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Abstract  

The present paper is concerned with the determination of the frequency equation and 

sensitivity of the eigenfrequencies of a fixed-free longitudinally vibrating rod and transversally 

vibrating beam carrying a tip mass by using several methods.  First, the exact frequency 

equations of the such systems are established, and then approximate formulas are given for the 

fundamental frequency using several methods which contain the equivalent system, Rayleigh 

quotient, Dunkerley’s formula and continuous system model. The applicability and proximity 

of these methods versus exact solutions reviewed. The results are compared in a wide range 

of relevant parameters to give a clear idea about the validity of the proposed formulas. These 

new derived equations can be very useful for a design engineer who is interested in the 

eigencharacteristics of similar systems and their sensitivity. 
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1. Introduction  

Rods and beams especially carrying tip mass systems 

are often used as approximation models for a variety of 

structural and machine elements. Hence, we frequently 

face the task of determining the natural frequencies of 

such systems. Naturally, the governing equations of 

longitudinal vibrations are simpler than that for axial 

vibrations. However, axial vibrations are of greater 

importance in practice, because the natural frequencies 

in flexure of a particular beam tend to be considerably 

lower than those in extension and torsion.  

The eigenanalysis problem of rods with tip mass is a 

common subject of interest, also treated in textbooks 

[1, 2]. Flexural vibrations of uniform beams for 

different boundary conditions are studied in textbooks 

[3, 4]. There are many publications in the literature on 

vibrations of rods and beams for various boundary 

conditions in different configurations. The dynamics of 

longitudinal and transversal vibrations has been a 

subject of many research reports for many years. 

Examination of the existing literature shows that the 

solution of the frequency equations of rods and beams 

carrying point or heavy masses has attracted the 

interest of many investigators. Gürgöze [5] 

investigated the frequency equation and sensitivity of 

the eigenfrequencies of a fixed-free longitudinally 

vibrating rod carrying a tip mass. Turhan [6] studied on 

the effect of a cross-section discontinuity on the 

eigencharacteristics of longitudinally vibrating rods. 

Gürgöze and Erol [7] reviewed the establishment of 

two methods for computing the eigencharacteristics of 

a continuous rod, carrying a tip mass, consisting of 

several parts having different physical parameters and 

subjected to external viscous damping. Lin and Chang 

[8] examined the longitudinal free vibrations of a 

system in which two rods are coupled by multi-spring-

mass devices. Gu and Cheng [9] studied the dynamic 

response of a high-speed spindle subject to a moving 

mass. There are a number of studies [10-18] dealing 

with the problem of transverse vibrations of beams 

carrying a tip mass or point masses or concentrated 

masses using analytical and various numerical 

approaches. Chang [10] presented a comprehensive 

study on the lateral vibration of a simply supported 

beam carrying a concentrated mass at the center of 

beam. In the case of selecting the appropriate 

parameters, Turhan [11] proposed Rayleigh 

approximations versus exact solutions for finding the 

fundamental frequency of beams carrying a point mass. 

Low [12] used a modified Dunkerley formula for 

eigenfrequencies of Euler-Bernoulli beams carrying 

concentrated masses. Li [13] proposed a new exact 

approach for free vibration analysis of a multi-step 

beam with an arbitrary number of crack and 
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concentrated masses. Kirk and Wiedemann [14] 

investigated the natural frequencies and mode shapes 

of a free-free beam with large end masses. Özkaya [15] 

studied non-linear transverse vibrations of an Euler–

Bernoulli beam carrying concentrated masses. Low 

[16] presented an eigenanalysis and the Rayleigh’s 

estimation for a frequency analysis of a beam carrying 

a concentrated mass at an arbitrary locations. Banerjee 

[17] used the dynamic stiffness approach method for 

exact free vibration analysis of beams carrying spring-

mass systems. Li et all. [18] studied free bending 

vibration of a Rayleigh cantilever with arbitrary axial 

loading and tip mass. 

In recent years, studies on the longitudinal and 

transversal vibrations of the beams carrying tip mass 

have also been encountered. Matt and Frederico [19] 

proposed a new simulation of the transverse vibrations 

of a cantilever beam with an eccentric tip mass in the 

axial direction using integral transforms. Labȩdzki, 

Pawlikowski and Radowicz [20] used fractional 

rheological model for transverse vibration of a 

cantilever beam under base excitation. Şakar [21] 

examined the effect of axial force on the free vibration 

of an Euler-Bernoulli beam carrying a number of 

various concentrated elements. Transverse vibration of 

Euler beam for different situations are studied in 

textbook [22]. 

In this paper, the validity and applicability of several 

methods applied to uniform rods and beams carrying 

point mass has been investigated. The obtained results 

have been compared to with each other and the 

literature. The corresponding exact frequency equation 

is also given for each case and the results are compared 

in a broad range of the relevant parameters so that a 

clear idea on the presented methods. It is found that the 

methods such as Rayleigh quotient, Dunkerley’s 

formula and continuous system model can generally 

yield good approximation and high accuracy if 

compared with the results associated to the 

eigenanalysis. These proposed methods are 

computationally efficient and give very close to exact 

results. For this reason, these methods are highly 

recommended for uniform rod and beams carrying 

point mass. At the same time, these methods can be 

extended to complex structural systems and the 

obtained results can be also very useful for the design 

engineers who are working in the dynamical behaviour 

of such systems. There is not enough study in the 

literature about the use of these approximate solution 

methods in such systems. Therefore, this study also 

gives an idea about the superiority and reliability of 

these approximate methods used. 

2. Theory and Formulation 

2.1. Longitudinal vibrations of rods carrying tip 

mass  

The uniform rod carrying tip mass is shown in Figure 

1. It is essentially an longitudinally vibrating fixed-free 

rod of axial rigidity EA and mass per unit length m 

carrying a tip mass M. The exact frequency equation of 

the system described above must derive in order to 

determine eigenfrequencies. It is well known that the 

longitudinal vibrations of a uniform elastic rod are 

governed by the partial differential equation [2] 

uA  uEA           (1) 

where  mass density, overdots and primes denote 

partial derivatives with respect to time t and x, u(x,t) 

denotes the longitudinal displacement at point x and 

time t.  

 

 

 

 

 

Figure 1. Rod carrying tip mass system. 

Assuming harmonic motion of the form  

ε)tcos( y(x)t)u(x,          (2) 

and obtains the general solution

 

x))
c

ω
cos(Bx)

c

ω
sin((B   t))cos(ωA t)sin( ω(At)u(x, 2121                        (3) 

where Ai and Bi i=1,2 are arbitrary integration 

constants to be evaluated from the boundary 

conditions, constant 
ρ

E
c   expression is also 

known as the wave propagation velocity and  

eigenfrequency is defined by  

L

c 
 ω            (4) 

Given the shape of the system shown in the Figure 1, 

boundary conditions becomes 

EA, , L, m 

M 

x 

u(x,t) 
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LxLx
u M-  uEA 

0t)u(0,







         (5) 

It can be shown after same algebraic manipulations, the 

eigenequation results in the following simple form 

λμ 

1
tanλ                    (6) 

where the following non-dimensional parameters are 

introduced: 

c

L ω
  ,  

m

M
μ             (7) 

 and  non-dimensional parameters refer to ratio of 

masses and dimensionless frequency, respectively. The 

roots of transandantal equation (6) give dimensionless 

frequency parameter  and hence by considering 

equation (4) the eigenfrequencies of the system shown 

in Figure 1. The approximate solution methods of the 

frequency equations of uniform rods and beams 

carrying tip mass will be handled in detail later. 

 

2.2 Transverse vibrations of beams carrying tip 

mass 

Consider an Euler-Bernouilli beam carrying a tip 

mass M (Figure 2). Transverse vibration of the beam 

is represented by the partial differential equation 

given below. 

 

 

 

 

 

Figure 2. Beam carrying tip mass system. 

 

0vρAEIv IV                        (8) 

where EI flexural rigiditiy,  mass density, A sectional 

area, overdots and primes denote partial derivatives 

with respect to time t and x, v(x,t) denotes the 

transverse displacement at point x and time t. 

Assuming harmonic motion of the form 

)- tcos( y(x)t)v(x,                                 (9) 

one obtains the general solution of the motion 

 

)- tcos( x)]
L

λ
sinh( Dx)

L

λ
cosh( Cx)

L

λ
sin( Bx)

L

λ
cos([A t)v(x,                                 (10) 

where and   are defined by  

L

x
ξ     ,   

2
4

4 ω
I E

LA  ρ 
λ                    (11) 

In this case,  

) sinh( λ D) cosh(λ C) sin( λ B) cos(λA )y(                  (12) 

 

where A, B, C and D are arbitrary integration constants 

that can be found in the boundary conditions. 

Boundary conditions for transverse vibration of the 

beam shown in the Figure 2 becomes 

0t)(L,v

t)(L,v EIt)(L,v M

0t)(0,v

0t)v(0,










      (13) 

 

By applying boundary conditions, frequency equation is obtained as follows 

0)coshsinsinh(coscoshcos1              (14) 

 

EI, A, L, m 

M 

x 
v(x,t) 
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where 
m

M
μ   non-dimensional parameters refer to 

ratio of masses and m is mass per unit length  

( LA  ρm  ) In the same way, the roots of 

transandantal equation (14) give dimensionless 

frequency parameter  and hence by considering 

equation (11) the eigenfrequencies of the system. 

3. Case study and numerical solutions  

In this section, exact frequency equations and 

approximate frequency equations obtained by several 

different methods will be derived for rods/beams 

carrying tip mass systems and their results be 

compared. The results are presented in accordance with 

some appropriate parameters and it is possible to get an 

idea about the validity of approximate solutions.  

3.1. The fundamental frequencies of longitudinal 

vibrating of rods carrying tip mass 

For the system shown in Figure 1, equation (6) yields 

dimensionless frequency parameter . Approximate 

frequency equations of the same system were obtained 

by using such as equivalent system, Rayleigh quotient, 

Dunkerley’s formula and continuous system model. As 

a result of some corrections and mathematical 

operations, frequency equations of the longitudinal 

vibrations of the system given in Figure 1 are obtained 

by these methods. The results are given by the 

following equations. 

Rayleigh quotient A  : 
μ

1
λ                          (15) 

Rayleigh quotient B  : 

3

1
μ

1
λ



                            (16) 

Rayleigh quotient C  : 
210μ20μ15μ

13μ3μ
  5λ

23

2




              (17) 

Dunkerley’s Formula  : 

μ

)
2

9π
(

1

)
2

7π
(

1

)
2

5π
(

1

)
2

3π
(

1

)
2

π
(

1

1
λ

22222



                    (18) 

Continuous system model :   1sinλ)β)λ tan((1cosλ sinλ 1)
μ

β
(

μ

β
                           (19) 

In equation (19), 
L

L
β 2 (length of mass M / length of 

the beam). Figure 3 shows dimensionless frequency 

parameter  according to ratio of masses by theset 

methods for longitudinal vibrating of rods carrying tip 

mass. If Fig. 3 is examined carefully, it is seen that the 

dimensionless frequency parameter  decreases with 

the ratio of masses. However, the dimensionless 

frequency parameter obtained by the equation (15) 

don’t give very good results according to the exact 

solution given by the equation (6). Therefore, other 

methods except this method are considered in the 

calculation of the relative error. The relative error is the 

% error calculated according to the exact solution 

given by the equation (6). 
 

Figure 3. Dimensionless frequency parameter  according 

to ratio of masses by different methods for longitudinal 

vibrating of rods carrying tip mass. 
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Figure 4 shows relative errors in dimensionless 

frequency parameter  according to ratio of masses by 

different methods for longitudinal vibrating of rods 

carrying tip mass. When Fig. 4 is examined, it is seen 

that the relative error in dimensionless frequency 

parameter of Dunkerley’s Formula is slightly high, 

Rayleigh quotient B is slightly less error and Rayleigh 

quotient C and continuous system model give very 

close results to the exact solution. Especially, since 

continuous system model is quite close to the exact 

solution, it is seen as the least error method. Therefore, 

continuous system model is discussed in more detail. 

Table 1 and Fig. 5 give the results of this model.  

 

Figure 4. Relative errors in dimensionless frequency 

parameter  according to ratio of masses by different 

methods for longitudinal vibrating of rods carrying tip mass. 

In the continuous system model, dimensionless 

frequency parameter  by given by the equation (19) 

varies according to ratio of masses and ratio of lengths. 

Table 1 shows some values of dimensionless frequency 

parameter  by continuous system model for 

longitudinal vibrating of rods carrying tip mass. 

Similarly, Fig. 5. displays dimensionless frequency 

parameter  according to ratio of masses and ratio of 

length in continuous system model for longitudinal 

vibrating of rods carrying tip mass. An inspection of 

Table 1 and Fig. 5 show that as the ratio of masses and 

the ratio of lengths increases, the dimensionless 

frequency parameters decrease. With the increase in 

the ratio of length, there is less decrease in 

dimensionless frequency parameters. The higher the 

ratio of masses, the greater the decrease in 

dimensionless frequency parameters. 

 

 

Table 1. Dimensionless frequency parameter  by 

continuous system model for longitudinal 

ibrating of rods carrying tip mass. 

   \ β 0.05 0.10 0.15 0.20 

1.0 0.861 0.860 0.859 0.857 

1.5 0.738 0.737 0.735 0.734 

2.0 0.659 0.657 0.653 0.653 

2.5 0.603 0.593 0.594 0.595 

3.0 0.561 0.548 0.549 0.546 

3.5 0.512 0.511 0.514 0.510 

4.0 0.483 0.482 0.485 0.480 

 
Figure 5. Dimensionless frequency parameter  according 

to ratio of masses and ratio of length in continuous system 

model for longitudinal vibrating of rods carrying tip mass. 

3.2. The fundamental frequencies of transversal 

vibrating of beams carrying tip mass 

For the system shown in Figure 2, equation (14) yields 

the exact solution of dimensionless frequency 

parameter . Approximate frequency equations of 

these system were obtained by using such as equivalent 

system, Dunkerley’s formula and stepped beam model 

(continuous system model). The formulas calculated 

by the equivalent system and Dunkerley formula are 

given directly below, and the results of the stepped 

beam model are explained in detail below. 

Equivalent System: 
4

μ
140

33

3



     (20) 

Dunkerley’s Formula: 

3

μ

λ

1

λ

1

λ

1

λ

1

λ

1
4

44

4

33

4

22

4

11

4
       (21) 

where  11 = 1.8751,  22 = 4.6941,   

33 = 7.8548,  44 = 10.9955 
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3.2.1 Stepped beam model (continuous system 

model)  

 

 

 

 

 

 

 

Figure 6. Stepped beam model of the beam carrying tip mass 

system. 

Consider an Euler-Bernouilli beam carrying a tip mass 

M (Figure 6). Let the transversal motions of the beam 

points at the left and right of M be represented by 
1y

(x,t) and 2y (x,t). Both 1y  and 2y  have to obey the 

partial diferential equation (8). Using the 

dimensionless parameters given the equation (22) and 

with the assumption of harmonic motion,  
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one obtains the general solutions for the space dependence of the motion. 

)
L

x
 sinh( λ D)

L

x
 cosh(λ C)

L

x
 sin( λ B)

L

x
 cos(λ A(x)y 111111111               (23) 

)
L

x
 sinh( λ D)

L

x
 cosh(λ C)

L

x
 sin( λ B)

L

x
 cos(λ A(x)y 222222222               (24) 

 0(0)y1    

 0(0)y1   

)(Ly)(Ly 1211   

 )(Ly)(Ly 1211
                  (25) 

 )(Ly I)(Ly I 122111
  

 )(Ly I)(Ly I 122111
  

 0(L)y2   

 0(L)y2   

The following matrix was obtained by applying the 

boundary conditions given equation (22). The roots of 

the determinant of this matrix give dimensionless 

frequency parameter  of the problem. Because this 

calculation is very difficult, the solutions have been 

found with numerical methods. Table 2 gives 

dimensionless frequency parameter  calculated by the 

four methods for transversal vibrating of beams 

carrying tip mass according to the ratio of masses. 

EI2, A2, , M 

L1 L2 

L 

d1 d2 

EI1, A1, , m 
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cos 1  

 sin 1  


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
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
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
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
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Table 2. Dimensionless frequency parameter  with the various methods for transversal vibrating of beams carrying tip mass 

according to the ratio of masses. 

Methods \  0.5 1.0 1.5 2.0 2.5 3.0 3.5 

Exact solution (Eq. (14)) 1.420 1.248 1.146 1.076 1.023 0.981 0.947 

Equivalent system (Eq. (20)) 1.421 1.248 1.147 1.076 1.023 0.981 0.947 

Dunkerley formula (Eq. (21)) 1.414 1.245 1.144 1.075 1.022 0.980 0.946 

Stepped beam model (Eq. (26)) 1.418 1.249 1.145 1.079 1.026 0.981 0.948 

In order to check the accuracy of recommended 

approximate solutions, values numerically calculated 

from these approximate solutions are compared in 

Table 2 with the exact values found by solving 

equation (14) for different values of the parameters . 

It is seen from Table 2 that the dimensionless 

frequency values obtained by the various methods are 

very close to each other. In addition, it is also seen from 

Table 2 that when the ratio of masses () increase, 

dimensionless frequency parameter values () 

decrease.

 

 

Figure 7. Relative errors in dimensionless frequency parameter  according to ratio of masses by various methods for 

transversal vibrating of beams carrying tip mass. 

 

 

 

 

(26) 
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Fig. 7 shows relative errors in dimensionless frequency 

parameter  for transversal vibrating of beams carrying 

tip mass. From carefully review of Fig. 7, it is 

understood that the relative errors found by all three 

methods are less than 1%. The relative errors values 

obtained with the Dunkerley formula appear to be 

relatively little bit high. It can be said that the relative 

errors values obtained by the equivalent system are 

very stable and quite low. 

4. Conclusions 

In this study, several approximate solution methods 

have presented on longitudinal vibrations of uniform 

rods carrying tip mass and transverse vibrations of 

uniform beams carrying tip mass at the end. First, the 

exact frequency equations of the systems discussed 

were established and formulas for the dimemsionless 

frequency parameters of these systems were obtained 

by methods such as equivalent system, Rayleigh 

coefficient, Dunkerley formula and continuous system 

model. In addition to the approximate methods 

discussed, relative error percentages in case of using 

these methods are also discussed and presented in 

tables and graphs depending on the appropriate 

parameters.  

It is shown that the approximate solution methods can 

reliably predict the fundamental frequencies for 

longitudinal vibrating of uniform rods carrying tip 

mass and transversal vibrating of uniform beams 

carrying tip mass, provided that they are used in proper 

parameter ranges. The Dunkerley formula and some 

Rayleigh approximations yielded relatively low errors 

in both longitudinal vibrating of uniform rods carrying 

tip mass and transversal vibrating of uniform beams 

carrying tip mass, however, the continuous system 

model and equivalent system yielded very close to 

almost complete solutions. 

By using the frequency equations given in this study, 

the high frequencies of the related systems can be 

easily calculated if desired. Also, the user has the 

opportunity to make his own decision about the 

adequacy of the recommended methods. At the same 

times, these obtained results can be also very useful for 

the design engineers who are working in the dynamical 

behaviour of such systems. It can also be very useful 

for engineers who want to find the fundamental 

frequencies of such systems quickly in terms of 

showing which method will give close results to the 

exact solution. 

Conflicts of interest 

The authors state that there is no conflict of 

interests. 

References 

[1] Humar J. L., Dynamics of Structures, 3rd ed. NJ: 

Prentice-Hall, Englewood Cliffs, (1990). 

[2] Meirovitch L., Analytical Methods in Vibrations 

1st ed. London: Collier-Macmillan Limited, 

(1967).  

[3] Timoshenko S., Young D. H., Weaver W. JR., 

Vibration Problems in Engineering, 4th ed. New 

York: Wiley, (1974). 

[4] Tse F. S., Morse I. E., Hinkle R. T., Mechanical 

Vibrations, Theory and Applications, 2nd ed. 

Boston MA: Allyn and Bacon, (1978). 

[5] Gürgöze M., On the eigenfrequencies of 

longitudinally vibrating rods carrying a tip mass 

and spring–mass in-span, Journal of Sound and 

Vibration, 216(2) (1998) 295-308. 

[6] Turhan Ö., On the eigencharacteristics of 

longitudinally vibratıng rods with a cross-section 

discontinuity, Journal of Sound and Vibration, 

248(1) (2001) 167-177. 

[7] Gürgöze M., Erol H., On the eigencharacteristics 

of multi-step rods carrying a tip mass subjected to 

non-homogeneous external viscous damping, 

Journal of Sound and Vibration, 267 (2003) 355-

365. 

[8] Lin H.P., Chang S.C.,  Free vibrations of two rods 

connected by multi-spring–mass systems, Journal 

of Sound and Vibration, 330(11) (2011) 2509-

2519. 

[9] Gu U. C., Cheng C. C., Vibration analysis of a 

high-speed spindle under the action of a moving 

mass, Journal of Sound and Vibration, 278 (2004) 

1131-1146. 

[10] Chang C. H., Free vibration of a simply supported 

beam carrying a rigid mass at the middle, Journal 

of Sound and Vibration, 237(4) (2000) 733-744. 

[11] Turhan Ö., On the fundamental frequency of 

beams carrying a point mass: Rayleigh 

approximations versus exact solutions, Journal of 

Sound and Vibration, 230(2) (2000) 449-459. 

[12] Low K. H., A modified Dunkerley formula for 

eigenfrequencies of beams carrying concentrated 

masses,  International Journal of Mechanical 

Sciences, 42 (2000) 1287-1305. 

[13] Li Q. S., Vibratory characteristics of multi-step 

beams with an arbitrary number of crack and 

concentrated masses, Applied Acoustics, 62 

(2001) 691-706. 

http://www.sciencedirect.com/science/article/pii/S0022460X10008011
http://www.sciencedirect.com/science/article/pii/S0022460X10008011


Demir / Cumhuriyet Sci. J., 42(1) (2021) 209-217 

 

217 

 

[14] Kirk C. L., Wiedemann S. M., Natural frequencies 

and mode shapes of a free-free beam with large 

end masses, Journal of Sound and Vibration, 

254(5) (2002) 939-949. 

[15] Özkaya E., Non-linear transverse vibrations of a 

simply supported beam carrying concentrated 

masses, Journal of Sound and Vibration, 257(3) 

(2002) 413-424. 

[16] Low K. H., Natural frequencies of a beam–mass 

system in transverse vibration: Rayleigh 

estimation versus eigenanalysis solutions, 

International Journal of Mechanical Sciences, 45 

(6-7) (2003) 981–993. 

[17] Banerjee J. R., Free vibration of beams carrying 

spring-mass systems -A dynamic stiffness 

approach, Computers and Structures, 104–105 

(2012) 21–26. 

[18] Li X. F., Tang A.Y., Xi L.Y., Vibration of a 

Rayleigh cantilever beam with axial force and tip 

mass, Journal of Constructional Steel Research, 

80 (2013) 15-22. 

[19] Matt Carlos Frederico T., Simulation of the 

transverse vibrations of a cantilever beam with an 

eccentric tip mass in the axial direction using 

integral transforms, Applied Mathematical 

Modelling, 37(22) (2013) 9338–9354. 

[20] Labȩdzki P., Pawlikowski R., Radowicz A., 

Transverse vibration of a cantilever beam under 

base excitation using fractional rheological 

model, AIP Conference, (2018). 

[21] Şakar G., The effect of axial force on the free 

vibration of an Euler-Bernoulli beam carrying a 

number of various concentrated elements, Shock 

and Vibration, 20(3) (2013) 357–367. 

[22] Edwards P. ,  Transverse Vibration of Euler Beam, 

(2018) 247–266. 

 

 


