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Abstract
In this paper, we study the special tube surfaces generated by rectifying curves with respect
to the Darboux frame in terms of the geodesic curvature, the normal curvature and the
geodesic torsion in Galilean 3-space. During this study we establish some definite results
of geodesics on specific tube surfaces with the help of Clairauts theorem in detail and
we compute the Gaussian curvature and the mean curvature of the special tube surfaces
with respect to the Darboux frame. After that, considering the geodesic conditions and
the curvatures of the special tube surface, we give some theorems for the rectifying curves
with v−parameter (and w−parameter) being a geodesic curve and an asymptotic curve,
respectively.
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1. Introduction
Recently, curves and surfaces in Galilean space have been a current research topic

for many researchers. For example, the rectifying curves play some important roles in
mechanics, kinematics as well as in defining the curve of constant precession, and the
position vector of a rectifying curve is always in the direction of the Darboux vector.

Geodesics are widely studied in Riemannian geometry through metric geometry and
general relativity. In other words, the curves with stationary arc length between two
given points X and Y are called the geodesic lines, and they are determined by the
solutions of geodesic differential equations, to construct these differential equations we
shall use variational calculus and Lagrange equations. Also, geodesic equations are given
with constancy of motion in the form of energy with many approaches externalizing the
significant use of energy, as introduced in many books [12,14,16].

In considering the mathematical problem of geodesics on the tube surface generated by
rectifying curve with the Darboux frame, there is an important advantage conceptually
that derives from taking a physicist’s point of view by interpreting parametrized geodesics
as the paths traced out in time by the motion of a point on the tube surface by identifying
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the time parameter. This combination of the constants of the motion is of course also
constant along a geodesic. The existence of this constant is a conclusion of the one-
parameter rotational group of symmetries of the tube surface, like this, a constant of the
movement introduces a new thing when the surface is invariant under any one-parameter
group of symmetries, which is seen in the variational approximate to the geodesic equations
easily. Mathematically, this quantity is a constant obtained by Clairaut for geodesic
movement on the surface defined in a coordinate system adapted to this one-parameter
group of symmetries [14].

Many studies of tube surfaces, including rectifying curves, the Darboux frame, geodesic
curve, Mean curvature, Gaussian curvature, have received much attention from our re-
searchers. Among them, we can cite our work [4], we described the rotational surfaces
using curves and matrices which are the subgroups of rotating a selected axis in Galilean
4-space. We also refer to [19]. We examined the tube surfaces generated by the curve
in Galilean 3-space and gave certain results of describing the geodesics on the surfaces
[3,5]. Besides, we obtained conditions being geodesic on the tubular surface with the help
of Clairauts theorem. We also studied the linear Weingarten surfaces and HK-quadric
surfaces, harmonic surfaces using the Gaussian and mean curvatures of tubular surfaces
generated by rectifying curves in Galilean 3-space [2]. In our study [6] we expressed the
specific kinetic energy, the specific angular momentum, and conditions being geodesic on
rotational surface generated by a magnetic curve with the help of Clairaut’s theorem with
the Killing magnetic field. We also refer to [7]. Dede defined the tubular surfaces and
the differential properties of tube surfaces in Galilean space [8]. Ali determined the po-
sition vector ofan arbitrary curve with respect to the Frenet frame in Galilean 3-space.
Also, the author deduced in terms of the curvature and torsion, the natural representa-
tion of the position vector of an arbitrary curve being a plane curve, helix, general helix,
Salkowski curves and anti-Salkowski curves in Galilean space, respectively [1]. Milin-Šipuš
and Divjak [13] developed the local theory of surfaces immersed in the pseudo-Galilean
space, a special type of Cayley-Klein spaces, and they studied surfaces of constant cur-
vatures. Kasap and et al. [10], analyzed a family of surfaces from a given space-like(or
time-like) geodesic curve using the Frenet frame of the curve in Minkowski space, and they
expressed the surface family of a linear combination of the components of this framework.
Also, they gave necessary and sufficient conditions for the coefficients to meet both ge-
odesic and isoparametric requirements. Kim and Yoon [11] classified the ruled surfaces
in L3−spaces which satisfy some algebraic equations in terms of the Gaussian curvature.
Karacan and et al. [9], Saad and et al. [17] studied the geodesics and surfaces in Minkowski
space.

The aim of this work is to introduce the special tube surfaces produced by rectifying
curves with respect to the Darboux frame in Galilean 3-space using Clairaut’s theorem. We
organise this study as follows: Section 2 provides some preliminary definitions and theorem
useful for the reader. In Section 3, we characterize an isotropic rectifying curve generated
by the Galilean Darboux frame in G3. In Section 4, we give some characterizations for the
specific tube surfaces generated by a rectifying curve with the Darboux frame in Galilean
3-space with help of the Clairaut’s theorem. Furthermore, by using the Gaussian and the
mean curvatures of specific tube surfaces and the Euler-Lagrange equations, we investigate
the relation between the rectifying curves with v−parameter (and w−parameter) and
special curves such as geodesics and asymptotic curves on the special tube surfaces.

2. Preliminaries
The classical context of Euclidean space is the source of results that can be transferred

to some other geometries. One way of describing new geometries is Cayley-Klein spaces.
Projective spaces are expressed as PnR, and this is expressed by an absolute shape that
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is a subset of PnR which occurs as a sequence of quadric and planes 1. The projective
space, PnR, has invariants as the absolute shape definition for the subgroup of projections.
It is called the Cayley-Klein space motion group. Thanks to the absolute shape, metric
connections are defined and invariant under the motion group.

The scalar product of the vectors U = (u1, u2, u3), V = (v1, v2, v3) in G3 is defined as
follows

⟨U, V ⟩ =
{

u1v1 , if u1 ̸= 0 or v1 ̸= 0
u2v2 + u3v3, if u1 = 0, v1 = 0

. (2.1)

The cross product is given in Galilean space as

U × V =
{

(0, v1u3 − v3u1, v2u1 − v1u2) , if u1 ̸= 0 or v1 ̸= 0
(v3u2 − v2u3, 0, 0) , if u1 = 0, v1 = 0

. (2.2)

Let β : I ⊂ R → G3 be a curve parametrized by arc length with curvatures κ > 0, τ .
Then, for the curve β(w) = (w, y(w), z(w)) the vectors of the Frenet-Serret frame are
defined by

t(w) = β′(w) = (1, y′(w), z′(w)); n(w) = t′(w)
κ(w)

; b(w) = n′(w)
τ(w)

,

where the real-valued function κ(w) =∥ t′(w) ∥ is given as the first curvature of the curve
β, the second curvature function is defined as τ(w) =∥ n′(w) ∥. For the curve in G3,
Frenet-Serret equations can be written as follows

t′ = κn, n′ = τb, b′ = −τn. (2.3)
Furthermore, a surface Θ = Θ(w, v) in G3 is given by

Θ(w, v) = (x(w, v), y(w, v), z(w, v)). (2.4)
Then, the unit isotropic normal vector field η on Θ(w, v) can be expressed as

η = Θ,w × Θ,v

∥Θ,w × Θ,v∥
, (2.5)

where the partial differentiation with respect to parameters w and v have the following
forms

Θ,w = ∂Θ(w, v)
∂w

; Θ,v = ∂Θ(w, v)
∂v

. (2.6)

The isotropic unit vector δ is expressed on the tangent plane of the surface given by

δ = x,vΘ,w − x,wΘ,v

w̃
, (2.7)

where x,w = ∂x(w,v)
∂w , x,v = ∂x(w,v)

∂v and w̃ = ∥Θ,w × Θ,v∥ .
Let us define

g1 = x,w, g2 = x,v, gij = gigj ; g1 = x,v

w
; g2 = x,w

w
; gij = gigj ; i, j = 1, 2 (2.8)

h11 =
⟨
Θ∗

,w, Θ∗
,w

⟩
, h12 =

⟨
Θ∗

,w, Θ∗
,v

⟩
; h22 =

⟨
Θ∗

,v, Θ∗
,v

⟩
, (2.9)

where Θ∗
,w and Θ∗

,v are vector projections Θ,w and Θ,v onto the yz-plane. The distance
square form ds2 is given on the surface Θ(w, v) as

ds2 = ds2
1 + ds2

2 = (g1dw + g2dv)2 + ε
(
h11dw2 + 2h12dwdv + h22dv2

)
, (2.10)

herein

ε =
{

0, dw : dv non-isotropic
1, dw : dv isotropic

, (2.11)

[12,14,15].
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The coefficients of ds2 are denoted by g∗
ij , which can be represented in terms of gi and

hij as follows
w̃2 = g2

1h22 − 2g1g2h12 + g2
2h11.

The Gaussian curvature and the mean curvature of a surface are defined by the coeffi-
cient Lij of the second fundamental form, which are the normal components of Θ,i,j(i, j =
1, 2)

Θ,i,j =
2∑

k=1
Γk

ijΘ,k + Lijη, (2.12)

where Γk
ij is the Christoffel symbols and Lij are given as follows

Lij = 1
g1

⟨g1Θ∗
,i,j − gi,jΘ∗

,1 , η⟩ = 1
g2

⟨g2Θ∗
,i,j − gi,jΘ∗

,2 , η⟩ . (2.13)

From this, the Gaussian curvature K and the mean curvature H are given as

K = L11L22 − L2
12

w̃2 , H = g2
2L11 − 2g1g2L12 + g2

1L2
22

w̃2 , (2.14)

[16].

Definition 2.1 ([18]). Let β : I ⊂ R → S ⊂ G3 be a unit-speed curve and let −→
t ,

−→
Q, −→n

be the Darboux frame fields. Then, the system {−→
t ,

−→
Q, −→n } is an orthonormal frame and

the vectors of the Galilean Darboux frame are given as

t′ = kgQ + knn; Q′ = τgn; n′ = −τgQ, (2.15)

here kg and kn are called the tangential and normal component of the curvature vector
respectively. Also, these functions are called as the geodesic curvature and the normal
curvature respectively. These vectors yield a unit tangent vector field t of the curve β on
S and units of normal vector field n at the point β(w) of β and Q = n ×G3 t, the frame
{t, Q, n} is called the Darboux frame or the tangential-normal frame field.

Definition 2.2 ([12]). A vector x = (x1, x2, x3) is called non-isotropic if x1 ̸= 0. All units
isotropic vectors are of the form x = (1, x2, x3). For isotropic vectors, x1 = 0 holds.

Theorem 2.3 ([14]). (Clairauts Theorem) Let β be a geodesic on a surface of rotation S,
let ρ be the distance function of a point of S from the axis of rotation, and let θ be the
angle between β and the meridians of S. The ρsinθ is constant along β. Conversely, if
ρsinθ is constant along the curve β on the surface, and if no part of β is part of some
parallel of S, then β is a geodesic curve.

3. Characterization of isotropic rectifying curves with the Darboux frame
in G3

In this section, we characterize an isotropic rectifying curve with vector fields tangen-
tial component and binormal component in terms of their curvatures using the Galilean
Darboux frame in G3. By definition, the position vector of the curve satisfies the equation

β(w) = Σ0
−→
t + Σ1

−→
Q ; Σ0(w), Σ1(w) ∈ C∞, (3.1)

and differentiating the equation (3.1) with respect to w and using the Frenet equations
(2.15), we obtain

−→
t =

.
Σ0

−→
t +

(
Σ0kg +

.
Σ1
)−→

Q + (Σ0kn + Σ1τg) −→n . (3.2)

It follows that
.
Σ0 = 1; Σ0kg +

.
Σ1 = 0; Σ0kn + Σ1τg = 0, (3.3)
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and therefore

Σ0 = c + w; Σ1 = −
∫

kg (c + w) dw + c2 and Σ1 = −kn(w + c)
τg

, (3.4)

where c, c2 ∈ R0. In this way Σ0(w) and Σ1(w) are expressed in terms of curvature
functions kg, kn and τg of the rectifying curve β. Furthermore, by using the last equation
in (3.3) and relation (3.4), we easily find that the curvatures kg, kn and τg satisfy the
equation

τg

{∫
kg (c + w) dw + c2

}
− kn(w + c) = 0. (3.5)

Conversely, assume that equation (3.5) is satisfied. Then, we can write the curve

α(w) = β(w) − Σ0
−→
t − Σ1

−→
Q

with the functions Σ0(w), Σ1(w) ∈ C∞ as in the equation (3.4). Since α
′ = 0, we can say

that β is congruent to an isotropic rectifying curve.
Hence, we can write the position vector as

β(w) = (c + w)−→t +
(

−
∫

kg (c + w) dw + c2

)−→
Q

or

β(w) = (c + w)−→t +
(

−kn(w + c)
τg

)
−→
Q . (3.6)

If the curve β is a geodesic, kg = 0 and from (3.5) we get

c2τg (w) − kn (w) (w + c) = 0 ⇒ kn = c2
τg

w + c
, (3.7)

and since the equation κ2 = k2
g + k2

n is satisfied for the Galilean Darboux frame, by
considering the equations kg = 0 and kn = c2

τg

w+c the curvature κ of the curve β is found
as

κ = ±c2
τg

w + c
. (3.8)

Therefore, from (3.8) and (3.7) we get κ = ±kn.
In this way, we obtain the following theorem.

Theorem 3.1. Let β : I ⊂ R → G3 be a smooth isotropic curve with curvatures κ(w) ≥ 0,
τ in G3. If β is a rectifying curve generated by the Galilean Darboux frame, then the
following statements hold:

(1) The position vector of the curve β is given by

β(w) = (c + w)−→t +
(

−
∫

kg(w) (c + w) dw + c2

)−→
Q

or

β(w) = (c + w)−→t −
(

kn (w) (w + c)
τg

)
−→
Q .

(2) β is congruent to an isotropic rectifying curve, if and only if

τg (w)
{∫

kg(w) (c + w) dw + c2

}
− kn (w) (w + c) = 0, c, c2 ∈ R0.

(3) If the curve β is a geodesic curve, the normal curvature and the curvature κ are
given as

kn = ±κ = ±c2
τg

w + c
.
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4. The special tube surfaces generated by the rectifying curve with the
Darboux frame in G3

In this section, we present tube surfaces generated by a rectifying curve with the Dar-
boux frame in three-dimensional Galilean space. Furthermore, we compute the Gaussian
and mean curvature of tubular surface with the Darboux frame, by using Clairaut’s the-
orem we investigate the relation between the curves with v−parameter (and the curves
with w−parameter) and special curves such as geodesics, asymptotic curves on the specific
tube surfaces with the Darboux frame.

A canal surface is expressed as one-parameter set of spheres, whose center is described
by a radius function ρ and the orbit β (w), in addition to parametrizing the spine curve
via the Frenet frame. If the radius function ρ is constant, the canal surface is called the
tube or tubular surface [8].

We know that a tube surface Θ(w, v) of radius ρ around β(w) is the set of points at
a distance A from β(w), such that β(w) is a center curve on the surface Θ(w, v), R is a
point on the surface Θ(w, v) and {−→

t ,
−→
Q, −→n } is Frenet frame at R ∈ Θ(w, v). Then, since

the characteristic circles of canal surface lie in the plane which is perpendicular to the
tangent of center curve β(w), we can write tube surface with Darboux frame in G3 as

R = β (w) + ρ ⇒ ρ = A(cos v
→
n + sin v

→
b ), (4.1)

where v is the Euclidean angle between isotropic vectors; −→n and −→ρ lie in the Euclidean
normal plane of the curve β (w).

Theorem 4.1. Let β be an isotropic rectifying curve with the curvatures κ ≥ 0, τ in G3,
and let Θ(w, v) be the tube surface generated by the curve β with the Darboux frame. Then,
the following statements hold:

(1) The tube surface Θ(w, v) with the Darboux frame is parametrized by

Θ(w, v) = (w + c)−→t + A cos v−→n + (−kn(w + c)
τg

+ A sin v)
−→
b .

(2) The Gaussian curvature K and the mean curvature Hare respectively given as

K (w, v) =
− sin v

(
2kg + (w + c)dkg

dw

)
− cos v (kn + (w + c)kgτg)

A
; H = −1

2A
,

where this family of the tube surface has constant mean curvature.
(3) The first fundamental form of the surface Θ is given by

I = 2 .
w2 +

( 1
2H

)2
.
v2.

(4) If β(w (s)) is a geodesic curve on Θ(w (s) , v), the following statements satisfy:
(i) If the curve β is a geodesic with v−parameter on the surface Θ(w, v), then

v = 2c2H2s + d2 or v = 2H

∫
sin θds.

(ii) If the curve β is a geodesic with w−parameter on the surface Θ(w, v), then

w =
∫

cos θds or w = c1
4

s + d1.

(iii) If the rectifying curve β is a geodesic on the surface Θ(w (s) , v), then

K (w, v) = 2Hκ (w) cos v,

where ci, di ∈ R and θ is the angle between the meridian
.
β and Nw(s).
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Proof. Let us first assume that Θ(w, v) is the tube surface generated by the rectifying
curve β with the Darboux frame. From (4.1), the surface is given by the parametrization

Θ(w, v) = β(w) + A(cos v−→n + sin v
−→
Q), (4.2)

where v is the angle between the isotropic vectors −→n and
−→
A . Also, from the equation

(3.1) satisfying the condition (3.5), the tube surface is written as

Θ(w, v) = (w + c)−→t + A cos v−→n + (−
∫

kg (c + w) dw + c2 + A sin v)
−→
Q (4.3)

or
Θ(w, v) = (w + c)−→t + A cos v−→n + (−kn(w + c)

τg
+ A sin v)

−→
Q. (4.4)

The tangent space of the tube surface Θ(w, v) given by the equation (4.4) at an arbitrary
point of Θ(w, v) is spanned by

Θw = −→
t + ((w + c)kg − A cos vτg)

−→
Q + (τgA sin v) −→n = Ns; (4.5)

Θv = A(cos v
−→
Q − sin v−→n ) = ANv. (4.6)

Subsequently, the vector cross product is obtained as

Θw ×G3
Θv =


0 e2 e3

1
(

(w + c)kg

−A cos vτg

)
τgA sin v

0 A cos v −A sin v

 = A(0, sin v, cos v); (4.7)

∥∥∥Θw ×G3
Θv

∥∥∥ = A. (4.8)

By using equations (4.7) and (4.8), the unit isotropic normal vector η of Θ(w, v) can be
expressed as follows

η = sin v
−→
Q + cos v−→n . (4.9)

Furthermore, from (2.7) we obtain the equation δ = −Θv
A = sin v−→n − cos v

−→
Q, and since

−→n and
−→
Q are the isotropic vectors, the Galilean Frenet frame consideration leads to,

x(w, v) = w + c; xw = 1 = g1; xv = 0 = g2;

g11 = 1, g12 = 0, g22 = 0; g1 = 0, g2 = −1
A

; (4.10)

h11 = 1, h12 = 0, h22 = A2. (4.11)
It is possible to calculate the second fundamental form of Θ(w, v), which leads to the

following equations

Θww =
(

2kg + (w + c)dkg

dw
− A cos v

dτg

dw
− τ2

g A sin v

)−→
Q

+
(

kn + (w + c)kgτg − Aτ2
g cos v + dτg

dw
A sin v

)
−→n ; (4.12)

Θvv = A(− sin v
−→
Q − cos v−→n ); Θwv = τgA sin v

−→
Q + τgA cos v−→n . (4.13)

The second fundamental form coefficients can be calculated from (2.13) by using the
equations (4.9), (4.12), (4.13). Then, we get

L11 = Θww.
G3

η = sin v

(
2kg + (w + c)dkg

dw

)
+ cos v (kn + (w + c)kgτg) − Aτ2

g ;

L22 = −A; L12 = τgA. (4.14)
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Hence, from (2.14) the Gaussian curvature K and the mean curvature H are obtained
as

K (w, v) =
− sin v

(
2kg + (w + c)dkg

dw

)
− cos v (kn + (w + c)kgτg)

A
; (4.15)

H = g2
2L11 − 2g1g2L12 + g2

1L22
2w2 = −1

2A
. (4.16)

For the geodesic rectifying curve since kn(w+c)
τg

=constant and kg = 0, we can write

K (w, v) = 2Hkn cos v = 2Hκ (w) cos v.

After substituting (4.10) and (4.11) into (2.10), for the first fundamental form of the
tube surface the coefficients can be obtained as follows:

I = dw2 + ε

(
dw2 +

( 1
2H

)2
dv2

)
,

by means of Galilean geometry, we get

I = 2dw2 +
( 1

2H

)2
dv2; ε = 1. (4.17)

Since τg ̸= 0, for (w+c)kn

d = τg the first fundamental form has two variable parameters.
It is also important to note that the parametrization coordinates are orthogonal since
the first fundamental form is diagonal and Lagrangian can be obtained from the first
fundamental form. Then, we have

.
2w

2
+
( 1

2H

)2
.
v2 = L. (4.18)

The trajectories of moving particles on Θ(w (s) , v) are determined by the following
equations:

∂

∂s

(
∂L

∂w(s)
∂s

)
= ∂L

∂w (s)
; ∂

∂s

(
∂L
∂v
∂s

)
= ∂L

∂v
. (4.19)

These equations are called as the Euler-Lagrange equations. The particular solution
providing the initial value of differential equations in (4.19) is a geodesic β passing through
initial point (w(s0), v(s0)) and the end point (w(s1), v(s1)).

From Theorem 2.3, the geodesics on the tube surface can be obtained by using the
Euler-Lagrange differential equations as follows:

(1) For ∂
∂s

(
∂L

∂w(s)
∂s

)
= ∂L

∂w(s) = 0, we obtain ∂L
∂w(s)

∂s

= 4 .
w =constant, which means

w (s) = c1
4

s + d1 or .
w (s) = c1

4
. (4.20)

(2) For ∂
∂s

(
∂L
∂v
∂s

)
= ∂L

∂v = 0, we can obtain ∂
∂s

(
2
(

1
2H

)2 .
v

)
= 0, which means 2

(
1

2H

)2 .
v

is constant along the geodesic and leading to
v = 2H2c2s + d2 or .

v = 2H2c2. (4.21)
Let β(w) be a geodesic on the surface Θ(w (s) , v). Meanwhile, let θ be the angle between
.
β which is a meridian and Nw(s), and Nv is the vector pointing along parallels of Θ. Thus,
it can be said that {Nw, Nv} has an orthonormal basis and the unit tangent vector

.
β can

be written as
.
β = Nw cos θ + Nv sin θ = .

w (s) Θw + .
vΘv = .

w (s) Nw − .
v

1
2H

Nv.

It can be seen that 1
2H

.
v = − sin θ, and we can also write as 1

(2H)2
.
v = − 1

2H sin θ=constant
along β(w (s)). On the contrary, β(w (s)) is a rectifying curve satisfying the condition
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1
(2H)2

.
v =constant, then the second Euler-Lagrange equation is satisfied and differentiating

the equation L, substituting in the first Euler Lagrange equation. After that we obtain

v = −2H

∫
sin θds. (4.22)

Furthermore, the equation w = c1
4 s + d1 can be written as .

w = c1
4 . It is also possible

to see that .
w (s) = cos θ. Hence, we can write 4 .

w = 4 cos θ=constant along the rectifying
curve β(w (s)). If β(w (s)) is a rectifying curve satisfying the condition 4 cos θ =constant,
then the first Euler-Lagrange equation is satisfied and derivative of the equation L is taken,
substituting in the second Euler Lagrange equation. Hence, we get

w =
∫

cos θds, (4.23)

where ci, di ∈ R0. �
Theorem 4.2. The general equations of geodesics on the tube surface Θ (w, v) in G3 are
given by the following equations:

(1) For the parameters v = 2H2c2s + d2 or v = −2H
∫

sin θds, the following equations
are satisfied

dw

dv
= 1

2
√

2c3H2

√
L1 − H2c3 or dw

dv
= −1

2H
√

2 sin θ

√
L1 − sin2 θ; c3 ∈ R0 (4.24)

and the curve β is also geodesic with v−parameter.
(2) For the parameters w =

∫
cos θds or w = c1

4 s + d1, the following equations are
satisfied

dv

dw
= −c5H

√
L2 − c4

2
or dv

dw
= −2H

cos θ

√
L2 − 2 cos2 θ; c5, c4 ∈ R0 (4.25)

and the curve β is also geodesic with w−parameter, where H is the mean curvature
on the tube surface Θ(w, v), θ is the angle between the meridian

.
β and Nw(s).

Proof. In order to obtain the general equation of geodesics, we can taken into consider-
ation the Euler-Lagrange equations in (4.19) together with metric on the tube surfaces
in Galilean 3-space. From the solving of the differential equations in (4.19), we have the
following cases:

(1) For the parameters v = 2H2c2s + d2 or v = −2H
∫

sin θds, the geodesic equation
can be obtained by solving the differential equation ∂

∂s

(
∂L
∂v
∂s

)
= ∂L

∂v , leading to
.
v = 2H2c2 or .

v = −2H sin θ. Also, if we substitute .
v into the equation 2 .

w2 +(
1

2H

)2 .
v2 = L1,2, then we get

2
(

dw

dv

dv

ds

)2
+
( 1

2H

)2 (dv

ds

)2
= L1.

Furthermore, we obtain the general equations of geodesic as dw
dv =

√
L1−H2c3

2
√

2c3H2 or
dw
dv = −

√
L1−sin2 θ

2
√

2H sin θ
.

(2) For the parameters w =
∫

cos θds or w = c1
4 s + d1 obtained by solving the differ-

ential equation ∂
∂s

(
∂L
∂w
∂s

)
= ∂L

∂w , we can write .
w = c1

4 ; .
w = cos θ. If .

w is added to
the Lagrangian equation, the following equation can be written

2
(

dw

ds

)2
+ A2

(
dv

dw

dw

ds

)2
= L2.
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Hence, the general equations of geodesic on Θ is written as dv
dw = −c5H

√
L2 − c4

2

or dv
dw = −2H

√
L2−2 cos2 θ
cos θ , where ci, di ∈ R.

�

Corollary 4.3. Let β be a regular rectifying curve in G3 with curvatures κ ≥ 0, τ and let
Θ(w, v) be the tube surface generated by the rectifying curve β with the Darboux frame.
Then, the following statements hold:

(a) The rectifying curves with v−parameter on Θ(w, v) are also geodesic curves.
(b) The rectifying curves with w−parameter on Θ(w, v) are geodesic curves if and only

if kg, kn and τg satisfy the following condition

τg (w) = −2H

∫ ( (
2kg + (w + c)dkg

dw

)
cos v − (kn + (w + c)kgτg) sin v

)
dw,

where H is the mean curvature on the surface Θ.

Proof. Let’s find the expressions Θvv ×
G3

η, Θww ×
G3

η for the curve β with v−parameter(
and w−parameter) on the tube surface Θ(w, v).

If the curve with v− parameter is a geodesic curve, then the equation Θvv ×
G3

η = 0 is
satisfied. Hence, we get Θvv ×

G3
η = 0 by using the expression Θvv ×

G3
η.

If the curve β on the surface is the geodesic curve with w-parameter, from the equations
(4.12) and (4.9), we get

Θww ×
G3

η =

 (
2kg + (w + c)dkg

dw − d2

dw2

(
kn(w+c)

τg

))
cos v

−
(
kn + (w + c)kgτg − τg

d
dw

(
kn(w+c)

τg

))
sin v − dτg

dw A

−→
t ,

and for the geodesic curve β with w−parameter, the last equation is equal to zero. So, we
obtain

0 =
(

2kg + (w + c)dkg

dw
− d2

dw2

(
kn(w + c)

τg

))
cos v

−
(

kn + (w + c)kgτg − τg
d

dw

(
kn(w + c)

τg

))
sin v − dτg

dw
A. (4.26)

Moreover, for a rectifying curve we obtain the following equation

− 2H

∫ ( (
2kg + (w + c)dkg

dw

)
cos v − (kn + (w + c)kgτg) sin v

)
dw = τg (w) . (4.27)

�

Theorem 4.4. Let β be an isotropic rectifying curve in G3 with curvatures κ ≥ 0, τ and
let Θ(w, v) be the tube surface generated by the rectifying curve with the Darboux frame.
Then, the following statements hold:

(a) If the curve β with w−parameter on Θ(w, v) is a geodesic curve, then the following
equations are satisfied

A = −κ sin v

τw
;

τ (w) = 2H

∫
κ (w) sin vdw;

κ (w) = τw

2H sin v
;

K (w, v) = τw cot v.
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(b) If the curve β with w−parameter on Θ(w, v) is an asymptotic curve, then the
following equation are satisfied

K (w, v) = 2Hκ(w) sin v
−f(w) sin v − g(w) cos v

f(w) cos v − g(w) sin v
,

where f(w) = (2κ + (w + c)κw) , g(w) = (w + c)κτ.

Proof. (a) If the rectifying curve β with w−parameter on the tube surface Θ(w, v) is
a geodesic curve, then kg = 0, kn = κ, τg = τ . So, from (4.26) we get

−κ sin v = dτ

dw
A; A = −1

2H

and from the previous equation we write

2H

∫
κ (w) sin vdw = τ (w)

or
−κ sin v

τw
= A. (4.28)

Also, from (4.15) we have

K (w, v) = −κ cos v

A
= τw cot v; (4.29)

−κ sin v

τw
= −1

2H
⇒ κ (w) = τw

2H sin v
. (4.30)

(b) If the curve β with w−parameter on the tube surface Θ(w, v) is an asymptotic
curve, then kn = 0 kg = κ, τg = τ and from (4.26), we get

(2κ + (w + c)κw) cos v − (w + c)κτ sin v

τw
= A (4.31)

and for the equations f(w) = (2κ + (w + c)κw) , g(w) = (w + c)κτ , the Gaussian
curvature K (w, v) is obtained as

K (w, v) = − (2κ + (w + c)κw) sin v − (w + c)κτ cos v

A
;

K (w, v) = τw
−f(w) sin v − g(w) cos v

f(w) cos v − g(w) sin v
;

K (w, v) = 2Hκ(w) sin v
−f(w) sin v − g(w) cos v

f(w) cos v − g(w) sin v
. (4.32)

�

Theorem 4.5. Let Θ be the tube surface generated by the rectifying curve β in G3. Then,
the following statements hold:

(1) If the rectifying curve β with w−parameter is an asymptotic curve if and only if
the following condition is satisfied.

A =

(
2kg + (w + c)dkg

dw

)
sin v + (kn + (w + c)kgτg) cos v

τ2
g

In this case,
(a1) For the condition A = κ(w) cos v

τ(w)2 , if the rectifying curve β with w−parameter
is also a geodesic curve, then the Gaussian curvature is given by

K (w, v) = −τ (w)2 (1 + (w + c)τ (w)) .
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(a2) If the rectifying curve β with w−parameter is an asymptotic curve satisfying
the following equation

A = (2κ + (w + c)κw) sin v + (w + c)κτ cos v

τ2 ,

then the Gaussian curvature is given by

K (w, v) = −τ (w)2 .

(2) There is no asymptotic rectifying curve β with v−parameter on the tube surface
Θ.

Proof. (1) Let Θ be the tube surface generated by the rectifying curve β with w−parameter
in G3. If the curve β is an asymptotic, then the equation Θww.

G3
η = 0 is satisfied.

In this case, from the equations (4.9) and (4.12), we get

Θww.
G3

η =
(

2kg + (w + c)dkg

dw
− d2

dw2

(
kn(w + c)

τg

))
sin v

+
(

kn + (w + c)kgτg − τg
d

dw

(
kn(w + c)

τg

))
cos v − Aτ2

g .

Hence, from the previous equation we obtain

A =

(
2kg + (w + c)dkg

dw

)
sin v + (kn + (w + c)kgτg) cos v

τ2
g

. (4.33)

Thus,
(a1) If the rectifying curve β is a geodesic curve on the surface, then kg = 0, kn = κ,

τg = τ , kn(w+c)
τg

=constant. If we replace these in (4.33) it follows that

A = κ cos v

τ2 , (4.34)

and by a calculation, the Gaussian curvature is

K (w, v) = − (κ + (w + c)κτ) cos v

A
= −τ (w)2 (1 + (w + c)τ (w)) . (4.35)

(a2) If the rectifying curve β is an asymptotic curve, then kg = κ, kn = 0, τg = τ .
If we replace in (4.33) we get

A = (2κ + (w + c)κw) sin v + (w + c)κτ cos v

τ2 (4.36)

and by a calculation, the Gaussian curvature is

K (w, v) = − (2κ + (w + c)κw) sin v − (w + c)κτ cos v

A
= −τ (w)2 . (4.37)

(2) If the curve β is an asymptotic curve with v−parameter, the equation Θvv.
G3

η = 0
is satisfied. In this case, we obtain Θvv.

G3
η ̸= 0. Therefore, there is no asymptotic

rectifying curve β with v−parameter.
�
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5. Conclusion
In this paper, we investigate the rectifying curves with Darboux frame in Galilean 3-

space. Then, by using the rectifying curves with Darboux frame we introduce the special
tube surface in Galilean 3-space. Besides, we compute the Gaussian and mean curvature
of tube surface with Darboux frame and we give some characterizations for the geodesic
curves and the asymptotic curves with v−parameter( and w−parameter) by using the
Gaussian and mean curvatures. Furthermore, we express the general equations of geodesics
on special tube surfaces with the Darboux frame by using the Euler-Lagrange equations
with the help of Clairauts theorem.
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