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Abstract 

The purpose of this study is to examine the properties of scattering solutions and the scattering 

function of an impulsive Sturm-Liouville boundary value problem on the semi axis. By using 

Jost solutions, we obtain the scattering function, asymptotic representation of Jost function and 

resolvent operator. Finally, we study scattering solutions and scattering function of an 

unperturbated impulsive equation. 
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1. INTRODUCTION 

 

Spectral theory of non-selfadjoint singular Sturm-Liouville operators was initiated by Naimark in 1960 [1]. 

Naimark investigated a part of the continuous spectrum that distrupted the integrity of spectral singularities 

[1]. Later, in many studies, the eigenvalues and spectral singularities of the boundary value problem with 

Sturm-Liouville were investigated [2-5]. 

 

Some processes are subject to instant and sharp changes due to external factors. These changes are short-

term changes and are too short to be neglected when compared to the entire duration. Neither differential 

equations nor difference equations are sufficient to model these processes. A new theory was needed for 

this. To explain such processes mathematically, equations containing impulsive effects, often called 

impulsive equations, are used. Many researchers have worked on impulsive boundary value problems lately 

[6-10]. Because many subjects studied in applied sciences are represented by these equations. Let’s give a 

few examples of them. These are the changes in the speed of the valve cover in the transition from open to 

closed, the vibrating stroke systems, the state of the solid object passing from a certain liquid density to the 

other liquid density, deaths in the population, changes in closed market product prices, etc. The first 

research on impulsive differential equations was done by A.D. Myshkis and V.D. Milman [11]. Samoilenka 

and Perestyuk also made great contributions to this theory [12-14]. Solutions of first and second order 

differential equations under different impulsive conditions are discussed and the properties provided by 

these solutions are examined [15-18]. As is well known, there is the spectral parameter only the differential 

equation in the classical Sturm-Liouville problems. Differently from other studies, innovation in this study 
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includes the density function 𝜌 and spectral parameter is in both boundary condition and differential 

equation. This gives the problem a different perspective. 

Let us introduce Sturm-Liouville operator generated by the equation 

 

−𝑣′′ + 𝑞(𝑡)𝑣 = ħ2𝜌(𝑡)𝑣,   𝑡 ∈ [0, 1) ∪ (1, ∞),                                                                                                                        (1) 

 

with boundary condition  

 

−(µ1𝑣(0) − µ2𝑣′(0)) = ħ2(𝛿1𝑣(0) − 𝛿2𝑣′(0))           (2) 

 

and impulsive condition  

 

𝑣(1+) = 𝛾𝑣(1−),  𝑣′(1+) = 𝜁𝑣′(1−),          (3) 

 

where 𝛾, 𝜁, µ𝑖, 𝛿𝑖, 𝑖 = 1,2 are real numbers, 𝛾𝜁 ≠ 0, 𝛿2 ≠ 0, µ1𝛿2 − µ2𝛿1 > 0, ħ is a spectral parameter 

and 𝑞 is a real valued function satisfying the condition 

 

∫ (1 + 𝑡)|𝑞(𝑡)|𝑑𝑡 <
∞

0
∞. 

 
      (4) 

𝜌(𝑡) = {
   𝜂2  ;   0 ≤ 𝑡 < 1

1  ;      1 ≤ 𝑡,
  

𝜌 is a density function defined as above for 𝜂 ∈ (0, ∞), 𝜂 ≠ 1. 

Under the condition (4), Equation (1) has the bounded solution satisfying the condition 

lim
𝑡→∞

𝑒(𝑡, ħ)𝑒−𝑖ħ𝑡 = 1,  

where 

ħ ∈ ℂ̅+ ≔ {ħ ∈ ℂ ∶ 𝐼𝑚ħ ≥ 0}, with 𝑡 ∈ (0, ∞). 

𝑒(𝑡, ħ) has the integral representation  

𝑒(𝑡, ħ) = 𝑒𝑖ħ𝑡 + ∫ 𝐾(𝑡, 𝑠)𝑒𝑖ħ𝑠𝑑𝑠,
∞

𝑡
  ħ ∈ ℂ̅+,                                                                                                                  (5) 

where 𝐾(𝑡, 𝑠) is defined by the potential function 𝑞 [2,19]. 

The set up of this paper is summarized as follows: In section 2, we first find Jost solution, Jost function and 

scattering function of impulsive Sturm-Liouville boundary value problem (1)-(3). Later we studied the 

properties of the scattering function of (1)-(3). We also examined the properties of the scattering function 

of (1)-(3). In section 3, we describe the set of eigenvalues of this problem. We also obtain the asymptotic 

equation of the Jost function and resolvent operator of this problem. In section 4, by taking an example, we 

examine the Jost solution, Jost function and scattering function of ISBVP (1)-(3). Finally, in section 5, we 

make some conclusions. 

 

2. THE SCATTERING SOLUTIONS 

 

It is known that 𝑆(𝑡, ħ2, 𝜂) and 𝐶(𝑡, ħ2, 𝜂) are the fundamental two solutions of the Equation (1) in the 

interval [0,1) satisfying the initial conditions 

 

𝑆(0, ħ2, 𝜂) = 0,   𝑆′(0, ħ2, 𝜂) = 1,  
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𝐶(0, ħ2, 𝜂) = 1,   𝐶′(0, ħ2, 𝜂) = 0.  
 

Integral representations of these solutions are as follows 

 

𝑆(𝑡, ħ2, 𝜂) =
sin ħ𝜂𝑡

ħ𝜂
+ ∫ 𝐴(𝑡, 𝑠)

sin ħ𝜂𝑠
ħ𝜂

𝑡

0
𝑑𝑠           (6) 

 

and 

 

𝐶(𝑡, ħ2, 𝜂) = cos ħ𝜂𝑡 + ∫ 𝐵(𝑡, 𝑠) cos ħ𝜂𝑠𝑑𝑠 ,
𝑡

0
            (7) 

 

where the kernel function 𝐴(𝑡, 𝑠) and 𝐵(𝑡, 𝑠) are defined by the potential function 𝑞 [2]. As is well known 

that the solutions 𝑆(𝑡, ħ2, 𝜂) and  𝐶(𝑡, ħ2, 𝜂) are entire functions of ħ and  

 

𝑊[𝑆(𝑡, ħ2, 𝜂), 𝐶(𝑡, ħ2, 𝜂)] = −1,     ħ ∈ ℂ,  
 

where 𝑊[𝑣1, 𝑣2] is the wronskian of the solutions 𝑣1 and 𝑣2 of the Equation (1).  

 

Now we consider the following function by the help of 𝑆(𝑡, ħ2, 𝜂), 𝐶(𝑡, ħ2, 𝜂) and 𝑒(𝑡, ħ) for ħ ∈ ℂ̅+ 

 

𝐸(𝑡, ħ, 𝜂) = {
𝑤(ħ, 𝜂)𝑆(𝑡, ħ2, 𝜂) + 𝜏(ħ, 𝜂)𝐶(𝑡, ħ2, 𝜂)  ;   𝑡 ∈ [0,1)

𝑒(𝑡, ħ)                            ;   𝑡 ∈ (1, ∞).
                                                           (8) 

 

From the impulsive condition (3), we write for ħ ∈ ℂ̅+ 

 

𝑤(ħ, 𝜂)𝑆(1, ħ2, 𝜂) + 𝜏(ħ, 𝜂)𝐶(1, ħ2, 𝜂) =
1
𝛾

𝑒(1, ħ)  

 

𝑤(ħ, 𝜂)𝑆′(1, ħ2, 𝜂) + 𝜏(ħ, 𝜂)𝐶′(1, ħ2, 𝜂) =
1
𝜁

𝑒′(1, ħ).  

  

𝑤(ħ, 𝜂) and 𝜏(ħ, 𝜂) coefficients are obtained as follows 

 

𝑤(ħ, 𝜂) =
1
𝜁

𝐶(1, ħ2, 𝜂)𝑒′(1, ħ) −
1
𝛾

𝐶′(1, ħ2, 𝜂)𝑒(1, ħ)                                                                              (9) 

 

and 

 

 𝜏(ħ, 𝜂) =
1
𝛾

𝑆′(1, ħ2, 𝜂)𝑒(1, ħ) −
1
𝜁

𝑆(1, ħ2, 𝜂) 𝑒′(1, ħ).                                                                           (10) 

 

The function 𝐸(𝑡, ħ, 𝜂) is the Jost solution of (1)-(3). From (2), the Jost function of (1)-(3) is given as 

 

𝐸(ħ, 𝜂) = (µ2 + ħ2𝛿2)𝑤(ħ, 𝜂) − (µ1 + ħ2𝛿1) 𝜏(ħ, 𝜂).                                                                            (11) 

 

It is analytic in ℂ+ and continuous up to the real axis.  

 

It is clear that [5] 

 

𝑊[𝑒(𝑡, ħ), 𝑒(𝑡, −ħ)] = −2𝑖ħ,     ħ ∈ ℝ\{0}.  
 

For ħ ∈ ℝ\{0}, let us consider the other solution of ISBVP (1)-(3) 
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𝐹(𝑡, ħ, 𝜂) = {
𝜓(𝑡, ħ, 𝜂)                         ;    𝑡 ∈ [0,1)  

𝚤(ħ, 𝜂)𝑒(𝑡, ħ) + 𝛷(ħ, 𝜂)𝑒(𝑡, −ħ)  ;    𝑡 ∈ (1, ∞),
  

 

where 𝜓(𝑡, ħ, 𝜂) is the solution of (1) given by  

 

𝜓(𝑡, ħ, 𝜂) = (µ1 + ħ2𝛿1) 𝑆(𝑡, ħ2, 𝜂) + (µ2 + ħ2𝛿2)𝐶(𝑡, ħ2, 𝜂).  
 

It is easy to see that the function 𝜓(𝑡, ħ, 𝜂) is an entire function with respect to ħ. From (3), we obtain that 
 

𝚤(ħ, 𝜂) =
1

2𝑖ħ
[𝜁𝜓′(1, ħ, 𝜂)𝑒(1, −ħ) − 𝛾𝜓(1, ħ, 𝜂)𝑒′(1, −ħ) ],                                                               (12) 

𝛷(ħ, 𝜂) =
1

2𝑖ħ
[𝛾𝜓(1, ħ, 𝜂)𝑒′(1, ħ) − 𝜁𝜓′(1, ħ, 𝜂)𝑒(1, ħ) ].                                                                    (13) 

By using (9), (10), (12) and (13), we find following equations 

𝚤(ħ, 𝜂) = −
𝛾𝜁
2𝑖ħ

[ 𝑤(ħ, 𝜂)̅̅ ̅̅ ̅̅ ̅̅ ̅(µ2 + ħ2𝛿2) −  𝜏(ħ, 𝜂)̅̅ ̅̅ ̅̅ ̅̅ ̅(µ1 + ħ2𝛿1)]                                                               (14) 

𝛷(ħ, 𝜂) =
𝛾𝜁
2𝑖ħ

[𝑤(ħ, 𝜂)(µ2 + ħ2𝛿2) − 𝜏(ħ, 𝜂)(µ1 + ħ2𝛿1)].                                                                  (15) 

Theorem 1. For all ħ ∈ ℝ\{0}, 𝐸(ħ, 𝜂) ≠ 0. 

Proof. Suppose that there exists a ħ0 in ℝ\{0} such that 𝐸(ħ0, 𝜂) = 0. Using (11), (14) and (15), it is 

clear that 𝚤(ħ0, 𝜂) = 𝛷(ħ0, 𝜂) = 0. Then the solution 𝐹(𝑡, ħ0, 𝜂) is a trivial solution of (1)-(3) which gives 

a contradiction, i.e., 𝐸(ħ, 𝜂) ≠ 0 for all ħ ∈ ℝ\{0}. 

Lemma 1. The wronskian of the solutions 𝐸(𝑡, ħ, 𝜂) and 𝐹(𝑡, ħ, 𝜂) is found as  

𝑊[𝐸(𝑡, ħ, 𝜂), 𝐹(𝑡, ħ, 𝜂)] = {
−𝐸(ħ, 𝜂)  ;   𝑡 ∈ [0,1)

−𝛾𝜁𝐸(ħ, 𝜂)  ;   𝑡 ∈ (1, ∞).
  

Proof. If we write the wronskian of 𝐸(𝑡, ħ, 𝜂) and 𝐹(𝑡, ħ, 𝜂) for 𝑡 ∈ [0,1), we get 

𝑊[𝐸(𝑡, ħ, 𝜂), 𝐹(𝑡, ħ, 𝜂)] =  𝐸(𝑡, ħ, 𝜂)𝐹′(𝑡, ħ, 𝜂) − 𝐹(𝑡, ħ, 𝜂)𝐸′(𝑡, ħ, 𝜂)  

 = −[(µ2 + ħ2𝛿2)𝑤(ħ, 𝜂) − (µ1 + ħ2𝛿1)𝜏(ħ, 𝜂)] 

  = −𝐸(ħ, 𝜂). 

Similarly, for 𝑡 ∈ (1, ∞), it is clear that 

𝑊[𝐸(𝑡, ħ, 𝜂), 𝐹(𝑡, ħ, 𝜂)] = −2𝑖ħ 𝛷(ħ, 𝜂). 

Using (15), we find that  

𝑊[𝐸(𝑡, ħ, 𝜂), 𝐹(𝑡, ħ, 𝜂)] = −𝛾𝜁𝐸(ħ, 𝜂), 

for 𝑡 ∈ (1, ∞). This completes the proof. 

The scattering function of (1)-(3) is expressed as follows 
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𝑆(ħ, 𝜂) =
𝐸(ħ,𝜂)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝐸(ħ,𝜂)
,     ħ ∈ ℝ\{0}. 

From (11), we write following equality 

𝑆(ħ, 𝜂) =
(µ2+ħ

2
𝛿2)𝑤(ħ,𝜂)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ −(µ1+ħ

2
𝛿1)𝜏(ħ,𝜂)̅̅ ̅̅ ̅̅ ̅̅ ̅

(µ2+ħ
2

𝛿2)𝑤(ħ,𝜂)−(µ1+ħ
2

𝛿1)𝜏(ħ,𝜂)
,                                                                                               (16) 

for all ħ ∈ ℝ\{0}. 

Theorem 2. For all ħ ∈ ℝ\{0}, the scattering function satisfies 

𝑆(ħ, 𝜂)̅̅ ̅̅ ̅̅ ̅̅ ̅ = S−1(ħ, 𝜂) = 𝑆(−ħ, 𝜂).  

Proof. By using (16), we write 

𝑆(−ħ, 𝜂) =
(µ2+ħ

2
𝛿2)𝑤(−ħ,𝜂)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅−(µ1+ħ

2
𝛿1)𝜏(−ħ,𝜂)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

(µ2+ħ
2

𝛿2)𝑤(−ħ,𝜂)−(µ1+ħ
2

𝛿1)𝜏(−ħ,𝜂)
                                                                                          (17)                                                      

=
(µ2+ħ

2
𝛿2)𝑤(ħ,𝜂)−(µ1+ħ

2
𝛿1)𝜏(ħ,𝜂)

(µ2+ħ
2

𝛿2)𝑤(ħ,𝜂)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ −(µ1+ħ
2

𝛿1)𝜏(ħ,𝜂)̅̅ ̅̅ ̅̅ ̅̅ ̅
 . 

By using (16) and (17), we find that  

𝑆(ħ, 𝜂)̅̅ ̅̅ ̅̅ ̅̅ ̅ = S−1(ħ, 𝜂) = 𝑆(−ħ, 𝜂). 

It completes the proof. 

 

3. EIGENVALUES AND RESOLVENT OPERATOR OF ISBVP 

Let the unlimited solution of the Equation (1) in (1, ∞) be �̌�(𝑡, ħ) 

lim
𝑡→∞

�̌�(𝑡, ħ)𝑒𝑖ħ𝑡 = 1,     lim
𝑡→∞

�̌�′(𝑡, ħ)𝑒𝑖ħ𝑡 = −𝑖ħ,     ħ ∈ ℂ̅+.    

It is known that  

𝑊[𝑒(𝑡, ħ), �̌�(𝑡, ħ)] = −2𝑖ħ,     𝑡 ∈ (1, ∞),    ħ ∈ ℂ̅+.   

Now, let us define the following solutions of (1) for all  ħ ∈ ℂ̅+\{0} and  ħ ∈ ℂ̅−\{0} 

𝐻1(𝑡, ħ, 𝜂) = {
 𝜓(𝑡, ħ, 𝜂)                     ;   𝑡 ∈ [0,1)    

𝜅1(ħ, 𝜂)𝑒(𝑡, ħ) + 𝜃1(ħ, 𝜂)�̌�(𝑡, ħ)  ;   𝑡 ∈ (1, ∞)  
                                                                   (18) 

and 

𝐻2(𝑡, ħ, 𝜂) = {
 𝜓(𝑡, ħ, 𝜂)                     ;   𝑡 ∈ [0,1)    

𝜅2(ħ, 𝜂)𝑒(𝑡, −ħ) + 𝜃2(ħ, 𝜂)�̌�(𝑡, −ħ)  ;   𝑡 ∈ (1, ∞),
                                                             (19) 

respectively. By using (3), we obtain the coefficients for ħ ∈ ℂ̅+\{0} 
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𝜅1(ħ, 𝜂) = −
1

2𝑖ħ
[𝛾 𝜓(1, ħ, 𝜂)�̌�′(1, ħ) − 𝜁𝜓′(1, ħ, 𝜂)�̌�(1, ħ)],  

𝜃1(ħ, 𝜂) =
1

2𝑖ħ
[𝛾 𝜓(1, ħ, 𝜂)𝑒′(1, ħ) − 𝜁𝜓′(1, ħ, 𝜂)𝑒(1, ħ)]  

and for ħ ∈ ℂ̅−\{0} 

𝜅2(ħ, 𝜂) =
1

2𝑖ħ
[𝛾 𝜓(1, ħ, 𝜂)�̌�′(1, −ħ) − 𝜁𝜓′(1, ħ, 𝜂)�̌�(1, −ħ)],  

𝜃2(ħ, 𝜂) = −
1

2𝑖ħ
[𝛾 𝜓(1, ħ, 𝜂)𝑒′(1, −ħ) − 𝜁𝜓′(1, ħ, 𝜂)𝑒(1, −ħ)].  

Using (9) and (10), 𝜃1(ħ, 𝜂) and 𝜃2(ħ, 𝜂) can be written as follows 

𝜃1(ħ, 𝜂) =
𝛾𝜁
2𝑖ħ

[(µ2 + ħ2𝛿2)𝑤(ħ, 𝜂) − (µ1 + ħ2𝛿1)𝜏(ħ, 𝜂)],                                                                          (20) 

𝜃2(ħ, 𝜂) = −
𝛾𝜁
2𝑖ħ

[(µ2 + ħ2𝛿2)𝑤(−ħ, 𝜂) − (µ1 + ħ2𝛿1)𝜏(−ħ, 𝜂)],                                                               (21) 

respectively. 

The solutions 𝐸(𝑡, ħ, 𝜂) and 𝐻1(𝑡, ħ, 𝜂) provide for ħ ∈ ℂ̅+\{0} 

𝑊[𝐸(𝑡, ħ, 𝜂), 𝐻1(𝑡, ħ, 𝜂)] = {
−𝐸(ħ, 𝜂)  ;   𝑡 ∈ [0,1)

−𝛾𝜁𝐸(ħ, 𝜂)  ;   𝑡 ∈ (1, ∞)
  

and 𝐸(𝑡, ħ, 𝜂), 𝐻2(𝑡, ħ, 𝜂) satisfy for ħ ∈ ℂ̅−\{0} 

𝑊[𝐸(𝑡, ħ, 𝜂), 𝐻2(𝑡, ħ, 𝜂)] = {
−𝑀(ħ, 𝜂)  ;   𝑡 ∈ [0,1)

−𝛾𝜁𝑀(ħ, 𝜂)  ;   𝑡 ∈ (1, ∞),
  

where 

𝑀(ħ, 𝜂) = (µ2 + ħ2𝛿2)𝑤(−ħ, 𝜂) − (µ1 + ħ2𝛿1)𝜏(−ħ, 𝜂).                                                                            (22)  

Theorem 3. The Jost function of (1)-(3) satisfies  

𝐸(ħ, 𝜂) =
𝑖ħ

3
𝛿2𝑒𝑖ħ(1−𝜂)

2𝛾𝜁
(𝛾 + 𝜁𝜂 + 𝑜(1)),     ħ ∈ ℂ̅+,     |ħ| → ∞,                                                                  (23) 

𝑀(ħ, 𝜂) = −
𝑖ħ

3
𝛿2𝑒−𝑖ħ(1−𝜂)

2𝛾𝜁
(𝛾 + 𝜁𝜂 + 𝑜(1)),     ħ ∈ ℂ̅−,     |ħ| → ∞.                                                          (24) 

Proof. By using (6) and (7), we obtain that 

𝐶(1, ħ2, 𝜂) = 𝑒−𝑖ħ𝜂 (
1
2

+ 𝑜(1)),  

𝐶′(1, ħ2, 𝜂) = 𝑒−𝑖ħ𝜂ħ𝜂 (−
𝑖
2

+ 𝑂 (
1
ħ

))                                                                                                               (25) 

and  
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𝑆(1, ħ2, 𝜂) =
𝑒−𝑖ħ𝜂

ħ𝜂
(

𝑖

2
+ 𝑂 (

1

ħ
)),  

𝑆′(1, ħ2, 𝜂) = 𝑒−𝑖ħ𝜂 (
1

2
+ 𝑜(1)),                                                                                                                          (26) 

for  ħ ∈ ℂ̅+, |ħ| → ∞.   

Similarly for ħ ∈ ℂ̅+, |ħ| → ∞, from (5), we get 

𝑒(1, ħ) = 𝑒𝑖ħ(1 + 𝑜(1)), 

𝑒′(1, ħ) = ħ𝑒𝑖ħ (𝑖 + 𝑂 (
1

ħ
)).                                                                                                                                  (27) 

Using (25), (26) and (27), we find the asymptotic representation of 𝐸(ħ, 𝜂). Similarly, equation 

asymptotic for 𝑀(ħ, 𝜂) by given (24) can be easily obtained. 

Corollary 1.  The set of eigenvalues of ISBVP (1)-(3) is  

𝜎𝑑 = {ħ ∈ ℂ+: 𝜃1(ħ, 𝜂) = 0} ∪ {ħ ∈ ℂ−: 𝜃2(ħ, 𝜂) = 0} . 

Proof. It is obvious from (18) that the first part of 𝐻1(𝑡, ħ, 𝜂) in 𝐿2(0,1). Besides, if 𝜃1(ħ, 𝜂) = 0, then the 

second part of the 𝐻1(𝑡, ħ, 𝜂) is in 𝐿2(1, ∞). Similarly, we find the second part of 𝜎𝑑. It follows from (11), 

(20), (21), (22) and the definition of eigenvalues that [20] 

𝜎𝑑 = {ħ ∈ ℂ+: 𝜃1(ħ, 𝜂) = 0} ∪ {ħ ∈ ℂ−: 𝜃2(ħ, 𝜂) = 0}  

or 

𝜎𝑑 = {ħ ∈ ℂ+: 𝐸(ħ, 𝜂) = 0} ∪ {ħ ∈ ℂ−: 𝑀(ħ, 𝜂) = 0}.  

Theorem 4.  Under condition (4), 

𝑅ℎ𝑓 = ∫ 𝐺(𝑡, 𝑠; ħ, 𝜂)𝑓(𝑡)𝑑𝑡,
∞

0
  

is the resolvent operator of (1)-(3),   

𝐺(𝑡, 𝑠; ħ, 𝜂) = {
𝐺1(𝑡, 𝑠; ħ, 𝜂)  ;   ħ ∈ ℂ̅+

𝐺2(𝑡, 𝑠; ħ, 𝜂)  ;   ħ ∈ ℂ̅−

  

and  

𝐺1(𝑡, 𝑠; ħ, 𝜂) = {

𝐸(𝑡,ħ,𝜂)𝐻1(𝑠,ħ,𝜂)

𝑊[𝐸(𝑡,ħ,𝜂),𝐻1(𝑡,ħ,𝜂)]
  ;   0 ≤ 𝑠 < 𝑡

𝐻1(𝑡,ħ,𝜂)𝐸(𝑠,ħ,𝜂)

𝑊[𝐸(𝑡,ħ,𝜂),𝐻1(𝑡,ħ,𝜂)]
  ;   𝑡 ≤ 𝑠 < ∞,
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𝐺2(𝑡, 𝑠; ħ, 𝜂) = {

𝐸(𝑡,−ħ,𝜂)𝐻2(𝑠,ħ,𝜂)

𝑊[𝐸(𝑡,−ħ,𝜂),𝐻2(𝑡,ħ,𝜂)]
  ;   0 ≤ 𝑠 < 𝑡

𝐻2(𝑡,ħ,𝜂)𝐸(𝑠,−ħ,𝜂)

𝑊[𝐸(𝑡,−ħ,𝜂),𝐻2(𝑡,ħ,𝜂)]
  ;   𝑡 ≤ 𝑠 < ∞,

  

is defined as Green function for all 𝑡 ≠ 1, 𝑠 ≠ 1. 

Proof. In order to get resolvent operator, we will consider the following equation  

−𝑣′′ + 𝑞(𝑡)𝑣 − ħ2𝑣 = 𝑓(𝑡),     𝑡 ∈ [0,1) ∪ (1, ∞).                                                                                          (28) 

By using (8) and (18), we write the solution of (28) 

𝜑(𝑡, ħ, 𝜂) = 𝑑1(𝑡, ħ)𝐸(𝑡, ħ, 𝜂) + 𝑑2(𝑡, ħ)𝐻1(𝑡, ħ, 𝜂).  

Using the method of variation of parameters, 𝑑1(𝑡, ħ) and 𝑑2(𝑡, ħ) are found as follows 

𝑑1(𝑡, ħ) = 𝑎 + ∫
𝑓(𝑠)𝐻1(𝑠,ħ,𝜂)

𝑊[𝐸(𝑡,ħ,𝜂),𝐻1(𝑡,ħ,𝜂)]
𝑑𝑠,

𝑡

0
  

𝑑2(𝑡, ħ) = 𝑏 + ∫
𝑓(𝑠)𝐸(𝑠,ħ,𝜂)

𝑊[𝐸(𝑡,ħ,𝜂),𝐻1(𝑡,ħ,𝜂)]
𝑑𝑠,

∞

𝑡
  

where 𝑎 and 𝑏 are real numbers. It is obvious that the solution 𝜑(𝑡, ħ, 𝜂) in 𝐿2(0, ∞). Then we find that 

𝑏 = 0. From (2), we write the following equation  

𝑎[(µ1 + ħ2𝛿1)𝜏(ħ, 𝜂) − (µ2 + ħ2𝛿2)𝑤(ħ, 𝜂)] = 0.  

By using (10) and Theorem 1, we get that 𝑎 = 0. So we clearly write that 

𝜑(𝑡, ħ, 𝜂) = 𝐸(𝑡, ħ, 𝜂) ∫
𝑓(𝑠)𝐻1(𝑠,ħ,𝜂)

𝑊[𝐸(𝑡,ħ,𝜂),𝐻1(𝑡,ħ,𝜂)]
𝑑𝑠 + 𝐻1(𝑡, ħ, 𝜂)

𝑡

0 ∫
𝑓(𝑠)𝐸(𝑠,ħ,𝜂)

𝑊[𝐸(𝑡,ħ,𝜂),𝐻1(𝑡,ħ,𝜂)]
𝑑𝑠.

∞

𝑡
  

The second part is obtained similarly. It completes the proof. 

 

4. UNPERTURBATED IMPULSIVE EQUATIONS 

In this section, we give a special example as an application to draw attention to the validity of our results. 

We study Jost solution, Jost function and scattering function of this example. 

Example 1. We shall define the following impulsive Sturm-Liouville boundary value problem 

−𝑣′′ = ħ2𝜌(𝑡)𝑣,     𝑡 ∈ [0,1) ∪ (1, ∞),  

−(µ1𝑣(0) − µ2𝑣′(0)) = ħ2(𝛿1𝑣(0) − 𝛿2𝑣′(0)),                                                                                  (29) 

𝑣(1+) = 𝑣(1−),     𝑣′(1+) =  𝑣′(1−), 

where µ𝑖, 𝛿𝑖, 𝑖 = 0,1 are real numbers, µ1𝛿2 − µ2𝛿1 > 0, ħ is a spectral parameter and 𝜌 is a density 

function and it is defined as follows 

 

𝜌(𝑡) = {
   𝜂2  ;   0 ≤ 𝑡 < 1

1  ;      1 ≤ 𝑡,
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where 𝜂 ∈ (0, ∞), 𝜂 ≠ 1. It is evident that 

 

𝑒(𝑡, ħ) = 𝑒𝑖ħ𝑡,     𝑆(𝑡, ħ2, 𝜂) =
sin ħ𝜂𝑡

ħ𝜂
,     𝐶(𝑡, ħ2, 𝜂) = cos ħ𝜂𝑡,  

for this problem. By using the solutions 𝑒(𝑡, ħ), 𝑆(𝑡, ħ2, 𝜂) and  𝐶(𝑡, ħ2, 𝜂), we get 

 

𝐸(𝑡, ħ, 𝜂) = {
𝑚(ħ, 𝜂)

sin ħ𝜂𝑡
ħ𝜂

+ 𝑟(ħ, 𝜂) cos ħ𝜂𝑡  ;  𝑡 ∈ [0,1)

𝑒𝑖ħ𝑡                            ;  𝑡 ∈ (1, ∞),
                                                                (30)            

 

where  

 

𝑚(ħ, 𝜂) = 𝑒𝑖ħ(ħ𝜂 sin ħ𝜂 + 𝑖ħ cos ħ𝜂),     𝑟(ħ, 𝜂) = 𝑒𝑖ħ (cos ħ𝜂 − 𝑖
sin ħ𝜂

𝜂
).  

 

The function 𝐸(𝑡, ħ, 𝜂) is called Jost solution of ISBVP (29). Using (30), we obtain the Jost function of 

(29) 

 

𝐸(ħ, 𝜂) = (µ2 + ħ2𝛿2)𝑚(ħ, 𝜂) − (µ1 + ħ2𝛿1)𝑟(ħ, 𝜂),       ħ ∈ ℂ̅+                              

 

and scattering function of (29) for ħ ∈ ℝ\{0} 

 

𝑆(ħ, ŋ) = 𝑒−2𝑖ħ (
 (µ2 + ħ2𝛿2)[(ħ𝜂 sin ħ𝜂 − 𝑖ħ cos ħ𝜂)] − (µ1 + ħ2𝛿1) [cos ħ𝜂 + 𝑖

sin ħ𝜂
𝜂

]

(µ2 + ħ2𝛿2)[(ħ𝜂 sin ħ𝜂 + 𝑖ħ cos ħ𝜂)] − (µ1 + ħ2𝛿1) [cos ħ𝜂 − 𝑖
sin ħ𝜂

𝜂
]

). 

 

5. CONCLUSIONS 

 

This paper is devoted to Sturm-Liouville boundary value problem with an impulsive condition. Even 

though there are various studies devoted to the investigation of scattering analysis of boundary value 

problems, only a few of them are related to scattering analysis of impulsive boundary value problems. In 

this paper, we examine the spectral properties of impulsive Sturm-Liouville Equations (1)-(3). Firstly, we 

give information about the scattering solutions of ISBVP (1)-(3). By the help of these scattering solutions, 

we obtain the Jost function and scattering function of the problem. After, we find discrete spectrum and 

resolvent operator of (1)-(3). Unlike other studies, the innovation of this study is that the Equation (1) 

involves the density function 𝜌. Furthermore, the spectral parameter exists in both differential equation 

and boundary condition. The study offers a different perspective for researchers working on scattering 

theory. 

 

CONFLICTS OF INTEREST  

 

No conflict of interest was declared by the authors. 

 

 

REFERENCES 

 

[1] Naimark, M. A., “Investigation of the spectrum and the expansion in eigenfunctions of a non-

self adjoint differential operators of the second order on a semi axis”, American Mathematical 

Society Translations, 16(2): 103-193, (1960). 

 
[2] Levitan, B. M., Sargsjan, I. J., “Sturm-Liouville and Dirac operators”, Kluwer Academic 

Publishers Group, Dordrecht, (1991). 

 



1086  Elgiz BAIRAMOV, Guler Basak OZNUR / GU J Sci, 34(4): 1077-1087 (2021) 

 
 

[3] Schwartz, J., “Some non-self adjoint operators”, Communications on Pure and Applied 

Mathematics, 13: 609-639, (1960). 

    

[4] Pavlov, B. S., “On the spectral theoy of non-self-adjoint differential operators”, Doklady 

Akademii Nauk: SSSR., 146: 1267-1270, (1962). 

 
[5] Guseinov, G. S., “On the concept of spectral singularities”, Pramana Journal of Physics, 73(3): 

587-603, (2009). 

 
[6] Allahverdiev, B. P., Bairamov, E., Ugurlu, E., “Eigenparameter dependent Sturm-Liouville 

problems in boundary conditions with transmission conditions”, Journal of Mathematical 

Analysis and Applications, 401(1): 388-396, (2013). 

 
[7] Bairamov, E., Aygar, Y., Eren B., “Scattering theory of impulsive Sturm-Liouville equations”, 

Filomat, 31(17): 5401-5409, (2017). 

 
[8] Guseinov, G. S., “Boundary value problems for nonlinear impulsive Hamilton systems”, Journal 

of Computational and Applied Mathematics, 259: 780-789, (2014). 

 
[9] Bairamov, E., Aygar Y., Oznur, G. B., “Scattering properties of eigenparameter-dependent 

impulsive Sturm-Liouville equations”, Bulletin of the Malaysian Mathematical Sciences Society, 

43: 2769-2781, (2020). 

   

[10] 

 

Mukhtarov, F. S., Aydemir, K., Mukhtarov, O.Sh., “Spectral analysis of one boundary value-

transmission problem by means of Green’s function”, Electronic Journal of Mathematical 

Analysis and Applications, 2: 23-30, (2014). 

 
  [11] Milman, V. D., Myshkis, A. D., “On the stability of motion in the presence of impulses”, Siberian 

Mathematical Journal, 1: 233-237, (1960).  

 
  [12]  

 
Perestyuk, N. A., Plotnikov, V. A., Samoilenko, A. M., Sikripnik, N. V., “Differential equations 

with impulse effects: Multivaled right-hand sides with discontinuities”, De Gruyter Studies in 

Mathematics 40, Germany, (2011). 

 
 [13] Perestyuk, N. A., Samoilenko, A. M., Stanzhitsii, A.N., “On the existence of periodic solutions 

of some classes of systems of differential equations with random impulse action”, Ukrainian 

Mathematical Journal, 53: 1061-1079, (2001). 

 
 [14] Samoilenka, A. M., Perestyuk, N. A., “Impulsive differential equations”, World Scientific, 

Singapore, (1995). 

 
 [15] Ugurlu, E., Bairamov, E., “Spectral analysis of eigenparameter dependent boundary value 

transmission problems”, Journal of Mathematical Analysis and Applications, 413(1): 482-494, 

(2014).      

 
 [16] Lakmeche, A., Arino, O., “Bifurcation of nontrivial periodic solutions of impulsive differential 

equations arising from chemotherapeutic treatment”, Dynamics of Continuous, Discrete and 

Impulsive Systems Series A: Mathematical Analysis, 7: 265-287, (2000). 

 
 [17] Nenov, S. I., “Impulsive controllability and optimization problems in population dynamics”, 

Nonlinear Analysis, 36: 881-890, (1999). 

 



1087  Elgiz BAIRAMOV, Guler Basak OZNUR / GU J Sci, 34(4): 1077-1087 (2021) 

 
 

 [18] Kadakal, M., Mukhtarov, O.Sh., Mukhtarov, F. S., “Some spectral properties of Sturm-Liouville 

problem with transmission conditions”, Iranian Journal of Science and Technology Transaction 

A, Science , 29(2): 229-245, (2005). 

 

 [19] Marchenko, V. A., “Sturm-Liouville operators and applications”, Birkhauser, Verlag, (1986). 

 [20] Naimark, M. A., “Linear differential operators. Part II: Linear differential operators in Hilbert 

space”, World Scientific Publishing Co., Inc., River Edge, (1995). 

 


