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Abstract  

In this study we shall obtain some sufficient conditions for the existence of positive solutions 

of variable coefficient nonlinear second-order neutral differential equation with distributed 

deviating arguments. For some different cases of the range of p(t) by using Banach contraction 

principle we will give some sufficient conditions for the nonoscillatory solutions of second-
order neutral differential equation. With this purpose we will use fixpoint theorem. At the end 

of the research, there is an example that meets the conditions we have given. Our results 

improve and extend some existing results. 

Article info 

History:  
Received: 14.11.2020 

Accepted: 26.04.2021 

Keywords: 
Nonoscillatory 

solutions, Fixpoint, 

Second-order. 

    

1. Introduction 

In this work we consider the second-order neutral nonlinear differential equation with distributed  

deviating arguments of the form  

  (𝑥(𝑡) − ∫ 𝑃(𝑡, 𝜉)𝑥(𝑡 − 𝜉)𝑑𝜉
𝑏

𝑎
)
′′

+ ∫ 𝑓1(𝑡, 𝑥(𝜎1(𝑡, 𝜉)))𝑑𝜉
𝑏1
𝑎1

− ∫ 𝑓2(𝑡, 𝑥(𝜎2(𝑡, 𝜉)))𝑑𝜉 = 𝑔(𝑡),
𝑏2
𝑎2

                      (1) 

where 𝑔 ∈ 𝐶([𝑡0, ∞), ℝ),   𝑃(𝑡, 𝜉) ∈  𝐶([𝑡0 , ∞) × [𝑎, 𝑏], ℝ)  for 0 < 𝑎 < 𝑏 and  𝜎𝑖(𝑡, 𝜉) ∈ 𝐶([𝑡0 , ∞) ×
 [𝑎𝑖 , 𝑏𝑖], ℝ)  with  lim

𝑡⟶∞
𝜎𝑖(𝑡, 𝜉) = ∞  and 0 ≤  𝑎𝑖  <  𝑏𝑖 , 𝑖 = 1, 2. 

In this paper, we assume that 𝑓𝑖(𝑡, 𝑥) ∈ 𝐶([𝑡0, ∞) ×  ℝ,ℝ)  is a nondecreasing in x for  𝑖 = 1, 2, 

𝑥𝑓𝑖(𝑡, 𝑥) > 0  for   𝑥 ≠ 0, 𝑖 = 1, 2  and  satisfies  

|𝑓𝑖(𝑡, 𝑥) − 𝑓𝑖(𝑡, 𝑦)|  ≤  𝑞𝑖(𝑡)|𝑥 − 𝑦|   for  𝑡 ∈  [𝑡0, ∞)    and   𝑥, 𝑦 ∈  [𝑒, 𝑓],                                                       (2) 

where 𝑞𝑖  ∈ 𝐶([𝑡0 , ∞), ℝ
+),  𝑖 = 1, 2  and   [𝑒, 𝑓]  (0 < 𝑒 < 𝑓  or  𝑒 < 𝑓 < 0)  is  any  closed  interval.  

Furthermore, suppose that 

∫ 𝑠𝑞𝑖(𝑠)𝑑𝑠 <  ∞
∞

𝑡0
,    𝑖 = 1, 2,                                                                                                                                        (3) 

∫ 𝑠|𝑓𝑖(𝑠, 𝑑)|𝑑𝑠 <  ∞
∞

𝑡0
,    for some  𝑑 ≠ 0,  i = 1, 2,                                                                                            (4) 

∫ 𝑠|𝑔(𝑠)|𝑑𝑠 <  ∞
∞

𝑡0
.                                                                                (5) 

The nonoscillatory behavior of solutions of neutral differential equations has been considered by different authors 

in the past. This work was motivated by the paper of Yang, Zhang and Ge  in [1] which is concerned with the 

existence of nonoscillatory solutions of  second-order differential equation of the form  

(𝑥(𝑡) − 𝑝(𝑡)𝑥(𝑡 − 𝜏))′′  + 𝑓1(𝑡, 𝑥(𝜎1(𝑡))) − 𝑓2(𝑡, 𝑥(𝜎2(𝑡))) = 0                                                                   (6) 

and T. Candan and R.S. Dahiya in [2] which is concerned with the existence of first and second-order neutral 
differential equations of the form  
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𝑑𝑘

𝑑𝑡𝑘
[𝑥(𝑡) + 𝑃(𝑡)𝑥(𝑡 − 𝜏)]  + ∫ 𝑞1(𝑡, 𝜉)𝑥(𝑡 − 𝜉)𝑑𝜉 − ∫ 𝑞2(𝑡, 𝜇)𝑥(𝑡 − 𝜇)𝑑𝜇 = 0.

𝑑

𝑐
 

𝑏

𝑎
                                        (7) 

In 2016, Candan [3] investigated nonoscillatory solutions of higher-order neutral differential equations of the 

form  

[𝑟(𝑡) [[𝑥(𝑡) − ∫ 𝑝2(𝑡, 𝜉)𝑥(𝑡 − 𝜉)𝑑𝜉
𝑏

𝑎
]
(𝑛−1)

]
𝛾

]

′

+ (−1)𝑛 ∫ 𝑄2(𝑥, 𝜉)𝐺(𝑥, 𝜉))𝑑𝜉 = 0
𝑑

𝑐
. 

Neutral differential equations have numerous applications in natural sciences and engineering. Especially, neutral 

differential equations arise in a variety of real world problems such as in the study of non-Newtonian fluid theory 
and porous medium problems. In recent years, there have been many studies concerning the oscillatory and 

nonoscillatory behavior of neutral differential equations. For example, Li, Pintus, and Viglialoro [4] studied 

“Properties of solutions to porous medium problems with different sources and boundary conditions” in 2019. 

Also, Li and Rogovchenko [5] studied “On the asymptotic behavior of solutions to a class of third-order nonlinear 
neutral differential equations” in 2020. Many authors have investigated existence of oscillation and nonoscillation 
solutions of neutral differential equations. Please, see [1-16] and references cited therein. 

The purpose of this article is to give some sufficient conditions for  the existence of nonoscillatory  solutions  of  

(1)  according to different cases of the range of 𝑝(𝑡) by using Banach contraction  principle.  

Let  𝑇0 = min  {𝑡1 − 𝑏, inf𝑡≥𝑡1min𝜉∈[𝑎1,𝑏1] 𝜎1(𝑡, 𝜉), inf𝑡≥𝑡1min𝜉∈[𝑎2,𝑏2] 𝜎2(𝑡, 𝜉) }  for  𝑡1  ≥  𝑡0. By a solution 

of equation (1), we mean a function   𝑥 ∈ 𝐶 ([𝑇1 , ∞), ℝ) in the sense that  𝑥(𝑡) − ∫ 𝑝(𝑡, 𝜉)𝑥(𝑡 − 𝜉)𝑑𝜉
𝑏3
𝑎3

 

 is two times continuously differentiable on [t1, ∞] and such that equation (1) is satisfied for 𝑡 ≥  𝑡1.  

As is customary, a solution of (1) is said to be oscillatory if it has arbitrarily large zeros. Otherwise the 

 solution is called nonoscillatory. 

2. Main Results 

Theorem 2.1. Assume that  (3) - (5) hold,  𝑃(𝑡, 𝜉) ≥ 0 and   ∫ 𝑃(𝑡, 𝜉)𝑑𝜉 ≤  𝑝 < 1.
𝑏

𝑎
 Then  (1)  has a bounded 

nonoscillatory solution. 

Proof.  Suppose  (4)  holds  with  𝑑 > 0.  A similar argument holds for 𝑑 < 0.  Let  𝑁2 = 𝑑. 

Set 

𝐴 =  {𝑥 ∈ 𝑋 ∶  𝑁1  ≤ 𝑥(𝑡) ≤ 𝑁2,        𝑡 ≥  𝑡0 }, 

where N1 and N2  are  positive  constants  such that  

𝑁1 + 𝑝𝑁2 < 𝑁2. 

It is obvious that  𝐴 is a closed, bounded and convex subset of  𝑋. Because of (3) - (5),  we can take  a 𝑡1  >  𝑡0  

sufficiently large such that  𝑡 − 𝑏 ≥  𝑡0, 𝜎𝑖(𝑡, 𝜉) ≥  𝑡0,  𝜉 ∈  [𝑎𝑖 , 𝑏𝑖],    i = 1, 2  for  𝑡 ≥  𝑡1  and  

𝑝 +  ∫ 𝑠[(𝑏1 − 𝑎1)𝑞1(𝑠) +  (𝑏2 − 𝑎2)𝑞2(𝑠)]
∞

𝑡1
𝑑𝑠 ≤  𝜃1 < 1,                                               (8) 

∫ 𝑠[(𝑏1 − 𝑎1)𝑓1(𝑠, 𝑑) + |𝑔(𝑠)|]
∞

𝑡1
𝑑𝑠 ≤  𝛼 − 𝑁1 − 𝑝𝑁2,                                                       (9) 

and                           

 ∫ 𝑠[(𝑏2 − 𝑎2)𝑓2(𝑠, 𝑑) + |𝑔(𝑠)|]
∞

𝑡1
𝑑𝑠 ≤  𝑁2 − 𝛼,                                                           (10) 

where   𝛼 ∈  (𝑁1  + 𝑝𝑁2, 𝑁2).  Define a mapping  𝑆 ∶ 𝐴 ⟶ 𝑋   as  follows: 
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 (𝑆𝑥)(𝑡) =  

{
 

 ∝ −∫ 𝑃(𝑡, 𝜉)𝑥(𝑡 − 𝜉)𝑑𝜉 − ∫ (𝑠 − 𝑡) [∫ 𝑓1(𝑠, 𝑥(𝜎1(𝑠, 𝜉)))𝑑𝜉
𝑏1
𝑎1

∞

𝑡

𝑏

𝑎

−∫ 𝑓2
𝑏2
𝑎2

(𝑠, 𝑥(𝜎2(𝑠, 𝜉)))𝑑𝜉 − 𝑔(𝑠)] 𝑑𝑠,           𝑡 ≥  𝑡1

(𝑆𝑥)(𝑡1),                                                                        𝑡0  ≤ 𝑡 ≤  𝑡1 

 

   

 It is easy to see that  Sx  is continuous. For every  𝑥 ∈ 𝐴 and   𝑡 ≥  𝑡1  dealing with (10) we can get 

 (𝑆𝑥)(𝑡) =  𝛼 − ∫ 𝑃(𝑡, 𝜉)𝑥(𝑡 − 𝜉)𝑑𝜉 − ∫ (𝑠 − 𝑡)
∞

𝑡

𝑏

𝑎
[∫ 𝑓1(𝑠, 𝑥(𝜎1(𝑠, 𝜉)))𝑑𝜉
𝑏1
𝑎1

 

                    − ∫ 𝑓2
𝑏2
𝑎2

(𝑠, 𝑥(𝜎2(𝑠, 𝜉)))𝑑𝜉 − 𝑔(𝑠)] 𝑑𝑠       

                       ≤  𝛼 + ∫ 𝑠[(𝑏2 − 𝑎2)𝑓2(𝑠, 𝑑) + |𝑔(𝑠)|] 𝑑𝑠
∞

𝑡1
 

                       ≤ 𝑁2 

and taking (9) into account, we can get 

(𝑆𝑥)(𝑡) =  𝛼 − ∫ 𝑃(𝑡, 𝜉)𝑥(𝑡 − 𝜉)𝑑𝜉 − ∫ (𝑠 − 𝑡)
∞

𝑡

𝑏

𝑎
[∫ 𝑓1(𝑠, 𝑥(𝜎1(𝑠, 𝜉)))𝑑𝜉
𝑏1
𝑎1

 

                       − ∫ 𝑓2
𝑏2
𝑎2

(𝑠, 𝑥(𝜎2(𝑠, 𝜉)))𝑑𝜉 − 𝑔(𝑠)] 𝑑𝑠       

                        ≥  𝛼 − 𝑝𝑁2 − ∫ 𝑠[(𝑏1 − 𝑎1)𝑓1(𝑠, 𝑑) + |𝑔(𝑠)|] 𝑑𝑠
∞

𝑡1
 

                         ≥ 𝑁1. 

Thus we proved that 𝑆𝐴 ⊂ 𝐴. Now we shall show that S is a contraction mapping on  𝐴. 

In fact, for 𝑥, 𝑦 ∈ 𝐴  and  𝑡 ≥  𝑡1, in view of (2) and (8) we have 

 |(𝑆𝑥)(𝑡) − (𝑆𝑦)(𝑡)|  ≤  ∫ 𝑃(𝑡, 𝜉)|𝑥(𝑡 − 𝜉) − 𝑦(𝑡 − 𝜉)|𝑑𝜉
𝑏

𝑎
 

+ ∫ (𝑠 − 𝑡)
∞

𝑡
 ∫ |𝑓2(𝑠, 𝑥(𝜎2(𝑠, 𝜉))) − 𝑓2(𝑠, 𝑦(𝜎2(𝑠, 𝜉)))|𝑑𝜉𝑑𝑠
𝑏2
𝑎2

 

+ ∫ (𝑠 − 𝑡)
∞

𝑡
 ∫ |𝑓1(𝑠, 𝑥(𝜎1(𝑠, 𝜉))) − 𝑓1(𝑠, 𝑦(𝜎1(𝑠, 𝜉)))|𝑑𝜉𝑑𝑠
𝑏1
𝑎1

 

 ≤ ∫ 𝑃(𝑡, 𝜉)|𝑥(𝑡 − 𝜉) − 𝑦(𝑡 − 𝜉)|𝑑𝜉
𝑏

𝑎
 

 + ∫ 𝑠
∞

𝑡1
 ∫ 𝑞1(𝑠)|𝑥(𝜎1(𝑠, 𝜉)) − 𝑦(𝜎1(𝑠, 𝜉))|𝑑𝜉𝑑𝑠
𝑏1
𝑎1

 

 + ∫ 𝑠
∞

𝑡1
 ∫ 𝑞2(𝑠)|𝑥(𝜎2(𝑠, 𝜉)) − 𝑦(𝜎2(𝑠, 𝜉))|𝑑𝜉𝑑𝑠
𝑏1
𝑎1

 

≤ ‖𝑥 − 𝑦‖ (𝑝 + ∫ 𝑠[(𝑏1 − 𝑎1)𝑞1(𝑠) + (𝑏2 − 𝑎2)𝑞2(𝑠) ]
∞

𝑡1
𝑑𝑠) ≤ 𝜃1‖𝑥 − 𝑦‖, 

which implies with the sup norm that 

 ‖𝑆𝑥 − 𝑆𝑦‖ ≤ 𝜃1‖𝑥 − 𝑦‖. 

Since  𝜃1 < 1, 𝑆 is a contraction mapping on 𝐴. By Banach Contraction Mapping Principle, there exists a unique 

fixed point  𝑥 ∈ 𝐴 such that 𝑆𝑥 = 𝑥, which is obviously a positive solution of (1). This completes the proof. 

Theorem 2.2. Assume that  (3) - (5) hold,  𝑃(𝑡, 𝜉) ≤ 0  and   −1 < 𝑝 ≤ ∫ 𝑃(𝑡, 𝜉)𝑑𝜉.
𝑏

𝑎
  Then  (1)  has a bounded 

nonoscillatory solution. 

Proof.  Suppose  (4)  holds  with  𝑑 > 0.  A similar argument holds for 𝑑 < 0.  Let  𝑁4 = 𝑑. 

Set 

 𝐴 = {𝑥 ∈ 𝑋 ∶  𝑁3  ≤ 𝑥(𝑡) ≤  𝑁4,        𝑡 ≥  𝑡0 }, 
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 where N3 and N4  are  positive  constants  such that  

𝑁3 < (1 − 𝑝)𝑁4. 

It is obvious that  𝐴 is a closed, bounded and convex subset of  𝑋. Because of (3) - (5),  we can take  a 𝑡1  >  𝑡0  

sufficiently large such that  𝑡 − 𝑏 ≥  𝑡0, 𝜎𝑖(𝑡, 𝜉) ≥  𝑡0,  𝜉 ∈  [𝑎𝑖 , 𝑏𝑖],    i = 1, 2  for  𝑡 ≥  𝑡1  and  

𝑝 +  ∫ 𝑠[(𝑏1 − 𝑎1)𝑞1(𝑠) +  (𝑏2 − 𝑎2)𝑞2(𝑠)]
∞

𝑡1
𝑑𝑠 ≤  𝜃2 < 1,                                                                         (11) 

  ∫ 𝑠[(𝑏1 − 𝑎1)𝑓1(𝑠, 𝑑) + |𝑔(𝑠)|]
∞

𝑡1
𝑑𝑠 ≤  𝛼 − 𝑁3,                                                                                             (12) 

and                             

 ∫ 𝑠[(𝑏2 − 𝑎2)𝑓2(𝑠, 𝑑) + |𝑔(𝑠)|]
∞

𝑡1
𝑑𝑠 ≤  (1 − 𝑝)𝑁4 − 𝛼,                                                                                (13) 

where   𝛼 ∈  (𝑁3, (1 − 𝑝) − 𝑁4).  Define a mapping  𝑆 ∶ 𝐴 ⟶ 𝑋   as  follows: 

  (𝑆𝑥)(𝑡) =  

{
 

 ∝ −∫ 𝑃(𝑡, 𝜉)𝑥(𝑡 − 𝜉)𝑑𝜉 − ∫ (𝑠 − 𝑡) [∫ 𝑓1(𝑠, 𝑥(𝜎1(𝑠, 𝜉)))𝑑𝜉
𝑏1
𝑎1

∞

𝑡

𝑏

𝑎

−∫ 𝑓2
𝑏2
𝑎2

(𝑠, 𝑥(𝜎2(𝑠, 𝜉)))𝑑𝜉 − 𝑔(𝑠)] 𝑑𝑠,           𝑡 ≥  𝑡1

(𝑆𝑥)(𝑡1),                                                                        𝑡0  ≤ 𝑡 ≤  𝑡1 

 

   

 It is easy to see that Sx is continuous. For every 𝑥 ∈ 𝐴 and   𝑡 ≥  𝑡1  dealing with (13) we can get 

(𝑆𝑥)(𝑡) =  𝛼 − ∫ 𝑃(𝑡, 𝜉)𝑥(𝑡 − 𝜉)𝑑𝜉 − ∫ (𝑠 − 𝑡)
∞

𝑡

𝑏

𝑎
[∫ 𝑓1(𝑠, 𝑥(𝜎1(𝑠, 𝜉)))𝑑𝜉
𝑏1
𝑎1

 

                      − ∫ 𝑓2
𝑏2
𝑎2

(𝑠, 𝑥(𝜎2(𝑠, 𝜉)))𝑑𝜉 − 𝑔(𝑠)] 𝑑𝑠       

                     ≤  𝛼 + 𝑝𝑁4 + ∫ 𝑠[(𝑏2 − 𝑎2)𝑓2(𝑠, 𝑑) + |𝑔(𝑠)|] 𝑑𝑠
∞

𝑡1
≤ 𝑁4 

and taking (12) in to account, we can get 

 (𝑆𝑥)(𝑡) =  𝛼 − ∫ 𝑃(𝑡, 𝜉)𝑥(𝑡 − 𝜉)𝑑𝜉 − ∫ (𝑠 − 𝑡)
∞

𝑡

𝑏

𝑎
[∫ 𝑓1(𝑠, 𝑥(𝜎1(𝑠, 𝜉)))𝑑𝜉
𝑏1
𝑎1

 

                         − ∫ 𝑓2
𝑏2
𝑎2

(𝑠, 𝑥(𝜎2(𝑠, 𝜉)))𝑑𝜉 − 𝑔(𝑠)] 𝑑𝑠       

                          ≥  𝛼 −  ∫ 𝑠[(𝑏1 − 𝑎1)𝑓1(𝑠, 𝑑) + |𝑔(𝑠)|] 𝑑𝑠
∞

𝑡1
≥ 𝑁3. 

Thus we proved that 𝑆𝐴 ⊂ 𝐴. Now we shall show that S is a contraction mapping on  𝐴. 

In fact, for 𝑥, 𝑦 ∈ 𝐴  and  𝑡 ≥  𝑡1, in view of (2) and (11) we have 

|(𝑆𝑥)(𝑡) − (𝑆𝑦)(𝑡)|  ≤  ∫(−𝑃(𝑡, 𝜉))|𝑦(𝑡 − 𝜉) − 𝑥(𝑡 − 𝜉)|𝑑𝜉

𝑏

𝑎

 

 

+ ∫ (𝑠 − 𝑡)
∞

𝑡
 ∫ |𝑓2(𝑠, 𝑥(𝜎2(𝑠, 𝜉))) − 𝑓2(𝑠, 𝑦(𝜎2(𝑠, 𝜉)))|𝑑𝜉𝑑𝑠
𝑏2
𝑎2

 

 + ∫ (𝑠 − 𝑡)
∞

𝑡
 ∫ |𝑓1(𝑠, 𝑥(𝜎1(𝑠, 𝜉))) − 𝑓1(𝑠, 𝑦(𝜎1(𝑠, 𝜉)))|𝑑𝜉𝑑𝑠
𝑏1
𝑎1

 

  ≤ ∫ (−𝑃(𝑡, 𝜉))|𝑥(𝑡 − 𝜉) − 𝑦(𝑡 − 𝜉)|𝑑𝜉
𝑏

𝑎
 

  + ∫ 𝑠
∞

𝑡1
 ∫ 𝑞1(𝑠)|𝑥(𝜎1(𝑠, 𝜉)) − 𝑦(𝜎1(𝑠, 𝜉))|𝑑𝜉𝑑𝑠
𝑏1
𝑎1

 

  + ∫ 𝑠
∞

𝑡1
 ∫ 𝑞2(𝑠)|𝑥(𝜎2(𝑠, 𝜉)) − 𝑦(𝜎2(𝑠, 𝜉))|𝑑𝜉𝑑𝑠
𝑏1
𝑎1
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  ≤ ‖𝑥 − 𝑦‖ (𝑝 + ∫ 𝑠[(𝑏1 − 𝑎1)𝑞1(𝑠) + (𝑏2 − 𝑎2)𝑞2(𝑠) ]
∞

𝑡1
𝑑𝑠) 

  ≤ 𝜃2‖𝑥 − 𝑦‖, 

which implies with the sup norm that 

‖𝑆𝑥 − 𝑆𝑦‖ ≤ 𝜃2‖𝑥 − 𝑦‖. 

Since  𝜃2 < 1, 𝑆 is a contraction mapping on 𝐴. By Banach Contraction Mapping Principle, there exists a unique 

fixed point  𝑥 ∈ 𝐴 such that 𝑆𝑥 = 𝑥, which is obviously a positive solution of (1). This completes the proof. 

Example 2.3.  For 𝑡 > 0 consider the equation 

(𝑥(𝑡) − ∫ exp(−𝑡 − 3𝜉)𝑥(𝑡 − 𝜉)𝑑𝜉
1

0
)
′′

+ ∫ 2 exp(−𝑡)𝑥(𝑡 − 2𝜉)𝑑𝜉
3

1
  − ∫ exp(−𝑡)𝑥(𝑡 − 𝜉)𝑑𝜉

6

2
 

  = 
1

3
exp(−𝑡) − exp(−𝑡 − 3) + 9 exp(−3𝑡) + 16 exp(−4𝑡).                                                                        (14) 

Note that   𝑃(𝑡, 𝜉) = exp(−𝑡 − 3𝜉),    𝜎1(𝑡, 𝜉) = 𝑡 − 2𝜉,   𝜎2(𝑡, 𝜉) = 𝑡 − 𝜉,   𝑓1(𝑡, 𝑢) = 2exp(−𝑡)𝑢,    𝑓2(𝑡, 𝑢) =

exp(−𝑡)𝑢   and  𝑔(𝑡) =  
1

3
exp(−𝑡) − exp(−𝑡 − 3) + 9 exp(−3𝑡) + 16 exp(−4𝑡).  We  can  check that the 

conditions of Theorem 2.1 are all satisfied. We note that   𝑥(𝑡) = exp(−3𝑡) + 1  is a nonoscillatory solution of 

(14). 
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