. The data set are as follows: 

0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 
2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, 2.05. 

 

Table 2 displays a summary of the goodness-of-fit measures for the March precipitation in Minneapolis/St Paul 
and MLEs for this data with different models, respectively. The NW with the smallest AIC criteria is selected as 

the best model with all other criteria. As you see, the P-Value for NW is also more than all other distributions. 
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 Table 2: Summary of MLEs and goodness-of-fit statistics for the second data set  

Models MLE   AIC CAIC BIC A.D K.S P Value 

NW 

 =1.5347926 


=0.5178431 

 =0.3999663 

 =0.5250054 

 

38.747 

 

 

85.493 

 

87.093 91.098 0.170 0.066 0.999 

EWW 

 =1.5264454 


=0.6836198 

 =1.3895067 

 =0.6091976 

 =0.6701214 

39.206 

 

88.412 

 

90.912 95.418 

 

0.235 

 

0.1023 0.911 

OGGW 

 =1.3057645 


=1.5374857 

 =0.5881135 

 =0.6735570 

 

39.335 

 

 

86.670 

 

88.270 

 

92.275 

 

 

0.237 

 

0.081 0.989 

 
 

 
Figure 7.  Histogram and estimated pdfs for data Sets 2. 

 

 
Figure 8. Plots of estimated cdf for data sets 2. 
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Conclusions  

We introduce a new four-parameter, the so called 
Nakagami Weibull distribution. The main statistical 

properties are provided. The model parameters 

estimation is approached by maximum likelihood. We 
prove empirically the usefulness of the NW 

distribution is demonstrated in two applications to 

show its superiority compared to other competitive 

distributions in terms of minimum AIC criteria is 
selected as the best model. It seems that the result is 

consistent with other criteria. We hope that the NW 

may attract wider applications in many applied areas.  
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