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Abstract

In this manuscript, firstly we introduce and study the concept of (a,m;, m,)-Geometric-
Arithmetically (GA) convex functions and some algebraic properties of such type functions.
Then, we obtain Hermite-Hadamard type integral inequalities for the newly introduced class
of functions by using an identity together with Holder integral inequality, power-mean
integral inequality and Holder-Iscan integral inequality giving a better approach than Holder
integral inequality. Inequalities have been obtained with the help of Gamma function. In
addition, results were obtained according to the special cases of a, m; and m,.
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1. INTRODUCTION

Let f:I1 c R— R be a convex function
defined on the interval I of real numbers and
a,bel with a<b. Then the following
inequalities

+b 1 b fla)+f(b)
£ S il FGdn < HEEE

hold. Both inequalities hold in the reversed
direction if the function f is concave [4, 6]. The
above inequalities were firstly discovered by the
famous scientist Charles Hermite. This double
inequality is well-known in the literature as
Hermite-Hadamard integral inequality for convex
functions. This inequality gives us upper and
lower bounds for the integral mean-value of a
convex function. Some of the classical
inequalities for means can be derived from
Hermite-Hadamard inequality for appropriate
particular selections of the function f.

Convexity theory plays an important role
in mathematics and many other sciences. It
provides powerful principles and techniques to
study a wide class of problems in both pure and
applied mathematics. Readers can find more
information in the recent studies [1, 5, 8, 10, 11,
15, 19, 20, 23, 24, 25] and the references therein
for different convex classes and related Hermite-
Hadamard integral inequalities.

Definition 1. ([17,18]) A function f:1 € R, =
(0,0) = R is said to be GA-convex function on I
if the inequality

fty) <) + A - DfB)

holds for all x,y €1 and A€ [0,1], where
x*y't and  Af(xX)+ (A =Df(@y)  are
respectively the weighted geometric mean of two
positive numbers x and y and the weighted
arithmetic mean of f (x) and f(y).

Definition 2. ([22]) 4 function f:[0,b] - R is
said to be m-convex for m € (0,1] if the
inequality

flax +m(1 - a)y) < af (x) + m(1 - a)f (y)
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holds for all x,y € [0,b] and a € [0,1].

Definition 3. ([12]) The function f:[0,b] - R,
b>0, is said to be (my,m,)-convex, if the
inequality

flmitx + my(1 = 0)y) < mytf (x) + mp(1 = Of (¥)

holds for all x,y €1, t € [0,1] and (m;,m,) €
(0,175

Definition 4. ([13]) £:[0,b] > R, b > 0, is said
to be (a,m;,m,)-convex function, if the
inequality

flmitx + my(1 = 0)y) < myt“f (x) + my(1 = t9)f(y)

holds for all x,y € I, t € [0,1] and (a, m;, m;) €
(0,113,

Definition 5. ([16]) For f:[0,b] > R and
(a,m) € (0,1]% if

flx+ 1 =t)y) <t“f(x) +m(1 —t*)f(y)

is valid for all x,y € [0,b] and t € [0,1], then we
say that f(x) is an (a,m)-convex function on
[0, b].

Definition 6. ([17]) The GG-convex functions
(called in what follows multiplicatively convex
functions) are those functions f:1 = | (acting on
subintervals of (0, )) such that

x,y €land 2 <€ [0,1] = f(x*'y") < fFO)*"f()*
i.e., it is called log-convexity and it is different

from the above.

Definition 7. ([9]) Let the function f:[0,b] - R
and (a,m) € [0,1]%. If

f(xty™A=9) < t%f(a) + m(1 — t¥)f(b). (1.1)

for all [a,b] € [0,b] and t € [0,1], then f(x) is
said to be (a, m)-geometric arithmetically convex
function or, simply speaking, an (a,m)-GA-
convex function. If (1.1) reversed, then f(x) is
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said to be (a,m)-geometric arithmetically
concave function or, simply speaking, an (a, m)-
GA-concave function.

A refinement of Holder integral inequality
better approach than Holder integral inequality
can be given as follows:

Theorem 1. (Holder-Iscan integral inequality [7])
Let p>1 and %+%= 1. If f and g are real

functions defined on [a,b] and if |f|P, |g|? are
integrable functions on the interval [a, b] then

L0 g(0)ldx

1

sﬁﬂﬁw—mamw@%ﬁw—mmmwgﬁ

'4ﬁ“‘mﬂm”@%ﬁ@—mmmw@a

Definition 8. (Gamma function) The classic
gamma function is usually defined for Rez > 0 by

co
I'(z) = fo t?"le~tdt.
The main purpose of this paper is to introduce the
concept of (a,m;, m,)-geometric arithmetically
(GA) convex functions and establish some results
connected with new inequalities similar to the
Hermite-Hadamard integral inequality for these
classes of functions.

2. MAIN RESULTS FOR (a,m;,m,)-GA
CONVEX FUNCTIONS

In this section, we introduce a new
concept, which is called (@, my, m,)-GA convex
functions and we give by setting some algebraic
properties for the (a,my,m;)-GA convex
functions, as follows:

Definition 9. Let the function f:[0,b] - R and
(a,my,my) € (0,1]3. If

f(a™tpm20=0) < m t%f(a) + my(1 — t*)f(b) (2.1

Sakarya University Journal of Science 24(4), 652-664, 2020

for all [a,b] €]0,b] and t € [0,1], then the
function f is said to be (a,my, m,)-geometric
arithmetically convex function, if the inequality
(2.1) reversed, then the function f is said to be
(a, my, my)-geometric arithmetically concave
function.

Example 1. f(x) =¢,c <0 is a (a,my, my)-
geometric arithmetically convex function.

We discuss some connections between the
class of the (a,m,,m,)-GA convex functions
and other classes of generalized convex functions.

Remark 1. When my=m,=a=1, the
(a, my, my)-geometric  arithmetically  convex
(concave) function becomes a geometric
arithmetically convex (concave) function defined

in[17, 18].

Remark 2. When my =1 m,=m, the
(a, my, my)-geometric  arithmetically  convex
(concave) function becomes an (a, m)-geometric
arithmetically convex (concave) function defined

in [9].

Remark 3. When my =m, =1 and a = s, the

(a, my, my)-geometric  arithmetically  convex
(concave) function becomes a geometric
arithmetically-s  convex  (concave) function
defined in [14].

Remark 4. When a =1, the (a,mqy,m;)-
geometric  arithmetically  convex (concave)
function becomes a (mq,m,)-GA convex

(concave) function defined in [21].

Proposition 1. The function f:1 c (0,00) - R is
(a,my,m,)-GA convex function on I if and only
if foexp:lnl >R is (@ my,my)-convex
function on the interval Inl = {lnx|x € I}.

Proof. (=) Let f:1 c (0,00) > R (a, my,my)-
GA convex function. Then, we write

(f o exp)(mytlna + m,(1 — t)Inb)
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< mt®(f o exp)(Ilna) + my(1 — t¥)(f o exp)(Inb).
From here, we get
f(a™tpm(-0) < mt%f(a) + my(1 — t*)f (b).

Hence, the function foexp is (a,mq,my)-
convex function on the interval Inl.

(&) Let foexp:Inl » R, (a,my,my)-
convex function on the interval Inl. Then, we
obtain
f(amltbmz(l—t)) — f(emltlna+ 2(1—t)lnb)
= (f o exp)(m;tina + m,(1 — t)Inb)
< mit®f(e™®) + my(1 — t*)f (e™?)
=myt?f(a) + my(1 —t*)f(b),
which means that the function f(x) (a, m;, m;)-

GA convex function on [.

Theorem 2. Let f,g:I c R—> R. If f and g are
(a,my,m,)-GA convex functions, then f + g is
an (a, my,m,)-GA convex function and cf is an
(a, my, m,)-GA convex function for c € R,.

Proof. Let f,g be (a,m;,m,)-GA convex
functions, then

(f + g)(amtpma-0)

= f(amtpm(-0) 4 g(gmtpme-D)
< myt?f (@) +my(1 - t)f (b)
Fmyteg(a) +my(1 = t¥)g(b)

=myt*(f + g)(a) + my(1 = t*)(f + g)(b)

Let f be (a,m;, m,)-GA convex function and
¢ € R(c = 0), then

(cf)(amltme(l"t))
< c[mtf(x) + my(1 = t*)f ()]

= myt%(cf)(x) + my(1 — t)(cf) ).

Sakarya University Journal of Science 24(4), 652-664, 2020

This completes the proof of the theorem.

Theorem 3. If f:1 - | is a (my,m,)-GG convex
and g:] >R is a (a,my,m,)-GA convex
function and nondecreasing, then go f:1 - R is
a (@, my, m,)-GA convex function.

Proof. Fora,b € [ and t € [0,1], we get
(g ° H(a™tpm=0-9)

=g (f(amltbmz(l—t)))

< g([f (@™ [f (p)]™29)

<mt%g(f(x)) + my(1 — tHg(f(¥)).

This completes the proof of the theorem.

Theorem 4. Let b > 0 and fz:[a,b] > R be an
arbitrary family of (a,my,my)-GA convex
Sunctions and let f(x) = supgfp(x). If ] =
{u € [a,b]: f(u) < o} is nonempty, then | is an
interval and f is an (a,mqy,m,)-GA convex
function on J.

Proof. Let t € [0,1] and x,y €] be arbitrary.
Then

f(amltme(l_t))

— Supfﬁ (amltbmz (1—t))
B

< sup[mtfe () +mz(1 = ) fp )]
< mlt“sgpfﬁ (x) + my(1 - t“)sgpfﬁ )

=mytf(x) + my(1 = t*)f(y) < co.

This shows simultaneously that J is an interval
since it contains every point between any two of
its points, and that f is an (a,my,m,)-GA
convex function on J. This completes the proof of
the theorem.
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Theorem 5. If the function f:[a,b] > R is an
(a,my,m,)-GA convex function then f is
bounded on the interval [a, b].

Proof. Let K = max{m,f(a),m,f(b)} and x €
[a, b] is an arbitrary point. Then there exists a t €
[0,1] such that x = a™tp™2(1=D)  Thus, since
myt* < 1and m,(1 —t%) < 1 we have

f(x) — f(am1tbmz(1—f))
< myt?f(Q) + my(1 —t¥)f(b) < 2K = M.

Also, for every x € [a™1, b™2] there exists a A €

[’bmz l such that x = Ava™bh™2 and x =

Vamipmz
2
suppose x = AVa™1b™z. So, we have

F(a)

=f<\/[/1\/m][@>

. Without loss of generality we can

< Jreor (),

By using M as the upper bound, we obtain

PN _ f )

IOF (W>_ _
A\—7—

This completes the proof of the theorem.

3. HERMITE-HADAMARD INEQUALITY
FOR (a, m{, m,)-GA CONVEX FUNCTION

This section aims to establish some
inequalities of Hermite-Hadamard type integral
inequalities  for  (a,m;,m,)-GA  convex
functions. In this section, we will denote by
Lla,b] the space of (Lebesgue) integrable
functions on the interval [a, b].

Theorem 6. Let f:[a,b] = R be an (a, m;, m,)-
GA convex function. If a <b and f € L[a,b],

Sakarya University Journal of Science 24(4), 652-664, 2020

then the following Hermite-Hadamard type
integral inequalities hold:

ey b™2 f(u)
f( am1bmz) < —lnbmz P— faml du
—  a+1 a+1 )

Proof. Firstly, from the property of the
(a,my,m,)-GA convex function of f, we can
write

f(m) =f (\/amltbmz(l—t)aml(l—t)bmzt)

< f(amltbmz(1—t))+f(am1(1—t)bm2t)
= 2 .

Now, if we take integral in the last inequality
with respect to t € [0,1], we deduce that

f(Vamipm?)
< %fol f(am1tbm2(1—t))dt +%(am1(1_t)bm2t)dt

_1 1 b™2 f(u)
T 2In M2—lnag™1 faml du
1 1 b™2 f(w)
2 Inb™2—Ina™ faml du
1 b™2 f(u)
T Inb™M2-Ina™ faml du.
Secondly, by wusing the property of the

(a,my,m,)-GA convex function of f, if the
variable is changed as u = a™tp™2(1=1) then

1 fb 2 f(u)d

Inb™M2—Ing™1 Ya™1
— fol f(amltme(l_t))dt
1
< [, [mit¥f(@) + my(1 — t*)f(b)]dt

=muf(a) f, t°dt + mpf (b) [, (1—t%)dt

_ mif(@) |, amaf(b)
a+1 a+1

This completes the proof of the theorem.
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Corollary 1. By considering the conditions of
Theorem 6, if we take m; =m, =1 and a =1
in the inequality (3.1), then we get

f(\/_) < 1 bf(u)d < [@*/ () f(a)+f(b)

lnb Ina a u

This inequality coincides with the inequality in

12].

Corollary 2. By considering the conditions of
Theorem 6, if we take a =1 in the inequality
(3.1), then we get

F(aT®) <

< mlf(a)+m2f(b)'
2

fbmz f(u) du

InbM2—Ipn ™1 Ya™

This inequality coincides with the inequality in
[14].

4. SOME NEW INEQUALITIES FOR
(a,m{, m,)-GA CONVEX FUNCTIONS

The main purpose of this section is to
establish new estimates that refine Hermite-
Hadamard integral inequality for functions whose
first derivative in absolute value, raised to a
certain power which 1is greater than one,
respectively at least one, is (a,m;,m,)-GA
convex function. Ji et al. [9] used the following
lemma. Also, we will use this lemma to obtain
our results.

Lemma 1. ([3]) Let f:1 S R, = (0,0) - R be
differentiable function and a,b € I with a < b. If
f' € L([a, b)), then

b2f(@)-a?f(b) _ (b
——— J, xf(x)dx
= B [ a3Am0p3tf (@bt

Theorem 7. Let the function f:Ry = [0,0) —
R be a differentiable function and f' € L|a, b]
for 0<a<b<oo. If|f'l is (a,my,m;)-GA

1 1
convex on [O, max {aml,bm}] for [a,my,m,] €

Sakarya University Journal of Science 24(4), 652-664, 2020

(0,113, then the following integral inequalities
hold

b*f(a)-a?f(b) b
— - fa xf(x)dx| 4.1)
1
<27 (o)
[b3—a3 _ a’r(a+1,3(lna—inb))—-a®r(a+1,0)
3 3a+l(lna—Inb)%
1 3 5
my | o1 (5| [¢°F(a+1,3(na-Inb))-a®r(a+1,0)
+ 2 f (b 2) [ 3a+1(lna—Inb)® ’

where I’ is the Gamma function.

Proof. By using Lemma 1 and the inequality
1 myt
r(e)

(5%

1 \m1(1-0)

17 @0 = |f" (@)

()

< m1(1 - ta) + mzta

we get

b?f(a)—a’f(b)
2

— f: xf(x)dx|

In(b/a) r1 _ ' -
<l 2/ot fo |a3(1 t)b3t||f (al~tht)|dt

my (1= )| (o)
()

ta)a3(1—t)b3tdt

a3(1—t)b3t dt

< In(b/a) fl

+m,t“

in(b/a)

[ -

)

m (o

’ = In(b/a) r1 _
+m2 f <bm2) Tfo tlla3(1 t)b3tdt
m, L \|[b3—ad
=2 )3

a®*r'(a+1,3(lna —nb)) —a®*r(a+1, 0)
3¢+1(Ina — Inb)*

()

This completes the proof of the theorem.

my
2

[a3l‘(a+1, 3(na-1 ))-a®r(a+1, 0)]
3a+1(lna—Iinb)® '

+
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1 1

Corollary 3. By considering the conditions of I£'|% on the interval |0, max {am_1 bm_z}] that is

Theorem 7, if we take my =m, =1 and a =1
then we get the inequality

2 _ A2 - q
b“f(a)—a“f(b) —fbxf(x)dx| mq(1-t)

2 a

)

(%)

I (a~tbt)| = |f' (am)

/(o)

is satisfied and we get

< |f (a)| [L(a3,b3) _ a3] + V_g))l[b3 — L(a3,b3)],

6 q

+ m,t*

q
<my(1—-t%

)

where L is the logarithmic mean.

Corollary 4. By considering the conditions of
Theorem 7, if we take a =1 in the inequality
(4.1), then we get

b2f(a)—a?f(b) b
%_ I8 xf(x)dx|

in

b _1
Ea) [fol a3(1—t)b3tdt]1 q

()

2 A2
b f(a)za f(b) _ J‘:xf(x)dx

()

| <

1
m my(1-t)  Tq
< dt

- [L(a®,b%) — a°]

fl 31—t p3t
0

=)

1
M e pmy 3 3 33
4 mz e (bmz) [b® — L(a?, b%)]. () 1
2 a |l 3(1-t)33t q
< —2| [ 30-0p3tar|
Theorem 8. Let the function f:Ry = [0,00) - [ 1 q] %
R be a differentiable function and f' € Lla, b] L |m1(1 —tY|f’ (a"u) |
for 0<a<b<o If|f'|9 is (@,my,my)-G4 .| [, a*@ Db Lol at
o +m,t® |f’ (me)
convex on |0, max{am, bmz2¢| for [a,my, m,] €
(0,113 and q = 1 then , (b) !
n(t S
b*f(@)-a’f(b) _ (b == [fo1 a3(1_t)b3tdt] !
a)—a
PSSO [ xf ()dx| (4.2)
1
1 ERVE 1 a
< Inb—-lna Ll_a(a3 b3) my fl (am1> fo (1 — ta)a3(1—t)b3tdt
e 2 )
ERNT I
b oa? +m, |f (bmz) [} pag3a-op3tgy
144 —_— 0
,( m_1) 3(inb—Ina)
VARG _ a?r(a+1, 3(n ))-a3r(a+1, 0) .
3%+ (Inb—1  )(Ina—Inb)® — %Ll_a(a? b3)
1
2N\? ra3r(a+1, 30na-1 ))-a*r(a+1, on|? b*-a
+my |f’ (bmz) (a T : ) ) L\ 3(Inb—Ina)
@+1(inb—Ina)(Ina—Inb)® " gm
3 nb=tna)(ina=inb) (M |f (a 1) __a’r(a+1, 3(lna-inb))-a®r(a+1, 0)
39+1(Inb—Ina)(Ina—Inb)®
where L is the logarithmic mean. (Inbtna)(ina=tnb)
1
Proof. By using both Lemma 1, power-mean +m, | (mez) q (a3F(a+1, 3(lna—Inb))-a3r(a+1, 0)) a
inequality and the (@, my,m,)-GA convexity of 2 3@+1(Inb~Ina)(Ina~Inb)* '

This completes the proof of the theorem.
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Corollary 5. By considering the conditions of
Theorem 8, if we take m; =m, =1 and a =1
in the inequality (4.2), then we get

b?f(a)—a*f(b)
2

f xf(x)d |<lnb Ina 1 ( 3b3)

L(a®p3)-b3
3(inb-Ina)

+If(p)la e )]

3(inb-Ina)

x [If @952

where L is the logarithmic mean.

Corollary 6. By considering the conditions of
Theorem 8, if we take q = 1, then

b2f(@)-a’f(b) (b
%— J, xf(x)dx| <

) (25
2 3
a*I'(a + 1,3(lna — Inb)) — a®I'(a + 1,0)
B 32*+1(lna — Inb)“ )
1
(o)

This inequality coincides with the inequality
(4.1).

my
2

(a3F(a+1, 3(lna-Inb))-a’r(a+1, 0))]

32+1(lna—Inb)%*

Corollary 7. By considering the conditions of
Theorem 8, if we take m;y =my, =1 and a =
q = 1 in the inequality (4.2), then we get

bf(@)-a’f(b) (b
%— J, xf(x)dx|

f'@ f' )
< [ (02,7 — b7 + L2 (b2 — 1a?,59)),
where L is the logarithmic mean.
Corollary 8. By considering the conditions of

Theorem 8, if we take my = m and m, = 1 in the
inequality (4.2), then we get

b?f(a)-a’f(b)
2

f xf(x)dx| <lnb lna 1 ( 3 b3)

Sakarya University Journal of Science 24(4), 652-664, 2020

1 3_,3
’ b°—-a
.I'm a —_—
[ |f ( (3(lnb—lna)
a3r(a+1, 3(lna—inb))-a3r(a+1, 0))
3a+tl(inb—Ina)(lna—Inb)%

1
a’r(a+1, 3(na-1 ))-a’r(a+i, 0))]5

32+1(inb—Ina)(lna—Inb)*

+1F/ )14 (

This inequality coincides with the inequality in

[9].

Theorem 9. Let the function f: Ry = [0,00) - R
be a differentiable function and f' € L[a,b] for
0<a<b<o. If |f'17 is (a,my,m,)-GA

1 1
convex on |0, max {aml,me}] for [a,my,m,] €

(0,113 and q > 1, then,

b2f(@)-a>f (b)
TS TO) [P xf (x| < =2
ms

1 1
A o)
+

a+1 a+l

ln(b/a)

1
q aTq

amq

1
.Lp(a®?, b3P)

,(4.3)

where l+l= 1.
P q

Proof. By using both Lemma 1, Holder integral
inequality and the (a,m,, m,)-GA-convexity of

the  function |f'|? on the interval
1 1

[O, max {am_l, bm_z}]’ that is, the inequality

myt q

R T o R

r(67)

q
+ m,t

q

1
<m1—-0|f (am_l)
we get

b2 f(@-aZf(b) _ (b
PLOCTO) _ [ xf (x)dx|

1
< ln(l;/a) [fol (a3(1—t)b3t)pdt]l?

S

1

T Na
dt]

m1(1 t)

1 \myt
aml (bm_2> )
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1
S ln(I;/a) [fol (ag(l_t)bgt)pdt]p
1
f (@)
1
q q
|«
1
_ ln(l;/a) [fol a3p(1—t)b3ptdt]P
1\ 4
(@)
1\ 4
(o7)

1 1

' amt 2|f( b2

ln(b/a) i < ) ( )
L ( " b3p) a+l a+l

q
+

. l I lml(l — t%)

1
m,te | (bm_z)

X

J, (1 —t®dt +

1

1 q
J, t¥dt

my

Q=

q q

m

This completes the proof of the theorem.

Corollary 9. By considering the conditions of
Theorem 9, if we take my=m, =1 in the
inequality (4.3), then we get

b2f(@)-a?f(b) _ b
PO TO (7 xf (x)dx|

a+1 a+1

1
ln(b/a) LP( 3 p3v) [a|f’(a)|q N If'(b)lq]q'

Corollary 10. By considering the conditions of
Theorem 9, if we take mi =m,m, =1 in the
inequality (4.3) then we obtain

bf(a)-af(b) _ (b
=l xf(x)dx|
q a

1
! (“’”) IF' )]

a+1 a+1

1

am

< ln(b/a) LP( 3p’b3p)
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Corollary 11. By considering the conditions of
Theorem 9, if we take my=m, =1 in the
inequality (4.3) then we obtain

b*f(a)-a’f(b) b
%— I, xf(x)dx|

< 1“9 L#(@, b)Y Aa(| ' (@]9, ' (b)[9).

Theorem 10. Let the function f: Ry = [0,00) —
R be a differentiable function and f' € Lla,b]
for 0<a<b<oo If|f'|?7is (a,my, m,)-GA

1 1
convex on |0, max {aml,me}] for [a,my,m,] €

(0,113 and q > 1, then the following integral
inequalities hold

b2 —a?f(b b
—f(a)za @) _ I, xf(x)dx| 4.4)

<

in(b/a)
2 [ml

e
(i)

where L is the logarithmic mean, I" is the Gamma

L(a®, b37)
_ a34r(a+1,3q(ina-Inb))-a39r(a+1,0)

B@)**1(Ina-Inb)2(Inb—Ina)

+m,

1
(a3q1"(a+1,3q(lna—lnb))—a3q1‘(tx+ 1,0)) q
(3q)**1(Ina—Inb)*(inb—Ina) !

function and i + % =1.

Proof. From both Lemma 1, Holder integral
inequality and the (a,m;, m,)-GA-convexity of
the  function |[f'|? on the interval

1 1
[O, max {am_l, bm_2} , we get

b*f(@)-a’f(b) (b
%— I, xf(x)dx|

1

< e (5 1dt)

()

)

1

 Ta
dt]

mq(1-t)
f q34(1-t) p3qt !

< In(b/a) (
2

fol a3(-vap3tq

+m2 te
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n

N1 4 q
f/ (aml) fO (1 _ ta)a3q(1—t)b3qtdt]

(%)

L(a3,b39)
_ a39r(a+1,3q(na—inb))-a®r(a+1,0)

(3g)2*1(ilna—Inb)*(Inb—Ina)

_ In(/a) [ml

q
| +m; J, t@a%a-Op3atde |

ol ()

(%)

This completes the proof of the theorem.

In(b/a)
1

1
(a3qr(a+1,3q(lna—lnb))—a3q1"(a+1,0)) q
Bg)*t1(lna—Inb)*(Inb—Ina) ’

+m,

Corollary 12. By considering the conditions of
Theorem 10, if we take mi =my, =1 in the
inequality (4.4), then we get

b2f(@=-a’f(b) _ b in(b/a)
TR [ xf x| < 25

|17 @1 (L@, 530) -
a3qF(zx+1,3q(lna—lnb))—a3ql”(¢x+1,0))
Bt (lna—Inb)*(Inb—Ina)

1
a3ir(a+1,3q(ina—Inb))-a3r(a+ 1,0))]5

(Bg)e*1(lna—Inb)%(Inb—Ina)

+1£' )1

Corollary 13. By considering the conditions of
Theorem 10, if we take my =my; =1and a =1
in the inequality (4.4), then we get

b>f(a)—a’f(b) b
%— J, xf(x)dx|

In(b/a) , L(a34,p39)—qa34
S 2 [lf (a)l( 3q(Inb-1na) )+
1

1)) (e )y e

3q(inb-1na)

Theorem 11. Let the function f: Ry = [0,0) —
R be a differentiable function and f' € L|a, b]
for 0<a<b<oo. If|f'?7is (a,my,m,)-GA

convex function on the interval
1 1

[0, max {am_l, bm_Z}] for [a,m;,m,] € (0,113 and

q > 1, then the following integral inequalities
hold

Sakarya University Journal of Science 24(4), 652-664, 2020

M—fbxf(x)dx| 4.5)

2 a

1
Inb—Ina [L(a3P,b3P)-a®P]p
2 | 3(inb-lna)

1\19 1\ 149
I ala+3)m, I ma
“f (a 1) (2(a2+3a+2)) + |f (b 2)| (a2+3a+2)]

1
n Inb-Ina 'b3P—L(a3P,b3P)]5
2 | 3(lnb—Ina)

[ () r () ()"

where L is the logarithmic mean and % + % = 1.

QR

N

q
(z(aa+2)) +m;

Proof. From Lemma 1, Hélder-Iscan integral
inequality and the (a,m;,m;)-GA convexity of

the  function |f'|? on the interval
1 1

[O, max {am_l, bW_Z}], we obtain

b*f(@)-a’f(b) (b
%— I, xf(x)dx|

1
< Inb—lna [fol (1-— t)(a3(1_t)b3t)pdt]p

()

1
n lnb;lna [fol t(a3(1—t)b3t)7’dt]p

1 \mi(1-t) , 1 \mapt
() )

Inb—Ilna

1
< [fol (1- t)a3p(1"*)b3pfdt]”

2
/()
)

1

inb—Ina | r1 _ P
+— [fo ta3r( f)b3ptdt]

1

T Ta
dt]

mq(1-t)

. [fol (1-1t)

1

 Ta
g

x[folt

[~

[m,(1 - (1 - ¢9) q} ’

Id

+m,(1 — t)t“
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q

.[fol [mlt(l—t“) £ (amL) +

(55 ]

1
__Inb-Ina [L(a3p,b3p)—a3p P
o 2 3(lnb-Ilna)

m,tt*

Q=

a ( a(a+3)m, )

2(a?2+3a+2)

[ ) (57 (2|

1
" Inb—Ilna [b3p—L(a3p,b3p) P

2 3(lnb-Ina)
[l (o) (o) )

This completes the proof of the theorem.

q
(z(aa+2)) tm;

Q=

Corollary 14. By considering the conditions of
Theorem 11, if we take my =m, =1 in the
inequality (4.5), then we get

2 —_n2
b f(a) a f(b)_fb.Xf(x)d.X|

2 a

< Inb—Ina [L(a3p,b3p)—a3p]p
- 2 3(lnb-Ilna)

[1F @19 (Z522) + 1 ()1 (o )]3

2(a?2+3a+2) a?+3a+2

1
Inb-Ilna [b3p -L(a3?,b3P)1p
2 3(inb—-Ina)

x [If @1 (52=) + If ()1 (i)]%,

2(a+2) a+2

Corollary 15. By considering the conditions of
Theorem 11, if we take mi =my; =1and a =1
in the inequality (4.5), then we get

2 —_n2
b f(a) a f(b)_fb.Xf(x)d.X|

2 a

1

1
- 30 p30)—a3P1p |/ (@)|? q
< Inb—Ina [L(a ,b3P)-a3P1p [|f (:)| IOk (é)]q

2 3(inb-Ina)
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1
' )| "]a
—| -

1
, Inb-ina [b3P—L(a3P,b3P)]E [If’(:)lq +

2 3(lnb—-Ina)

5. CONCLUSION

New Hermite-Hadamard type integral
inequalities can be obtained by using
(a,my,m,)-GA convexity and different type
identities.
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