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Abstract. In this study, we gave a generalization on Pell and Pell-Lucas octonions over the algebra O(a, b, c)
where a, b and c are real numbers. For these number sequences, we obtain Binet formulas and gave some well-
known identities such as Catalan’s identity, Cassini’s identity and d’Ocagne’s identity.
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1. Introduction

Let a and b be real constants, the generalized quaternion algebra is H(a, b) with the basis {1, e1, e2, e3}. And the
multiplication table for this basis of H(a, b) can be given as follows:

· 1 e1 e2 e3

1 1 e1 e2 e3
e1 e1 −a e3 −ae2
e2 e2 −e3 −b be1
e3 e3 ae2 −be1 −ab

For a = b = 1, H(1, 1) is the quaternion division algebra, for a = 1, b = −1, H(1,−1) is the algebra of split-
quaternions or also called coquaternions, para-quaternions, anti-quaternions, pseudo-quaternions or hyperbolic quater-
nions.

The octonions constitute the largest normed division algebra over the real numbers and with notation O. The
octonions have eight dimensions and they are alternative, flexible, power-associative, non-commutative and non-
associative.
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gbilgici@kastamonu.edu.tr (G. Bilgici)

https://orcid.org/0000-0003-4773-8291
https://orcid.org/0000-0001-8258-8298
https://orcid.org/0000-0003-2445-1028
https://orcid.org/0000-0001-9964-5578
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Let O(a, b, c) be the generalized octonion algebra over the R with the basis {e0, e1, e2, e3, e4, e5, e6, e7}. And its the
multiplication table as follows

· e0 e1 e2 e3 e4 e5 e6 e7

e0 e0 e1 e2 e3 e4 e5 e6 e7
e1 e1 −a e3 −ae2 e5 −ae4 −e7 ae6
e2 e2 −e3 −b be1 e6 e7 −be4 −be5
e3 e3 ae2 −be1 −ab e7 −ae6 be5 −abe4
e4 e4 −e5 −e6 −e7 −c ce1 ce2 ce3
e5 e5 ae4 −e7 ae6 −ce1 −ac −ce3 ace2
e6 e6 e7 be4 −be5 −ce2 ce3 −bc −bce1
e7 e7 −ae6 be5 abe4 −ce3 −ace2 bce1 −abc

If γ ∈ O(a, b, c), then we can write γ = γ0 + γ1e1 + γ2e2 + γ3e3 + γ4e4 + γ5e5 + γ6e6 + γ7e7. The conjugate of γ is
γ = γ0 − γ1e1 − γ2e2 − γ3e3 − γ4e4 − γ5e5 − γ6e6 − γ7e7. The trace and the norm of γ are, respectively

t(γ) = γ + γ = 2γ0

and
N(γ) = γγ = γ2

0 + aγ2
1 + bγ2

2 + abγ2
3 + cγ2

4 + acγ2
5 + bcγ2

6 + abcγ2
7

[5].
The Pell sequence {Pn}

∞
n=0 is well known sequence among integer sequences which satisfies the recurrence relation

Pn = 2Pn−1 + Pn−2

with the initial conditions P0 = 0 and P1 = 1. Similarly, Pell-Lucas sequence {PLn}
∞
n=0 satisfy the recurrence relation

PLn = 2PLn−1 + PLn−2

with Pell sequence except the initial conditions PL0 = 1 and PL1 = 1. In this case, the Pell-Lucas sequence is called
modified Pell sequence.

The generating functions for the Pell sequence and Pell-Lucas sequence are as follows
∞∑

n=0

Pnxn =
x

1 − 2x − x2

and

∞∑
n=0

PLnxn =
2 − x

1 − 2x − x2

respectively. Moreover, the Binet formulas for these sequences are defined as

Pn =
γn − δn

γ − δ

and

PLn =
γn + δn

2
respectively, where γ = 1 +

√
2 and δ = 1 −

√
2 are solutions of the characteristic equation of x2 − 2x − 1 = 0. The

positive root γ is called silver ratio (see for details [13]).
Pell and Pell-Lucas numbers appear in many subjects of mathematics. They appear as solutions of the Pell equation

x2 − 2y2 = (−1)n. The solutions of this equation are (PLn, Pn).
In 1963, Horadam [7] defined Fibonacci and Lucas quaternions for detail [6,8,10,12]). And also generalizations of

Fibonacci and Lucas quaternions are ( [2, 9, 14, 16]).
Fibonacci and Lucas octonions are deffined by Kecioglu and Akkus as follows

Qn =

7∑
s=0

Fn+ses and Tn =

7∑
s=0

Ln+ses



On Pell and Pell-Lucas Generalized Octonions 228

where Fn and Ln are nth Fibonacci and Lucas numbers [11]. They gave generating function, Binet formulas and some
identities for the Fibonacci and Lucas octonions. Also, they defined Split Fibonacci and Lucas octonions similarly
in [1]. Savin [15] gave generalized Fibonacci and Lucas octonions over the octonion algebras OR(a+ 1, 2a+ 1, 3a+ 1)
where for real number a.

Cimen and İpek [4] defined Pell and Pell-Lucas quaternions as

QPn = Pn + iPn+1 + jPn+2 + kPn+3

and
QPLk,n = PLk,n + iPLk,n+1 + jPLk,n+2 + kPLk,n+3

where Pn and PLn are the nth Pell and Pell-Lucas numbers. They obtained many properties of these quaternions such as
Binet formulas and Cassini’s identity. Szynal-Liana and Wloch [17] introduced the Pell quaternions, the Pell octonions
and gave some properties of them.

Catarino [3] studied on modified Pell and modified k-Pell quaternions which are defined by

MPn = qn + iqn+1 + jqn+2 + kqn+3

and
MPk,n = qk,n + iqk,n+1 + jqk,n+2 + kqk,n+3

where qn and qk, n are the nth modified Pell and modified k-Pell numbers, respectively.
In this paper, we study the Pell and Pell-Lucas octonions over the octonion algebra O(a, b, c). At first, we show the

Pell and Pell-Lucas octonions over the octonion algebra O(a, b, c) by the following notations:

POn =

7∑
s=0

Pn+ses and ROn =

7∑
s=0

PLn+ses

For generalized case with negative indices is given by

PO−n =

7∑
s=0

(−1)n+s+1Pn−ses and RO−n =

7∑
s=0

(−1)n+sPLn−ses

respectively. We also obtained some properties of these octonions including Binet formulas, Cassini’s, Catalan’s and
D’Ocagne’s identities.

2. Binet Formulas and Generalizations for Some Identities

Binet formulas for the Pell and Pell-Lucas generalized octonions are given by the following theorem.

Theorem 2.1. For any integer n, nth Pell generalized octonion is

POn =
γ∗γn − δ∗δn

γ − δ
(2.1)

and nth Pell-Lucas generalized octonion is

ROn =
γ∗γn + δ∗δn

2
(2.2)

where γ = 1 +
√

2, δ = 1 −
√

2, γ∗ =
7∑

s=0
γses and δ∗ =

7∑
s=0

δses.

Proof. Let us consider the following for Eq. (2.1) and POn =
∑7

s=0 Pn+ses:

γPOn + POn−1 =

7∑
s=0

(γPn+s + Pn+s−1) es.

By the help of the identity γn = γPn + Pn−1, we get

γPOn + POn−1 = γ
∗γn. (2.3)

Similarlay, using the identity δn = δPn + Pn−1, we have

δPOn + POn−1 = δ
∗δn. (2.4)
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From the equations (2.3) and (2.4), we obtain

POn =
γ∗γn − δ∗δn

γ − δ
.

Eq. (2.2) can we obtain smilarly. �

Now, we give some useful identities. These identities play very important roles throughout the paper for calculations.

Lemma 2.2. We have the followings identities

γ∗2 = ξ1 + 2RO0 + 2
√

2 (ξ2 + PO0) , (2.5)

δ∗2 = ξ1 + 2RO0 − 2
√

2 (ξ2 + PO0) ,

γ∗δ∗ = τ + 2RO0 + 2
√

2σ, (2.6)

δ∗γ∗ = τ + 2RO0 − 2
√

2σ (2.7)

where

ξ1 = 1 − 114243abc − 3363ac − 19601bc − 99ab − 3a − 17b − 577c,

ξ2 = −40391abc − 6930bc − 1189ac − 35ab − 204c − 6b − a,

τ = abc + ab + ac − bc + a − b − c − 1,
σ = (bc − b − c) e1 + (2ac − 2a − 2c) e2 + (−6c + 1) e3

+(−12ab − 12a + 12b)e4 + (−34b + 5)e5 + (68a − 2)e6 − 33e7.

Proof. Using the multiplication table for the basis of O(a, b, c) , we have

γ∗2 =
(∑7

s=0 γ
ses

) (∑7
s=0 γ

ses

)
= 1 − 114243abc − 3363ac − 19601bc − 99ab − 3a − 17b − 577c

+2RO0

+2
√

2 (−40391abc − 6930bc − 1189ac − 35ab − 204c − 6b − a

+PO0)

= ξ1 + 2RO0 + 2
√

2 (ξ2 + PO0) .

The last equation is the Eq. (2.5). Smilarly

γ∗δ∗ =
(∑7

s=0 γ
ses

) (∑7
s=0 δ

ses

)
= abc + ab + ac − bc + a − b − c − 1

+2RO0 + 2
√

2 [(bc − b − c) e1

+ (2ac − 2a − 2c) e2 + (−6c + 1) e3 + (−12ab − 12a + 12b)e4

(−34b + 5)e5 + (68a − 2)e6 − 33e7]

= τ + 2RO0 + 2
√

2σ.

The last equation is the Eq. (2.6). The others can be proved similarly. �

After having Binet formulas, we can obtain some identities for the Pell and Pell-Lucas generalized octonions. The
following theorem gives us Catalan’s identities for the Pell and Pell-Lucas generalized octonions as follows.
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Theorem 2.3. Let n and r be integers, we have

POn+rPOn−r − PO2
n = (−1)n−r+1

[
1
4

(τ + 2RO0)
(
PL2r + (−1)r−1

)
+ σP2r

]
and

ROn+rROn−r − RO2
n = (−1)n−r

[
1
2

(τ + 2RO0) (PL2r − (−1)r) + 2σP2r

]
.

Proof. By using the Binet formulas for the Pell generelized octonions, we have

POn+rPOn−r − PO2
n =

1
8

[
(γ∗γn+r − δ∗δn+r) (γ∗γn−r − δ∗δn−r)

− (γ∗γn − δ∗δn)2
]

=
1
8

[
−γ∗δ∗γn+rδn−r − δ∗γ∗δn+rγn−r

+γ∗δ∗γnδn + δ∗γ∗δnγn]
=

1
8

[
−γn−rδn−r

(
γ∗δ∗γ2r + δ∗γ∗δ2r

)
+ 2 (−1)n (τ + 2RO0)

]
=

1
8

[
(−1)n−r+1

(
(τ + 2RO0)

(
γ2r + δ2r

)
2
√

2σ
(
γ2r − δ2r

))
+ 2 (−1)n (τ + 2RO0)

]
=

1
8

[
2 (−1)n−r+1 (τ + 2RO0)

(
PL2r + (−1)r−1

)
= +8 (−1)n−r+1 σP2r

]
= (−1)n−r+1

[
1
4 (τ + 2RO0)

(
PL2r + (−1)r−1

)
+ σP2r

]
.

The second identity in theorem can be obtained similarly. �

For r = 1, Theorem 3 gives Cassini’s identities for the Pell and Pell-Lucas generalized octonions as folllows.

Corollary 2.4. For any integer n, we have

POn+1POn−1 − PO2
n = (−1)n

[
1
2

(τ + 2RO0) + σ
]

and

ROn+1ROn−1 − RO2
n = (−1)n−1 [(τ + 2RO0) + 2σ] .

D’Ocagne’s identities for the Pell and Pell-Lucas generalized octonions are given in the following theorem.

Theorem 2.5. Let n and m be integers, we have

POmPOn+1 − POm+1POn = (−1)n [(τ + 2RO0) Pm−n + 2σPLm−n]

and

ROmROn+1 − ROm+1ROn = 2 (−1)n+1 [(τ + 2RO0) Pm−n + 2σPLm−n] .
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Proof. By using the Binet formulas for the Pell generalized octonions, we get

POmPOn+1 − POm+1POn =
1
8

(γ∗γm − δ∗δm)
(
γ∗γn+1 − δ∗δn+1

)
−

1
8

(
γ∗γm+1 − δ∗δm+1

)
(γ∗γn − δ∗δn)

=

√
2

4
[
(−1)n (γ∗δ∗γm−n − δ∗γ∗δm−n)

]
.

If we substitute equations (2.6) and (2.7) into the last equation, then we have

POmPOn+1 − POm+1POn =

√
2

4
(−1)n

[
2
√

2 (τ + 2RO0) Pm−n + 4
√

2σPLm−n

]
= (−1)n [(τ + 2RO0) Pm−n + 2σPLm−n] .

We can obtain the second identity, similarly. �

3. Some Results for The Pell and Pell-Lucas Generalized Octonions

In this section, we give some identities which can be obtained from Binet formulas for the Pell and Pell-Lucas
generalized octonions.

Theorem 3.1. Pell and Pell-Lucas generalized octonions satisfy the following identities;

RO2
n + PO2

n =
3
8

[
2 (ξ1 + 2RO0) PL2n + 8 (ξ2 + PO0) P2n

]
+

1
4

(−1)n (τ + 2RO0) ,

RO2
n − PO2

n =
1
8

[
2 (ξ1 + 2RO0) PL2n + 8 (ξ2 + PO0) P2n

]
+

3
4

(−1)n (τ + 2RO0) ,

ROn+rPOn+s − ROn+sPOn+r = (−1)n+r (τ + 2RO0) Ps−r,

POm+n + (−1)n POm−n = 2PLnPOm,

POmROn − POnROm = (−1)m+1 (τ + 2RO0) Pn−m,

POmROn − ROmPOn = (−1)m+1 [(τ + 2RO0) Pn−m − 2σPLn−m] .

Proof. We prove the first and fourth identities. We need the Binet formulas for the Pell and Pell-Lucas generalized
octonions.

RO2
n + PO2

n =
1
4

(γ∗γn + δ∗δn) (γ∗γn + δ∗δn)

+
1
8

(γ∗γn − δ∗δn) (γ∗γn − δ∗δn)

=
3
8

[
γ∗2γ2n + δ∗2δ2n

]
+

1
8

(−1)n [
γ∗δ∗ + δ∗γ∗

]
=

3
8

[
(ξ1 + 2RO0)

(
γ2n + δ2n

)
+ 2
√

2 (ξ2 + PO0)
(
γ2n − δ2n

)]
+

1
8

(−1)n (τ + 2RO0)

=
3
8

[
2 (ξ1 + 2RO0) PL2n + 8 (ξ2 + PO0) P2n

]
+

1
4

(−1)n (τ + 2RO0) .
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Similarly, using Binet formulas again, we get

POm+n + (−1)n POm−n =
1

2
√

2

[
γ∗γm+n − δ∗δm+n + (−1)n (γ∗γm−n − δ∗δm−n)

]
=

1

2
√

2

[
γ∗γm (γn + δn) − δ∗δm (δn + γn)

]
=

1
√

2
PLn (γ∗γm − δ∗δm)

= 2PLnPOm.

The other four identities in this theorem can be obtained similarly. �

Since the algebra O(a, b, c) is non-commutative, then we have the following theorem.

Theorem 3.2. Let m and n be integers, then we have

POnPOm − POmPOn =
√

2 (−1)m+1 σPLn−m

and
ROnROm − ROmROn = 4 (−1)m σPn−m. (3.1)

Proof. Using Binet formulas for the Pell generalized octonions gives

POnPOm − POmPOn =
1
8

(γ∗γn − δ∗δn) (γ∗γm − δ∗δm)

−
1
8

(γ∗γm − δ∗δm) (γ∗γn − δ∗δn)

=
1
8

[
−γ∗δ∗γnδm − δ∗γ∗δnγm

+γ∗δ∗γmδn + δ∗γ∗δmγn]
=

1
8

[
−4
√

2σ (γnδm + δnγm)
]

=
−1
√

2
σ

[
γmδm (γn−m + δn−m)

]
=
√

2 (−1)m+1 σPLn−m.

Eq. (3.1) can be proved similarly. �

4. Results and Suggestions

In this paper, we study on the Pell and Pell-Lucas generalized octonions. We derive some new and interesting
properties for the Pell and Pell-Lucas generalized octonions. After this study and results, Binet formulas, Catalan’s,
Cassini’s and D’Ocagne’s identities and some properties can be obtained on the k-Pell and k-Pell-Lucas generalized
octonions.
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