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Abstract 
In this paper, a discrete-time prey-predator population model with immigration which is 

obtained by implementing forward Euler’s scheme has been considered. The existence of 

fixed points of the presented model has been investigated. Moreover, the stability analysis of 

the fixed points of the population model has been examined and the topological classification 

of the fixed points of the model has been made. Moreover, the OGY feedback control 

method is to implement to controlchaos caused by the Flip bifurcation. Finally, Flip 

bifurcation,chaos control strategy, and asymptotic stability of the only positive fixed point 

are verifiedwith the help of numerical simulations. 
 

 

 

 

 

Article info 

History: 

Received: 11.08.2020 

Accepted: 17.12.2020 

Keywords: 

Prey-predator model, 

Stability analysis, 

Immigration, Fixed 

point, Chaotic 

behavior, OGY 

feedback control 

method 

 

1. Introduction 

Some interdisciplinary studies have been carried out to understand and explain natural events recently. These 

studies led to the development of new fields such as mathematical biology and biophysics. First of all, to 

understand the events in nature, a mathematical model that reflects these events is needed. 

The species in nature interact with each other. The population density of these interacting species also affects 

the population density of other living species. Therefore, population models are among the most striking issues 

for many ecologists, mathematicians, and biologists recently. 

Prey-predator models are among the most common population models that involve the interaction of the two 

species. The predator feeds on prey. The prey also feeds on other foods. Fox and rabbits, sharks, and fish are 

examples of the prey-predator species.  

Lotka [1] and Volterra [2] introduced a predator-prey model firstly. In this model, the prey consumption rate by 

a predator is consideredto be directly proportional to the abundance of the prey. This indicates thatthe predator 

was fed to a limited extent by the amount of prey in the environment. While this is realistic in environments 

with low hunting density, it is anabsolutely unrealistic assumption in high hunting densities. In later 

processes,Lotka-Volterra model was arranged in different ways. 

The immigration factor is an effect that makes the predator-prey population model more realistic [3-7]. So 

manyresearches studied the role of immigration and its impact on population dynamics [8-12]. It 

wasinvestigated the existence and uniqueness of limitcycles in predator-prey models [4], alsothe local and 

global stability of fixed-rate migration-effective, delayed predator-prey system [3]. They showed that the 

existence of the global Hopf bifurcation. Thara at allanalyzed the asymptotic stability of prey-predator systems, 

which was formedby adding individual immigration factors to the prey and predator population inthe classical 

Lotka-Volterra system [13]. Furthermore, many ecological concepts such as diffusion, functional responses, 

time delays and Allee effect have beenadded to the predator-prey model to gain a more accurate description and 

beter understanding [14-19]. 
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In the last few centuries, chaos and unusual behavior of non-linear discrete dynamical system attracted the 

attention of scientists. Chaotic behavior examined in almost every field, such as chemistry, physics, ecology, 

biology, chemical engineering, telecommunications etc.Moreover, the practical methods related to chaos 

control can be implemented in various areas such as communications, physics laboratories, biochemistry, 

turbulence, and cardiology.Chaos is the general name for non-linear dynamical systems that behave noise-like. 

Chaos is indecomposable, is highly dependent on the initial condition, and consists of a large number of 

periodic points and orbits. Because of this, the solution of a chaotic system is difficult to predict, which calls for 

a way to control it. The control algorithm of Ott, Grebogi, and Yorke (OGY, [20]) manages to do this.The 

proposed methodology is known as the OGY method.OGY is a discrete control algorithm, perturbing the 

system at discrete moments in time.It is well known that existence or non-existence of chaotic solutions for a 

dynamical system is determined by calculating Lyapunov exponent. Generally, a positive lyapunov exponentis 

considered to be one of the characteristics which imply the existence of chaos. That is, when the system has a 

positive largest Lyapunov exponent, then the system exhibits chaotic dynamics [21].  

In [19], the author has considered the following continuous-time model with Allee effect on prey population: 

{

𝑑𝑥(𝑡)

𝑑𝑡
= 𝑥(𝑡)(𝑏1 − 𝑎11𝑥(𝑡))

𝑥(𝑡)

𝛽+𝑥(𝑡)
+ 𝑎12𝑥(𝑡)𝑦(𝑡)

𝑑𝑦(𝑡)

𝑑𝑡
= 𝑦(𝑡)(𝑏2 − 𝑎22𝑦(𝑡))

       (1) 

 

where 𝑥(𝑡)and 𝑦(𝑡) represent population densities of prey and predator at time t, respectively; , 1,2ib i  are the 

intrinsic growth rate of the prey 𝑥 and predator 𝑦; , 1, 2i

ii

b
i

a
  is the carrying capacity of prey and predator, 

respectively; 12a  reflects the efficiency of every single population 𝑦  that can contribute to population 𝑥. The 

term 
𝑥(𝑡)

𝛽+𝑥(𝑡)
 is Allee effect here. The author investigated the local and global property of the fixed point of the 

system (1) with the Allee effect on prey population [1]. 

 

In [22],Kangalgil has considered discrete- time version of the system (1) with an Allee effect on predator 

species by applying the forward Euler scheme as follows: 

 

{

𝑥𝑡+1 = 𝑥𝑡 + δ(𝑥𝑡(𝑏1 − 𝑎11𝑥𝑡) + 𝑎12𝑥(𝑡)𝑦(𝑡)

𝑦𝑡+1 = 𝑦𝑡 + δ(𝑦𝑡 (𝑏2
𝑦(𝑡)

𝑚+𝑦(𝑡)
− 𝑎22𝑦(𝑡)))

        (2) 

 

where 0   is the step size, 𝑥(𝑡) and 𝑦(𝑡) represent population densities of prey and predator at time t, 

respectively. All parameters are positive constants.  The term (y)
y

f
m y




 is called the Allee effect where 

m   is Allee constant [17-19].The author investigated dynamical behavior of the system (2) with Allee effect on 

predator population at the coexistence fixed point and showed that the system (2) undergoes Flip bifurcation. 

In this study discrete-time version of the system (1) with immigration instead of Allee effect on predator has 

been investigated 

{

𝑑𝑥(𝑡)

𝑑𝑡
= 𝑥(𝑡)(𝑏1 − 𝑎11𝑥(𝑡)) + 𝑎12𝑥(𝑡)𝑦(𝑡))

𝑑𝑦(𝑡)

𝑑𝑡
= 𝑦(𝑡)(𝑏2 − 𝑎22𝑦(𝑡)) + 𝑠

         (3) 

 

Where𝑠 > 0is the immigration parameter. If we apply the following Euler scheme: 
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𝑥′(𝑡0) = 𝑥(𝑡0)(𝑏1 − 𝑎11𝑥(𝑡0)) + 𝑎12𝑥(𝑡0)𝑦(𝑡0) 

we can write 

𝑥′(𝑡0) ≈
𝑥(𝑡1) − 𝑥(𝑡0)

𝑡1 − 𝑡0
. 

Then at 𝑡1 step, 

𝑥(𝑡1) = 𝛿 (𝑥(𝑡0)(𝑏1 − 𝑎11𝑥(𝑡0)) + 𝑎12𝑥(𝑡0)𝑦(𝑡0)) + 𝑥(𝑡0) 

is obtained. Therefore we get 

𝑥 → 𝑥 + 𝛿(𝑥(𝑏1 − 𝑎11𝑥) + 𝑎12𝑥𝑦). 

Similarly 

𝑦(𝑡1) ≈ 𝛿(𝑦(𝑡0)(𝑏2 − 𝑎22𝑦(𝑡0) + 𝑠)) + 𝑦(𝑡0), 

𝑦 → 𝑦 + 𝛿(𝑦(𝑏2 − 𝑎22𝑦) + 𝑠)). 

So we havethe following system: 

{
𝑥𝑡+1 = 𝑥𝑡 + 𝛿(𝑥𝑡(𝑏1 − 𝑎11𝑥𝑡) + 𝑎12𝑥𝑡𝑦𝑡)

𝑦𝑡+1 = 𝑦𝑡 + 𝛿(𝑦𝑡(𝑏2 − 𝑎22𝑦𝑡) + 𝑠)
           (4) 

In [23], authors have investigated the Flip bifurcation analysis of the system (4) by choosing as a 𝛿 bifurcation 

parameter. They showed that the step size 𝛿for Euler’s scheme has strong stability effect on positive-steady 

state or vice versa. We have seen that there is no chance of Neimark-Sacker bifurcation to occur in the system 

(4). We present the Flip bifurcation diagrams and Maximum Lyapunov exponent for the system (4) by 

choosing bifurcation parameter as immigration instead of the step size 𝛿.Also, to control the chaos in the 

system (4), we study the OGY Feedback control method [24]. Numerical simulations are presented to support 

obtained theoretical results and to show the complex dynamical behaviors. 

2. Existence of The Fixed Points 

In this section, we investigate positive fixed points of the system (4) and analyze stability of these fixed points. 

Definition2.1A point (�̅�, �̅�)is called fixed point of system (4), when it satisfies the following system: 

 

�̅� = �̅� + 𝛿(�̅�(𝑏1 − 𝑎11�̅�) + 𝑎12�̅��̅�) 

  (5) 

�̅� = �̅� + 𝛿(�̅�(𝑏2 − 𝑎22�̅�) + 𝑠). 

Definition2.2A matrix 

𝐽(𝑥, 𝑦) = (
𝑓1𝑥(𝑥, 𝑦) 𝑓1𝑦(𝑥, 𝑦)

𝑓2𝑥(𝑥, 𝑦) 𝑓2𝑦(𝑥, 𝑦)
) 

is called Jacobian matrix of system (4) at fixed point (𝑥, 𝑦), where 

𝑓1(𝑥, 𝑦) = 𝑥 + 𝛿(𝑥(𝑏1 − 𝑎11𝑥) + 𝑎12𝑥𝑦) 

                                             (6) 

𝑓2(𝑥, 𝑦) = 𝑦 + 𝛿(𝑦(𝑏2 − 𝑎22𝑦) + 𝑠). 
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Definition2.3An equation  

𝐹(𝜆) = 𝜆2 − 𝑖𝑧𝐽(𝑥, 𝑦)𝜆 + 𝑑𝑒𝑡𝐽(𝑥, 𝑦) = 0 

is called characteristic equation of fixed point (𝑥, 𝑦) and𝐹(𝜆) is called characteristic polynomial as well. 

Definition2.4Let λ1and λ2 are the roots of the characteristic polynomial 

𝐹(𝜆)=𝜆2 − B𝜆+ CB ,C ϵ N. 

Then the fixedpoint of the system (4) is called 

1) sink if  |λ1| < 1 and |λ2| < 1, 

2) source if |λ1| > 1 and |λ2| > 1, 

3) saddle if [|λ1| < 1 and |λ2| > 1] or [|λ1| > 1 and |λ2| < 1], 

4) non-hyperbolic if |λ1| = 1 or |λ2| = 1. 

Lemma2.1For all parameter values, the system (4) has four fixed points as follows: 

𝐸1 = (0, 0) 

𝐸2 = (
𝑏1

𝑎11
, 0) 

𝐸3 = (0,
𝑏2 + 𝑠

𝑎22
) 

𝐸4 = (
𝑏1𝑎22 + 𝑎12𝑏2 + 𝑎12𝑠

𝑎11𝑎22
,
𝑏2 + 𝑠

𝑎22
). 

3. Topological Classification for Fixed Points 

In this section we make topological classification for the fixed points of the system (4).  

3.1. The fixed point 𝑬𝟏(𝟎, 𝟎): 

The Jacobian matrix of the system (4) is obtained as follow: 

𝐽 = (
1 + 𝛿(𝑏1 − 2𝑎11𝑥 + 𝑎12𝑦) 𝛿𝑎12𝑥

0 1 + 𝛿𝑏2 − 2𝛿𝑎22𝑦 + 𝛿𝑠
)       (7) 

If we write 𝑥 = 0, 𝑦 = 0 in Jacobian matrix (7), then we obtain corresponding matrix and characteristic 

polynomial for the fixed point 𝐸1 like that: 

𝐽 = (
1 + 𝛿𝑏1 0

0 1 + 𝛿𝑏2 + 𝛿𝑠
)            (8) 

𝐹(𝜆) = 𝜆2 − 𝑖𝑧𝐽(0,0)𝜆 + 𝑑𝑒𝑡𝐽(0,0) 

or 

𝐹(𝜆)=𝜆2 − (1 + 𝛿𝑏1 + 1 + 𝛿𝑏2 + 𝛿𝑠)𝜆+(1 + 𝛿𝑏2 + 𝛿𝑠)(1 + 𝛿𝑏1). 

Therefore characteristic values of the system (4) are obtained as follows: 

λ1=1+δ𝑏1, 

λ2 = 1 + 𝛿𝑏2 + 𝛿𝑠. 
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Because of 𝛿, 𝑏1, 𝑏2and 𝑠arepositive then,|λ1| > 1and|λ2| > 1. According to Definition 2.4,𝐸1 is the source 

fixed point of the system (4). So we proved the following theorem: 

Theorem 3.1For all parameter values, the fixed point 𝐸1is source and unstable fixed point of the system (4). 

3.2. The fixedpoint𝑬𝟐 (
𝒃𝟏

𝒂𝟏𝟏
, 𝟎): 

Similarly, in Section 3.1, we get Jacobian matrix and characteristic polynomial for the fixed point 𝐸2 like that: 

𝐽 (
𝒃𝟏

𝒂𝟏𝟏
, 0) = (

1 − 𝛿𝑏1
𝛿𝑎12𝑏1

𝑎11

0 1 + 𝛿𝑏2 + 𝛿𝑠
)        (9) 

𝐹(𝜆)= 𝜆2 − 𝑖𝑧𝐽(
𝑏1

𝑎11
, 0)𝜆+𝑑𝑒𝑡𝐽(

𝑏1

𝑎11
,0) 

or 

𝐹(𝜆)=𝜆2 − (1 − 𝛿𝑏1 + 1 + 𝛿𝑏2 + 𝛿𝑠)𝜆+(1 + 𝛿𝑏2 + 𝛿𝑠)(1 − 𝛿𝑏1). 

Therefore characteristic values of the system (4) as follows: 

λ1=1-δ𝑏1, 

λ2 = 1 + 𝛿𝑏2 + 𝛿𝑠. 

Theorem 3.2For the fixed point 𝐸2of the system (4). 

a) if 𝛿 <
2

𝑏1
, then it is source, 

b) if𝛿 >
2

𝑏1
, then it is saddle. 

c) if𝛿 =
2

𝑏1
,then it isnon-hyperbolic. 

3.3. The fixed point 𝑬𝟑 (𝟎,
𝒃𝟐+𝒔

𝒂𝟐𝟐
): 

Similarly 𝐸1and 𝐸2, we obtain Jacobian matrix and characteristic polynomial for the fix point 𝐸3 as follows: 

𝐽 (0,
𝑏2+𝑠

𝑎22
) = (

1 + 𝛿 (𝑏1 +
𝑎12(𝑏2+𝑠)

𝑎22
) 0

0 1 − 𝛿𝑏2 − 𝛿𝑠
)         (10) 

or 

 𝐽 (0,
𝐾

𝑎22
) = (

1 + 𝛿𝑏1 + 𝛿𝐾𝑅 0
0 1 − 𝛿𝐾

) 

where 

𝑏2 + 𝑠 = 𝐾,𝐾 > 0 

𝑎12

𝑎22
= 𝑅, 𝑅 > 0, 

𝐹(𝜆)= 𝜆2 − 𝑖𝑧𝐽(0,
𝐾

𝑎22
)𝜆+𝑑𝑒𝑡𝐽(0,

𝐾

𝑎22
) 

or 

𝐹(𝜆)=𝜆2 − (1 + 𝛿𝑏1 + 𝛿𝐾𝑅1 − 𝛿𝐾)𝜆+(1 + 𝛿𝑏2 + 𝛿𝐾𝑅)(1 − 𝛿𝐾). 
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Therefore characteristic values of the system (4) are obtained as follows: 

 λ1 = 1 + 𝛿𝑏1 + 𝛿𝐾𝑅 

λ2 = 1 − 𝛿𝐾. 

Theorem 3.3For the fixed point 𝐸3of the system (4), 

a) if 𝛿 <
2

𝐾
, then it is saddle, 

b) if𝛿 >
2

𝐾
, then it is source. 

c) if𝛿 =
2

𝐾
,then it isnon-hyperbolic. 

 

3.4. The coexistence fixed point 𝑬𝟒 = (
𝒃𝟏𝒂𝟐𝟐+𝒂𝟏𝟐𝒃𝟐+𝒂𝟏𝟐𝒔

𝒂𝟏𝟏𝒂𝟐𝟐
,
𝒃𝟐+𝒔

𝒂𝟐𝟐
): 

Finally, we obtain Jacobian matrix and characteristic polynomial for the last coexistence fixed point 𝐸4 as 

follows: 

𝐽 = (
1 + 𝛿 (𝑏1 −

2(𝑏1𝑎22+𝑎12𝑏2+𝑎12𝑠)

𝑎22
+

𝑎12(𝑏2+𝑠)

𝑎22
)

𝛿𝑎12(𝑏1𝑎22+𝑎12𝑏2+𝑎12𝑠)

𝑎11𝑎22

0 1 − 𝛿𝑏2 − 𝛿𝑠
)     (11) 

or 

 𝐽 = (
1 − 𝛿𝑏1 − 𝛿𝐾𝑅

𝛿𝑅(𝑏1𝑎22 + 𝑎12𝐾)

𝑎11

0 1 − 𝛿𝐾

) 

where 

𝑏2 + 𝑠 = 𝐾, 𝐾 > 0, 

𝑎12

𝑎22
= 𝑅, 𝑅 > 0, 

 

𝐹(𝜆)= 𝜆2 − 𝑖𝑧𝐽(
𝑏1𝑎22 + 𝑎12𝑏2 + 𝑎12𝑠

𝑎11𝑎22
,
𝑏2 + 𝑠

𝑎22
)𝜆+𝑑𝑒𝑡𝐽(

𝑏1𝑎22 + 𝑎12𝑏2 + 𝑎12𝑠

𝑎11𝑎22
,
𝑏2 + 𝑠

𝑎22
) 

Therefore characteristic valuesof the system (4) are obtained as follows. 

 

 λ1 = 1 − 𝛿(𝑏1 + 𝐾𝑅) 

 λ2 = 1 − 𝛿𝐾. 

Theorem 3.4Suppose 𝛿1 =
2

𝑏1+𝐾𝑅
 and 𝛿2 =

2

𝐾
. Then the fixed point 𝐸4of the system (4), 

a) if 𝛿 < 𝑚𝑖𝑛{𝛿1, 𝛿2}, then it islocal asymptotic stable [23], 

b) if 𝛿 < 𝛿1 and 𝛿 > 𝛿2, then it is saddle, 

c) if𝛿 > 𝑚𝑎𝑥{𝛿1, 𝛿2}, then it is source, 

d) if 𝛿 = 𝛿1 or 𝛿 = 𝛿2, then it is non-hyperbolic. 

In [23] researchers prove that discrete system (4)  possesses the flip bifurcation at the fixed point 𝐸4by 

choosing as a 𝛿 bifurcation parameter if parameters vary in a small neighborhood of 𝐹𝐵1𝐸4
 and 𝐹𝐵2𝐸4

 where 

𝐹𝐵1𝐸4
= {(𝑎11, 𝑎12, 𝑎22, 𝑏1, 𝑏2, 𝑠) ∈ 𝑅6: 𝛿 ≠ 𝛿1 𝑎𝑛𝑑 𝛿 ≠ (

𝛿1

𝛿
+ 1)

𝛿2𝑎22

2
 }, 
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𝐹𝐵2𝐸4
= {(𝑎11, 𝑎12, 𝑎22, 𝑏1, 𝑏2, 𝑠) ∈ 𝑅6: 𝛿 ≠ 𝛿2 𝑎𝑛𝑑 𝛿 ≠ (

𝛿1

𝛿
+ 1)

𝛿2𝑎22

2
 }. 

We present the Flip bifurcation diagrams and Maximum Lyapunov exponent for the system (4) by choosing  

sinstead of 𝛿as a bifurcation  parameter in 𝐹𝐵2𝐸4
 . 

 
(a) 

 
(b) 

Figure1. Bifurcation diagrams of system (4) for 𝑎11 = 1, 𝑎12 = 1, 𝑎22 = 1, 𝑏1 = 1, 𝑏2 = 2, 𝛿 = 0.75 and initial value 

(𝑥0, 𝑦0) = (3.5,2.5). 

Taking parameter values for 𝑎11 = 1, 𝑎12 = 1, 𝑎22 = 1, 𝑏1 = 1, 𝑏2 = 2, 𝛿 = 0.75 and initial value (𝑥0, 𝑦0) =
(3.5,2.5), flip bifurcation occurs from coexistence fixed point  𝐸4 = (3.66,2.66)  at 𝑠 = 0.666666666. From 

Figure (1b), It is seen that the coexistence fixed point𝐸4 = (3.66,2.66) is stable  𝑠 < 0.666666666, and loses 

its stability at the flip bifurcation parameter value 𝑠 > 0.666666666. Also, It is observed that the flip 

bifurcation giving 2,4,8 periodic orbits occur. 

 

 
Figure2. Maximum Lyapunov Exponent 

 

We know that it is determined existence or non-existence of the chaotic solutions for a dynamical system by 

calculating the Lyapunov exponent. If the system (4) has a positive largest exponent, we say that the system (4) 

shows chaotic dynamics. Some Lyapunov exponents are bigger than 0, some are smaller than 0. Therefore, 

there are stable fixed points or stable period windows in the chaotic region.  In Figure 2, we calculate and plot 

the maximum Lyapunov exponent for the system (4).  Figure 2 exhibits the existenceof the chaotic regions. 

 

4. Chaos Control 

We investigate a chaos control technique for the discrete-time system. Chaos control aims to make chaotic 

behavior more predictable and stable. We use the OGY method for the system (4). Therefore we consider the 

following controlled system: 
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{
𝑥𝑡+1 = 𝑥𝑡 + 𝛿(𝑥𝑡(𝑏1 − 𝑎11𝑥𝑡) + 𝑎12𝑥𝑡𝑦𝑡) = 𝑓(𝑥𝑡, 𝑦𝑡 , 𝑠)

𝑦𝑡+1 = 𝑦𝑡 + 𝛿(𝑦𝑡(𝑏2 − 𝑎22𝑦𝑡) + 𝑠) = 𝑔(𝑥𝑡 , 𝑦𝑡 , 𝑠)
       (12) 

where 𝑠 is taken as the controlling parameter.On the other hand, it is assumed that controlparameter 𝑠 satisfies 
|𝑠 − 𝑠0| < 𝜇 where 𝜇> 0 and 𝑠0 represents some nominal value, which is locatedin the chaotic region. Next, we 

assume that (𝑥∗, 𝑦∗) is an interior unstable fixed point of system (4). Also,suppose that (𝑥∗, 𝑦∗)is located in 

some chaotic region. Ourmain aim is to move the unstable fixed point towards a stable one. For this, system 

(12) is linearizedabout the unstable fixed point (𝑥∗, 𝑦∗) as follows: 

[
𝑥𝑡+1 − 𝑥∗

𝑦𝑡+1 − 𝑦∗] ≈ 𝐴 [
𝑥𝑡 − 𝑥∗

𝑦𝑡 − 𝑦∗] + 𝐵[𝑠 − 𝑠0]         (13) 

where  

 

𝐴 =

[
 
 
 
 
𝜕𝑓(𝑥∗, 𝑦∗, 𝑠0)

𝜕𝑥𝑡

𝜕𝑓(𝑥∗, 𝑦∗, 𝑠0)

𝜕𝑦𝑡

𝜕𝑔(𝑥∗, 𝑦∗, 𝑠0)

𝜕𝑥𝑡

𝜕𝑔(𝑥∗, 𝑦∗, 𝑠0)

𝜕𝑦𝑡 ]
 
 
 
 

= [
1 + 𝛿 [𝑏1 −

2(𝑏1𝑎22 + 𝑎12𝑏2 + 𝑎12𝑠0)

𝑎22
] +

𝑎12(𝑏2 + 𝑠0)

𝑎22

𝛿𝑎12(𝑏1𝑎22 + 𝑎12𝑏2 + 𝑎12𝑠0)

𝑎11𝑎22

0 1 − 𝛿𝑏2 − 𝛿𝑠0

] 

and 

𝐵 = [

𝜕𝑓(𝑥∗, 𝑦∗, 𝑠0)

𝜕𝑠
𝜕𝑔(𝑥∗, 𝑦∗, 𝑠0)

𝜕𝑠

] = [

0
𝛿(𝑏2 + 𝑠0)

𝑎22

]. 

Now we define the following controllability matrix for the system (12): 

𝐶 = [𝐵: 𝐴𝐵] = [
0

𝛿2𝑎12(𝑏1𝑎22+𝑎12𝑏2+𝑎12𝑠0)(𝑏2+𝑠0)

𝑎11(𝑎22)2

𝛿(𝑏2+𝑠0)

𝑎22

(1−𝛿𝑏2−𝛿𝑠0)𝛿(𝑏2+𝑠0)

𝑎22

].      (14) 

Then it is easy to see that rank of 𝐶 is 2.  Now suppose that [𝑠 − 𝑠0] = −𝐾 [
𝑥𝑡 − 𝑥∗

𝑦𝑡 − 𝑦∗], where 𝑅 = [𝑝1 𝑝2]. 

Consequently, the system (13) takes the following form: 

[
𝑥𝑡+1 − 𝑥∗

𝑦𝑡+1 − 𝑦∗] ≈ [𝐴 − 𝐵𝑅] [
𝑥𝑡 − 𝑥∗

𝑦𝑡 − 𝑦∗]           (15) 

Moreover, the fixed point(𝑥∗, 𝑦∗)is locally asymptotically stable if and onlyif both eigenvalues of the 

matrix𝐴 − 𝐵𝑅lie in an open unit disk. The Jacobian matrix𝐴 − 𝐵𝑅 of the controlled system (15) can be written 

as follows: 

𝐴 − 𝐵𝑅 =

[
 
 
 
 −

−𝑎22 + 𝛿𝑏1𝑎22 + 𝛿𝑎12𝑏2 + 𝛿𝑎12𝑠0

𝑎22

𝛿𝑎12(𝑏1𝑎22 + 𝑎12𝑏2 + 𝑎12𝑠0)

𝑎11𝑎22

−
𝛿(𝑏2 + 𝑠0)𝑝1

𝑎22
−

−𝑎22 + 𝛿𝑏1𝑎22 + 𝛿𝑠0𝑎22 + 𝛿𝑝2𝑏2 + 𝛿𝑝2𝑠0

𝑎22 ]
 
 
 
 

 

The characteristic equation of the Jacobian matrix𝐴 − 𝐵𝑅is given by 

 

𝑃(𝜆) = 𝜆2 − [2 + 𝛿 (𝑏1 −
2(𝑏1𝑎22 + 𝑎12𝑏2 + 𝑎12𝑠0)

𝑎22
+

𝑎12(𝑏2 + 𝑠0)

𝑎22
) − 𝛿𝑏2 − 𝛿𝑠 −

𝛿(𝑏2 + 𝑠0)𝑝2

𝑎22
] 𝜆 + 

 

                  +1 − 𝛿𝑏2 − 𝛿𝑠0 −
𝛿𝑝2𝑏2

𝑎22
−

𝛿𝑝2𝑠0

𝑎22
− 𝛿𝑏1 + 𝛿2𝑏1𝑏2 + 𝛿2𝑏1𝑠0 + 
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+
𝛿2𝑏1𝑏2𝑝2 + 𝛿2𝑏1𝑝2𝑠0 − 𝛿𝑎12𝑏2 + 𝛿2𝑎12(𝑏2)

2 + 2𝛿2𝑎12𝑏2𝑠0−𝛿𝑎12𝑠0+𝛿2𝑎12(𝑠0)
2

𝑎22
+ 

 

+
𝛿2𝑎12[(𝑏2)

2𝑝2 + 2𝑏2𝑝2𝑠0 + (𝑠0)
2𝑝2]

(𝑎22)
2

+
𝛿2𝑎12[𝑝1𝑏1𝑏2 + 𝑝1𝑏1𝑠0]

𝑎11𝑎22
+ 

 

+
𝛿2(𝑎12)2𝑝1

𝑎11(𝑎22)2
[𝑏2 + 𝑠0]

2                                                           (16) 

 

Let𝜆1and𝜆2be the eigenvalues of the characteristic equation (16),then 

 

𝜆1 + 𝜆2 = 2 + 𝛿 (𝑏1 −
2(𝑏1𝑎22 + 𝑎12𝑏2 + 𝑎12𝑠0)

𝑎22
+

𝑎12(𝑏2 + 𝑠0)

𝑎22
) − 𝛿𝑏2 − 𝛿𝑠 −

𝛿(𝑏2 + 𝑠0)𝑝2

𝑎22
 

and 

𝜆1𝜆2 = 1 − 𝛿𝑏2 − 𝛿𝑠0 −
𝛿𝑝2𝑏2

𝑎22
−

𝛿𝑝2𝑠0

𝑎22
− 𝛿𝑏1 + 𝛿2𝑏1𝑏2 + 𝛿2𝑏1𝑠0 + 

 

+
𝛿2𝑏1𝑏2𝑝2 + 𝛿2𝑏1𝑝2𝑠0 − 𝛿𝑎12𝑏2 + 𝛿2𝑎12(𝑏2)

2 + 2𝛿2𝑎12𝑏2𝑠0−𝛿𝑎12𝑠0+𝛿2𝑎12(𝑠0)
2

𝑎22
+ 

 

+
𝛿2𝑎12[(𝑏2)

2𝑝2 + 2𝑏2𝑝2𝑠0 + (𝑠0)
2𝑝2]

(𝑎22)
2

+
𝛿2𝑎12[𝑝1𝑏1𝑏2 + 𝑝1𝑏1𝑠0]

𝑎11𝑎22
+ 

 

+
𝛿2(𝑎12)2𝑝1

𝑎11(𝑎22)2
[𝑏2 + 𝑠0]

2             (17) 

 

are obtained.In order to get the lines of marginal stability we must solve the equations𝜆1 = ±1and𝜆1𝜆2 =
1.These restrictions make sure that|𝜆1| < 1and|𝜆2| <1. Using 𝜆1𝜆2 = 1in equation (17) then, 

 

𝐿1 = [
(𝑠0 + 𝑏2)

2(𝑎12)
2

𝑎11(𝑎22)
2

+
𝑎12𝑏1(1 + 𝑏2)

𝑎11𝑎22
] 𝛿2𝑝1 

 

+[[
(𝑠0 + 𝑏2)

2𝑎12

(𝑎22)
2

+
𝑏1(1 + 𝑏2)

𝑎22
] 𝛿2 −

(𝑠0 + 𝑏2)𝛿

𝑎22
] 𝑝2 

 

+[
(𝑠0 + 𝑏2)

2(𝑎12)
2

𝑎22
+ 𝑏1(1 + 𝑏2)] 𝛿2 − [(1 +

𝑎12

𝑎22
) 𝑠0 + 𝑏1 + (1 +

𝑎12

𝑎22
)𝑏2] 𝛿 = 0. 

 

Furthermore, suppose that𝜆1 = 1,then  

 

𝐿2 = [
(𝑠0 + 𝑏2)

2(𝑎12)
2

𝑎11(𝑎22)
2

+
𝑎12𝑏1(1 + 𝑏2)

𝑎11𝑎22
] 𝛿2𝑝1 

 

+[
(𝑠0 + 𝑏2)

2𝑎12

(𝑎22)
2

+
𝑏1(1 + 𝑏2)

𝑎22
] 𝛿2𝑝2 
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+[
(𝑠0 + 𝑏2)

2(𝑎12)
2

𝑎22
+ 𝑏1(1 + 𝑏2)] 𝛿2 = 0. 

 

Finally, suppose that𝜆1 = −1,then 

𝐿3 = [
(𝑠0 + 𝑏2)

2(𝑎12)
2

𝑎11(𝑎22)
2

+
𝑎12𝑏1(1 + 𝑏2)

𝑎11𝑎22
] 𝛿2𝑝1 

 

+[[
(𝑠0 + 𝑏2)

2𝑎12

(𝑎22)
2

+
𝑏1(1 + 𝑏2)

𝑎22
] 𝛿2 −

2(𝑠0 + 𝑏2)𝛿

𝑎22
] 𝑝2 + 4 

 

+[
(𝑠0 + 𝑏2)

2𝑎12

𝑎22
+ 𝑏1(1 + 𝑏2)] 𝛿2 − [(1 +

𝑎12

𝑎22
)2𝑠0 + 2𝑏1 + 2(1 +

𝑎12

𝑎22
)𝑏2] 𝛿 = 0. 

 

Then, stable eigenvalues lie within the triangular region in𝑝1𝑝2plane bounded by thestraight lines𝐿1, 𝐿2, 𝐿3for 

particular parametric values. 

5. Numerical Simulations 

In this chapter to demonstrate the accuracy of theoretical studies, numerical examples are given using the 

software Maple12. 

Example 5.1In order to verify theoretical results we choose particular parametricvalues for the system (4) as 

follows [25] 

𝑎11 = 1.2, 𝑎12 = 1.4, 𝑎22 = 1, 𝑏1 = 1, 𝑏2 = 2, 𝑠 = 0.7, 𝐾 = 2.7, 𝑅 = 1.4 

The Jacobian matrix for these parameter values is 

𝐽 = (
−0.912 2.230666

0 −0.08
)          (18) 

Characteristic values of the jakobian matrix(18) are 

 λ1 = −0.912 

 λ2 = −0.08. 

Clearly | λ1| < 1 and | λ2| < 1. Moreover,  

𝛿1 = 0.4184100418 

𝛿2 = 0.7407407408 

are obtained. For 𝛿 = 0.4 andinitial condition(𝑥0, 𝑦0)=(3,2), the positive fixed point of the model (4) is 

obtained as 𝐸4 = (3.98333, 2.7).It isa local asymptotic stable which shows the correctness of our theoretical 

results. 

Figure 3 shows that the fixed point of the model (4) is a local asymptotic stable where𝑋𝑡(𝑝𝑟𝑒𝑦)and  

𝑌𝑡(𝑝𝑟𝑒𝑑𝑎𝑡𝑜𝑟) population density, respectively. 



 

894 
 

Kılıç et al./Cumhuriyet Sci. J., 41(4) (2020) 884-900 
 

 

Figure 3. A stable fix point of the system (4) for 𝑎11 = 1.2, 𝑎12 = 1.4, 𝑎22 = 1, 𝑏1 = 1, 𝑏2 = 2, 𝛿 = 0.4, 𝑠 = 0.7, 𝐾 =

2.7, 𝑅 = 1.4 and initial value (𝑥0, 𝑦0) = (3,2). 

Example 5.2 For the parameter values  

𝑎11 = 1.2, 𝑎12 = 1.4, 𝑎22 = 1, 𝑏1 = 1, 𝑏2 = 2, 𝑠 = 0.2, 𝐾 = 2.2, 𝑅 = 1.4 

the positive fixed point of system (4) is 𝐸4 = (3.4, 2.2). The Jacobian matrix for these parameter values  

𝐽 = (
−0.428 1.666

0 0.23
)            (19) 

and thecharacteristic values of the (13) 

 λ1 = −0.418 

 λ2 = 0.23. 

Here | λ1| < 1 and | λ2| < 1. Also,  

𝛿1 = 0.4901960784 

𝛿2 = 0.9090909090 

is obtained. For 𝛿 = 0.35 and(𝑥0, 𝑦0)=(3, 1.9), the fixed point is𝐸4 = (3.4, 2.2). It is local asymptotic stable 

for all above parameter values  

Figure 4 shows graphs showing 𝑋𝑡(𝑝𝑟𝑒𝑦)and  𝑌𝑡(𝑝𝑟𝑒𝑑𝑎𝑡𝑜𝑟) population density, respectively. 
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Figure 4. A stable fix point of the system (4) for 𝑎11 = 1.2, 𝑎12 = 1.4, 𝑎22 = 1, 𝑏1 = 1, 𝑏2 = 2, 𝛿 = 0.35, 𝑠 = 0.2 

,               𝐾 = 2.2, 𝑅 = 1.4 and initial value (𝑥0, 𝑦0) = (3,1.9). 

Example 5.3For the following parameter values 

𝑎11 = 1.2, 𝑎12 = 1.4, 𝑎22 = 1, 𝑏1 = 1,  𝑏2 = 2, 𝑠 = 0.3, 𝐾 = 2.9, 𝑅 = 1.4 

the positive fixed point of system (4) is 𝐸4 = (4.21666, 2.9). Jacobian matrix  

𝐽 = (
−0.518 1.771

0 0.13
)            (20) 

andcharacteristic values  

 λ1 = −0.518 

 λ2 = 0.13. 

Here | λ1| < 1 and | λ2| < 1. So 

𝛿1 = 0.3952569170 

𝛿2 = 0.6896551724 

it is obtained. If we choose 𝛿 = 0.3 and(𝑥0, 𝑦0) = (4, 2.7)we get fixed point𝐸4 = (4.21666, 2.9)and it is local 

asymptotic stablefor above parameter values. 
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Figure 5. A stable fix point of the system (4) for 𝑎11 = 1.2, 𝑎12 = 1.4, 𝑎22 = 1, 𝑏1 = 1, 𝑏2 = 2, 𝛿 = 0.3, 𝑠 = 0.3, 𝐾 =

                2.9, 𝑅 = 1.4 and initial value (𝑥0, 𝑦0) = (4,2.7). 

Example 5.4 For the following parameter values 

𝑎11 = 1.2, 𝑎12 = 1.4, 𝑎22 = 1, 𝑏1 = 1, 𝑏2 = 2, 𝑠 = 0.5, 𝐾 = 2.5, 𝑅 = 1.4 

the positive fixed point of system (4) is 𝐸4 = (3.41666, 2.5). Jacobian matrix for these parameter values  

𝐽 = (
−0.8 2.1

0 0
)           (21) 

and characteristic values  

 λ1 = −0.8 

 λ2 = 0. 

Clearly| λ1| < 1 and | λ2| < 1. Therefore 

𝛿1 = 0.4444444 

𝛿2 = 0.8000000 

are obtained. Here, choosing 𝛿 = 0.4and (𝑥0, 𝑦0)=(3.5, 2) the fixed point 𝐸4 = (3.41666, 2.5)is obtained. For 

the above parameter values it is local asymptotic stable. 
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Figure 6. A stable fix point of the system (4) for 𝑎11 = 1.2, 𝑎12 = 1.4, 𝑎22 = 1, 𝑏1 = 1, 𝑏2 = 2, 𝛿 = 0.4, 𝑠 = 0.5, 𝐾 =

                  2.5, 𝑅 = 1.4 and initial value (𝑥0, 𝑦0) = (3.5,2). 

Example 5.5.For the following parameter values 

𝑎11 = 1, 𝑎12 = 1, 𝑎22 = 1, 𝑏1 = 1, 𝑏2 = 2, 𝑠0 = 0.668, 𝛿 = 0.75, thesystem (4) has a unique positive fixed  

point(𝑥∗, 𝑦∗)=(3.668, 2.668). Then we get 

𝐴 = [
−1.751 2.751

0 −1.001
] , 𝐵 = [

0
2.001

] , 𝐶 = [𝐵: 𝐴𝐵] = [
0 2.0632500

2.001 −2.003001
] 

It is easy to check that the rank of𝐶matrix is 2. Therefore the system iscontrollable. Then,for 𝐾 = [𝑝1 𝑝2]the 

Jacobian matrix 

𝐴 − 𝐵𝑅 = [
−1.751 2.751

−2.001𝑝1 −1.001 − 2.001𝑝2
] 

and the characteristic polynomial 

𝑃(𝜆) = 𝜆2 − (−2.752 − 2.001𝑝2) + 1.752751 + 3.503751𝑝2 + 5.504751𝑝1 

Also, the lines𝐿1,𝐿2 and𝐿3for marginal stability are given by 

𝐿1 = 0.752751 + 3.503751𝑝2 + 5.504751𝑝1 = 0, 

𝐿2 = 5.504751 + 5.504751𝑝2 + 5.504751𝑝1 = 0, 

𝐿3 = 0.000751 + 1.502751𝑝2 +  5.504751𝑝1 = 0. 

Then, the stable triangular region bounded by marginal lines𝐿1,𝐿2 and𝐿3is shown in Figure 7. 
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Figure 7. Triangular stability region bounded by 𝐿1, 𝐿2 and 𝐿3 for the controlled system. 

6. Conclusion 

In this study, we deal with a discrete-time prey-predator system with constant rate of immigration on 

predatorwhich is obtained by implementing forward Euler’s scheme and analyze existence fixed points. We 

showed that system(4) has fourpositive fixed points. Then we analyzed topological classifications and stability 

of these fixed points.Moreover, OGY feedback control method is to implement to control chaos caused by the 

Flip bifurcation.  Finally, Flip bifurcation, maximum Lyapunov exponent, chaos control strategy, and 

asymptotic stability of the only positive fixed point are verified with the help of numerical simulations. 

We can observe interesting dynamical behavior as immigration parameter 𝑠 varies. When the immigration 

parameter rate 𝑠is less than critical value; a stable-steady state exists. With the increase of the immigration 

parameter rate 𝑠, the steady state losses the stability and it is interesting to observe the occurrance of Flip 

bifurcation whichleads to chaos. We show that the system may have rich dynamics with the change of 

immigration rate. Seems the immigration rate for predator can stabilize the ecosystem.  
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