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Abstract  

Randall-Wilkins and One Trap One Recombination (otor) models have been proposed to 

explain thermoluminescence emission and it should be emphasized that each model has its 

own allowed charge carrier transitions, trapping parameters and differential equations set. The 

equations are generally first or higher order linear differential equations with constant 

coefficients and their numerical solutions are an initial value problem. From this point on, 
numerical solutions of the thermoluminescence equations have been effectively used. In this 

paper the models were solved, numerically by using Euler and Runge-Kutta methods on 

Mathematica 8.0. In this work, although the fastest result calculated by Explicit Euler method, 

the most accurate results were calculated Linearly Implicit Euler method. 
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1. Introduction 

Although differential equations proposed by 

thermoluminescence (TL) models are relatively basic, 

their analytic solutions are not possible. One of the 
ways to overcome the difficulty is to simplify the 

equations under various assumptions and the another is 

to perform numerical solutions. Numerical solutions of 

the TL equations are widely used in TL applications 
[1,2]. Pros and cons arguments of the numerical 

solutions of the TL equations were argued by 

McKeever[3] and many others[1,4]. The first 
numerical approximation of the TL equations was 

performed by Kemmey et al[5] but exact numerical 

solutions were given by Kelly et al[6] for the first time. 
Moreover, Shenker and Chen[7], Chen et al[8] and 

many others have published numerical solutions of the 

TL equations up to now.  

In this paper we discuss numerical solutions of the 
Randall-Wilkins and otor models by using different 

numerical methods such as Euler’s and Runge-Kutta 

methods. All solutions are performed in Mathematica 

8.0. 

2. Randall and Wilkins Model 

The simplest model of TL emission is proposed by 
Randall and Wilkins and it consists of an electron trap 

level (N), and a recombination center[9,10]. Randall and 

Wilkins assumed that recombination rate of the free 
charge carrier is significantly faster than re-trapping 

and thus, TL emission can be given as Eq.1. Energy 

band diagram and allowed transitions are given in Fig. 

Figure 1. 
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Figure 1. Schematic energy level diagram of Randall-

Wilkins model 

Here, N is trapping states (in cm−3) and with 

instantaneous occupancy n. The activation energy for 

the electron trap is Ee (in eV) and the frequency factor 

is se (s
−1). k is the Boltzmann constant (k = 8.61710-5 

eV K−1) 

3. OTOR Model 

OTOR model consists of an electron trap level, and a 

recombination center (Fig.Figure 2), but there are three 
allowed transitions are available; trapped electrons can 
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be released by thermally; free electrons are trapped by 

N or recombined in center[11,12]. Differential equations 

representing the charge carrier traffic as a function of 

temperature and time are given: 
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Figure 2 Schematic energy level diagram of OTOR model 

Here, Ate and Are are re-trapping and recombination 

probability coefficients. Moreover, if Are=1 and Ate=0 

are taken, OTOR model transforms into Randall and 

Wilkins model.  

3.1. Experimental methods 

Samples used in this study is α-Al2O3 powder. α-Al2O3 

has four glow peaks[13,14] (Figure Figure 1) and the 

first peak is located at 117±2C. The first peak has first 
ordered kinetic and it is used for the comparisons of the 

simulations. In order to isolate of the first peak, some 

experimental procedures are performed. Firstly, α-

Al2O3 sample is annealed at 600C for 15 min to erase 

any residual radiation effects. Then, it is spread on thin 
aluminum disk about 10mg and it is irradiated at room 

temperature using the beta rays from a calibrated 90Sr–
90Y source. Glow curve of the sample is recorded 

between 40-400C temperature ranges using linear 

heating rate as reference. Thereafter, the annealing and 
irradiation procedure repeated and the sample is heated 

up to Ts and cooled to room temperature. Lastly, glow 

curve of the sample is recorded between 40-400C 

temperature ranges. Last glow curve is subtracted from 

the first one and the peak is obtained in isolated 
manner. The procedures are repeated several times for 

different Ts and Ts’s are chosen between 100C-140C. 

After then trap parameters are calculated by using peak 

shape[4,15,16], various heating rate[4,17] and initial 

rise[4,18] methods. Moreover, initial trap occupancy 

was also measured by using area under the glow curve. 

Results are given in Table Table 1 and Figure Figure 4. 

Table 1. Experimental trap parameters 

 Ee (eV) Se (s-1) b no(cm3 

s−1) 

FOK 

peak 

0.89±0.02 2.17±0.071010 1.00 1.18105 

 

 

Figure 3. Thermoluminescence glow curve of the α-Al2O3 

 

 

Figure 4. First peak of the α- Al2O3 used in this study  

4. Numerical Analysis 

In this study, all numerical solutions are calculated 

iteratively. Each solution is started from a given initial 

particular value of ITL (no, nco) at Tmin, and then takes a 
sequence of steps, trying eventually to cover the whole 

range Tmin to Tmax. Experimental trap parameters (Table 

1) are taken as initial conditions and other parameters 
such as Are, Ate et al are chosen realistically but in a 

broad range. Numerical solutions of the equations are 

performed using Explicit Euler[19,20], Generalized 
Euler[19], Classical Runge-Kutta[21], and Implicit 

Runge–Kutta methods [21–23]. The techniques are 

summarized in Figure Figure 5. Simulations of the 

models are performed on Mathematica 8.0[24,25].  
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Figure 5. Numerical methods and sub methods used in this 

study 

5. Results and Discussions 

Numerical solutions of the models are performed for 

different step sizes and differential orders. In order to 
make comparison easier, figure of merit[26] (FOM) 

and step sizes are drawn together. All the simulations 

were performed by using experimentally measured 
trap parameters from Table Table 1. It is important to 

point out that that although the numerical solutions of 

the TL models are successful in explaining some TL 

behaviors of the materials theoretically, they do not 
match the results of the experiments. However, 

Uzun[27–30] and many others[3,8,11] shown that the 

simulations are in good agreement with experiment 
only when the simulation is started with the assumption 

of no=N. Thus, N=1.20105cm3s−1 was taken in all the 

simulations. 

Randall-Wilkins and OTOR models were solved 

numerically by using Explicit Euler, Explicit Euler 
(midpoint), Explicit Euler (modified midpoint), 

Linearly Implicit Euler, Linearly Implicit Euler 

(midpoint), Implicit Euler (modified midpoint), 

Classical Runge-Kutta and Implicit Runge-Kutta. 

Randall-Wilkins model was solved numerically by 

using Explicit Euler methods and results are given in 

 

Table 2. Although the Euler methods can simulate the 

Randall-Wilkins model by wide range of steps (10-1-

10-4), the methods can be solved the OTOR model for 

a restricted step range (step size≤2.0×10-5). 

 

Table 2. Simulation results of the Explicit Euler  

It. Nu. St. Sz. FOM It. Nu. St. Sz. FOM 

fok otor 

1.59×103 10-1 0.45(5266) 3.18×107 0.5×10-5 0.29(0760) 

1.59×104 10-2 0.30(5387) 1.59×107 1.0×10-5 0.29(0767) 

1.59×105 10-3 0.29(2113) 1.06×107 1.5×10-5 0.29(0776) 

1.59×106 10-4 0.29(0889) 7.95×107 2.0×10-5 0.29(0781) 

Table 3. Simulation results of the Explicit Euler (midpoint) 

It. Nu. St. Sz. FOM It. Nu. St. Sz. FOM 

fok otor 

2.03×105 10-1 0.29(0753912) 1.30×107 0.5×10-5 0.29(0760) 

2.03×105 10-2 0.29(0753989) 1.30×107 1.0×10-5 0.29(0767) 

2.03×105 10-3 0.29(0753945) 1.30×107 1.5×10-5 0.29(0776) 

2.03×105 10-4 0.29(0754040) 1.30×107 2.0×10-5 0.29(0781) 

Table 4. Simulation results of the Explicit Euler (modified midpoint) 

It. Nu. St. Sz. FOM It. Nu. St. Sz. FOM 

fok otor 

3.05×105 10-1 0.29(0753) 1.19×107 0.5×10-5 0.29(0754) 

3.05×105 10-2 0.29(0753) 1.21×107 1.0×10-5 0.29(0754) 

3.05×105 10-3 0.29(0753) 1.16×107 1.5×10-5 0.29(0754) 

3.05×105 10-4 0.29(0753) 1.17×107 2.0×10-5 0.29(0754) 
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Table 5. Simulation results of the Linearly Implicit Euler 

It. Nu. St. Sz. FOM It. Nu. St. Sz. FOM 

fok otor 

3.18×104 10-1 0.24(6577) 6.36×107 0.5×10-5 0.29(0747) 

3.18×105 10-2 0.27(8494) 3.18×107 1.0×10-5 0.29(0740) 

3.18×106 10-3 0.28(9486) 2.12×107 1.5×10-5 0.29(0731) 

3.18×107 10-4 0.29(0618) 1.59×107 2.0×10-5 0.29(0726) 

 

Table 6. Simulation results of the Linearly Implicit Euler (midpoint) 

It. Nu. St. Sz. FOM It. Nu. St. Sz. FOM 

fok otor 

1.44×105 10-1 0.29(0801) 5.75×106 0.5×10-5 0.29(0767) 

1.44×105 10-2 0.29(0802) 5.75×106 1.0×10-5 0.29(0759) 

1.44×105 10-3 0.29(0829) 5.75×106 1.5×10-5 0.29(0764) 

1.44×105 10-4 0.29(0816) 5.75×106 2.0×10-5 0.29(0760) 

 

Table 7. Simulation results of the Linearly Implicit Euler (modified midpoint) 

It. Nu. St. Sz. FOM It. Nu. St. Sz. FOM 

fok otor 

1.92×105 10-1 0.29(0769) 9.05×106 0.5×10-5 0.29(1068) 

1.92×105 10-2 0.29(0586) 9.05×106 1.0×10-5 0.29(1187) 

1.92×105 10-3 0.29(0846) 9.05×106 1.5×10-5 0.29(1158) 

1.92×105 10-4 0.29(0633) 9.05×106 2.0×10-5 0.29(1068) 
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Table 8. Simulation results of the Classical Runge-Kutta 

Diff. Ord. It. Nu. St. Sz. FOM It. Nu. St. Sz. FOM 

 fok otor 

3 6.36×103 10-1 0.29(0754) 1.27×108 0.5×10-5 0.29(0754) 

6.36×104 10-2 0.29(0754) 6.36×107 1.0×10-5 0.29(0754) 

6.36×105 10-3 0.29(0754) 4.24×107 1.5×10-5 0.29(0754) 

6.36×106 10-4 0.29(0754) 3.18×107 2.0×10-5 0.29(0754) 

4 7.65×103 10-1 0.29(0754) - 

7.65×104 10-2 0.29(0754) 

7.65×105 10-3 0.29(0754) 

7.65×106 10-4 0.29(0754) 

5 6.36×103 10-1 0.29(0754) - 

6.36×104 10-2 0.29(0754) 

6.36×105 10-3 0.29(0754) 

6.36×106 10-4 0.29(0754) 

6 6.36×103 10-1 0.29(0754) - 

6.36×104 10-2 0.29(0754) 

6.36×105 10-3 0.29(0754) 

6.36×106 10-4 0.29(0754) 

7 6.36×103 10-1 0.29(0754) - 

6.36×104 10-2 0.29(0754) 

6.36×105 10-3 0.29(0754) 

6.36×106 10-4 0.29(0754) 

8 6.36×103 10-1 0.29(0754) - 

6.36×104 10-2 0.29(0754) 

6.36×105 10-3 0.29(0754) 

6.36×106 10-4 0.29(0754) 

9 6.36×103 10-1 0.29(0754) - 

6.36×104 10-2 0.29(0754) 

6.36×105 10-3 0.29(0754) 

6.36×106 10-4 0.29(0754) 
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Table 9. Simulation results of the Implicit Runge-Kutta 

Diff. Ord. It. Nu. St. Sz. FOM It. Nu. St. Sz. FOM 

 fok otor 

3 8.06×103 10-1 0.29(0754) 9.14×103 10-1 0.29(0754) 

7.94×104 10-2 0.29(0754) 7.95×104 10-2 0.29(0754) 

6.63×105 10-3 0.29(0754) 7.26×105 10-3 0.29(0754) 

4.77×106 10-4 0.29(0754) 5.58×106 10-4 0.29(0754) 

4 9.36×103 10-1 0.29(0754) 1.04×104 10-1 0.29(0754) 

9.23×104 10-2 0.29(0754) 9.24×104 10-2 0.29(0754) 

7.92×105 10-3 0.29(0754) 8.55×105 10-3 0.29(0754) 

6.06×106 10-4 0.29(0754) 6.87×106 10-4 0.29(0754) 

5 1.50×104 10-1 0.29(0754) 1.70×104 10-1 0.29(0754) 

1.09×105 10-2 0.29(0754) 1.46×105 10-2 0.29(0754) 

1.02×106 10-3 0.29(0754) 1.27×106 10-3 0.29(0754) 

1.02×107 10-4 0.29(0754) 1.16×107 10-4 0.29(0754) 

6 1.89×104 10-1 0.29(0754) 2.09×104 10-1 0.29(0754) 

1.48×105 10-2 0.29(0754) 1.85×105 10-2 0.29(0754) 

1.41×106 10-3 0.29(0754) 1.66×106 10-3 0.29(0754) 

1.41×107 10-4 0.29(0754) 1.54×107 10-4 0.29(0754) 

7 2.29×104 10-1 0.29(0754) 3.02×104 10-1 0.29(0754) 

2.08×105 10-2 0.29(0754) 2.64×105 10-2 0.29(0754) 

2.08×106 10-3 0.29(0754) 2.43×106 10-3 0.29(0754) 

2.08×107 10-4 0.29(0754) 2.28×107 10-4 0.29(0754) 

8 2.94×104 10-1 0.29(0754) 3.66×104 10-1 0.29(0754) 

2.73×105 10-2 0.29(0754) 3.29×105 10-2 0.29(0754) 

2.73×105 10-3 0.29(0754) 3.07×106 10-3 0.29(0754) 

2.73×107 10-4 0.29(0754) 2.92×107 10-4 0.29(0754) 

9 3.66×104 10-1 0.29(0754) 4.85×104 10-1 0.29(0754) 

3.66×105 10-2 0.29(07549 4.37×105 10-2 0.29(07549 

3.66×106 10-3 0.29(0754) 4.10×106 10-3 0.29(0754) 

3.66×107 10-4 0.29(0754) 3.91×107 10-4 0.29(0754) 

Conclusions 

In this paper Randall-Wilkins and One Trap One 

Recombination models were solved, numerically by 
using Mathematica for Euler and Runge-Kutta 

methods. In order to comparison of the simulations, 

some experiments were also performed. Fundamental 

trap parameters were measured, experimentally and 

used as initial conditions. each simulation was 

compared by the experiments and FOM was 
calculated. The fastest results were calculated by 

Linear Euler method but, the most accurate results 
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were calculated by Linearly Implicit Euler method. In 

the application, not only precision but also machine 

time is important and here Linearly Implicit Euler 

method is suggested by the authors. 
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