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Abstract  
 

Ball and plate system is a nonlinear and unstable system, thus introducing great challenges to 

control scientists and it resembles many complicated real-time systems in several perspectives. 

There has been a good number of efforts to design a stabilizing controller for this system. This 

paper presents a dynamic output-feedback 𝐻∞ control strategy for the plate and ball system 

based on the solution of linear matrix inequalities (LMIs). The discussion involves deriving 

the equations of motion of the system by using the Lagrange method, linearizing the nonlinear 

equations, and designing an 𝐻∞ controller to achieve required tracking specifications on the 

position of the ball. The intent is to show the specified trajectory tracking performance 

outcomes in time domain via simulation studies conducted using MATLAB/Simulink. A 

circular and square trajectory following of the designed controller is compared with a baseline 

PID controller. It is revealed that the proposed controller exhibits an improved tracking 

performance to following the reference trajectories. 
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1. Introduction 

The plate and ball system is an extension of beam and 

ball problem. While the latter has two degrees of 

freedom where a ball rolls on a beam, the first has four 

degrees of freedom where the ball can roll over a plate 

freely. Thus the actual system becomes more 

complicated because of the coupling on the 

coordinates. The plate rotates around the 𝑥 and 𝑦 -axis 

that requires two perpendicular control inputs to the 

plate. The control job is to regulate the position of the 

ball at a certain location in the plate by changing the 

angle of the plate. This is indeed not an easy task 

because the ball does not stay in one point on the plate 

that moves with an acceleration that is proportional to 

the length of the plate. 

 

The main objective is to design a controller for the ball 

and plate system and that the controller should be 

capable of manipulating the position of the ball and 

tracking a reference path with high accuracy. In a more 

precise manner, one can stabilize the ball and specificy 

a trajectory then let the ball follow it with the least error 

and a minimum time. In this regard, there has been a 

good number of efforts on the designing of tracking 

controllers from both experimental [1,2] and 

theoretical perspectives for the plate and ball system. 

The proportional-integral-derivative (PID) controller 

is employed in [3], the sliding mode control is 

considered in [4,5]. Position of the ball is regulated by 

a feedback control in [6]. A nonlinear control via input-

output linearization is demonstrated in [7]. In more 

detail, the work in [8] considers the stabilization 

problem of the plate and ball system by an approximate 

solution of the matching conditions to derive a 

stabilizing control law. A sliding mode controller is 

used and compared with a linear quadratic control for 

the plate and ball system in [9]. A cost-effective 

implementation on the Stewart platform with rotary 

actuators is demonstrated in experiments. Further, in 

[10], a neutral network-based PID control structure is 

proposed for the nonlinear plate and ball system 

wherein the controller parameters of PID are adjusted 

by neutral networks during control process. 

 
Unlike the aforementioned rich literature in control 

techniques applied for the plate and ball system, there 

are few contributions presented in regards to 

employing an 𝐻∞ controller for the same problem. For 

instance, [11] represents a double feedback loop 

structure where an inner loop is regulated by a DC 

motor servo controller while outer loop utilizes an 𝐻∞ 

controller based on the solution of Algebraic Riccati 

Equations (AREs). Morever, the work [12] represents 

AREs-based 𝐻∞ optimal control for the plate and ball 

system. [13] demonstrates a shaping weighting 

function method for the loop-shaping that is applied to 

the plate and ball system for validation. 
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In most of the cases in control design, sensors have the 

full state information of the plant, and the state is 

updated by the model and a state-feedback is 

performed. In this article, we assume that the states of 

the system are not directly measurable, which holds a 

more realistic scenario in real-time applications. The 

proposed controller directly feeds the plant output to 

the controller for the next action. The main 

contributions of this paper are twofold. a) Motivated 

by the present gap of research in 𝐻∞ control, this study 

proposes a dynamic output-feedback 𝐻∞ control for 

reference tracking problem of the plate and ball system 

first time. b) The output-feedback 𝐻∞ controller gains 

are computed based on the solution of linear matrix 

inequalities (LMIs) by MATLAB convex optimization 

toolbox. The proposed controller is then compared 

with a baseline PID controller designed via PID tuner 

in Simulink to reveal the enhanced 𝐻∞ tracking 

performance. 

 

We start with linearizing the nonlinear plant, hence the 

linear feedback control methods can be applied and the 

stability of the open-loop can be determined with the 

linear model in Section 2. Then the output feedback 

controller 𝐻∞ synthesis is shown and simulation 

results are given in Section 3. Lastly, conclusions are 

drawn in Section 4. 

 

2. Modeling 

The mathematical model of the plate and ball system is 

an important step to describe the main dynamics. There 

are two ways to derive the equations of motion of the 

ball and plate system, i.e., by using either the 

Newtonian method or the Lagrangian method. Each 

method has some advantages over the other depending 

on the type of the problem [14]. It is important to fully 

capture the dynamics of each part by deriving the 

equation, thus the Lagrangian method is seen more 

suitable both in terms of simplicity and ability to 

describe the rotational dynamics within the differential 

equations.  

 
Figure 1. A simplified scheme of ball and plate system. 

 

State variables are chosen as: 𝑥(𝑚) is the displacement 

of the ball along the 𝑥-axis, 𝑦(𝑚)  is the displacement 

of the ball along the 𝑦-axis. The Langrangian equation 

of a system is defined as 

 

 ℒ = 𝑇 − 𝑃. (1) 

where 𝑇 is the kinetic energy and 𝑃 is the potential 

energy of the system. The generalized coordinates of 

the ball and plate system is defined  

 
𝜑 = [

𝜌
β
α
], (2) 

𝜌 is the position of the ball, 𝛽 is the angle between the 

𝑥-axis of the plate and horizontal direction, α is the 

angle between the 𝑦-axis of the plate and horizontal 

direction. Note that time notation 𝑡 is omitted for 

simplicity in derivations. 

The kinetic energy of the plate is: 

 
𝑇𝑝𝑙𝑎𝑡𝑒 =

1

2
𝐽𝑥�̇�

2 +
1

2
𝐽𝑦�̇�2, 

(3) 

where 𝐽 is the moment of inertia of the ball. The kinetic 

energy of the ball is given by 

 
𝑇𝑏𝑎𝑙𝑙 = 

1

2
𝐽𝑏𝑎𝑙𝑙�̇�𝑏𝑎𝑙𝑙

2 +
1

2
𝑚𝑣𝑏𝑎𝑙𝑙

2 , 
(4) 

where �̇�𝑏𝑎𝑙𝑙 is the angular velocity 𝑣𝑏𝑎𝑙𝑙 is the linear 

velocity of the ball. The �̇�𝑏𝑎𝑙𝑙 term is defined as the 

distance of the ball to the center of the plate divided by 

its radius. i.e., 

 �̇�𝑏𝑎𝑙𝑙 = 
𝜌

𝑟
, (5) 

where 𝜌 =  √𝑥2 + 𝑦2. The linear velocity expression 

of the ball is 𝑣𝑏𝑎𝑙𝑙
2 = 𝑥2 + 𝑦2. 

 

 𝑥 =  𝜌𝑐𝑜𝑠𝛽 + 𝜌𝑐𝑜𝑠α, (6) 

 �̇� = �̇�𝑐𝑜𝑠𝛽 − 𝛽𝜌𝑠𝑖𝑛𝛽+�̇�𝑐𝑜𝑠α −
𝛽𝜌𝑠𝑖𝑛α, 

(7) 

 𝑦 = 𝜌𝑠𝑖𝑛𝛽 + 𝜌𝑠𝑖𝑛α, (8) 

 �̇� = �̇�𝑠𝑖𝑛𝛽 + 𝛽𝜌𝑐𝑜𝑠𝛽+�̇�𝑠𝑖𝑛α +
𝛽𝜌𝑐𝑜𝑠α, 

(9) 

 

  

 
𝑇𝑏𝑎𝑙𝑙 =

1

2
[(𝑚 +

𝐽𝑏𝑎𝑙𝑙

𝑟2
) (�̇�2 + �̇�2) 

 + 𝐽𝑏𝑎𝑙𝑙(�̇�
2 + �̇�2) + 𝑚(𝑥�̇� + 𝑦�̇�)

2
], 

 

(10) 

Eq. (10) is the said to be the kinetic energy of the ball.  

 

The potential energy of the ball is  

 

  𝑉𝑏𝑎𝑙𝑙 = 𝑚𝑔𝑥𝑠𝑖𝑛𝛽 + 𝑚𝑔𝑦𝑠𝑖𝑛𝛼, (11) 

 

The Langranian expression of the ball is  

 
ℒ =

1

2
(𝑚 +

𝐽𝑏𝑎𝑙𝑙

𝑟2
) (�̇�2 + �̇�2) 

(12) 
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+𝐽𝑏𝑎𝑙𝑙(�̇�
2 + �̇�2) + 𝑚(𝑥�̇� + 𝑦�̇�)

2
 

−(𝑚𝑔𝑥𝑠𝑖𝑛𝛽 + 𝑚𝑔𝑦𝑠𝑖𝑛𝛼).  
The Lagrange equation for both coordinates is 

 𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�
) −

𝜕ℒ

𝜕𝑥
= 0,

𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�
) −

𝜕ℒ

𝜕𝑦
= 0, 

 

 (13) 

 𝑑

𝑑𝑡

𝜕ℒ

𝜕�̇�
= (𝑚 +

𝐽𝑏𝑎𝑙𝑙

𝑟2
) �̈�,  

𝑑

𝑑𝑡

𝜕ℒ

𝜕�̇�
= (𝑚 +

𝐽𝑏𝑎𝑙𝑙

𝑟2
) �̈� 

 

 (14) 

 𝜕ℒ

𝜕𝑥
=  𝑚𝑥�̇�2 + 𝑚𝑦�̇��̇� − 𝑚𝑔𝑠𝑖𝑛𝛽 ,    

𝜕ℒ

𝜕𝑦
=  𝑚𝑥�̇�2 + 𝑚𝑦�̇��̇� − 𝑚𝑔𝑠𝑖𝑛𝛼. 

 

 (15) 

Putting the Euler-Lagrange’s equation into the 

equations above, we obtain two decoupled nonlinear 

differential equations as  

 (𝑚 +
𝐽𝑏𝑎𝑙𝑙

𝑟2 ) �̈� − 𝑚𝑥�̇�2 − 𝑚𝑦�̇��̇� 

+ 𝑚𝑔𝑠𝑖𝑛𝛽=0. 

(16) 

 (𝑚 +
𝐽𝑏𝑎𝑙𝑙

𝑟2 ) �̈� − 𝑚𝑦�̇�2 − 𝑚𝑥�̇��̇� 

+ 𝑚𝑔𝑠𝑖𝑛𝛼=0. 

 

(17) 

Then, the Lagrange expression  

 

=
1

2
[
(𝐽𝑥�̇�

2 + 𝐽𝑦�̇�2) + (𝑚 +
𝐽𝑏𝑎𝑙𝑙

𝑟2
) (�̇�2 + �̇�2)

+𝐽𝑏𝑎𝑙𝑙(�̇�
2 + �̇�2) + 𝑚(𝑥�̇� + 𝑦�̇�)

2
]

− (𝑚𝑔𝑥𝑠𝑖𝑛𝛽 + 𝑚𝑔𝑠𝑖𝑛𝛼). 

(18) 

 

The Lagrange equation is for the plate is now given  

 𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�
) −

𝜕ℒ

𝜕𝛽
= 𝜏𝑥 , 

𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�
) −

𝜕ℒ

𝜕𝛼
= 𝜏𝑦, 

 (19) 

 
(
𝜕ℒ

𝜕�̇�
) = ( 𝐽𝑥 + 𝐽𝑏𝑎𝑙𝑙 + 𝑚𝑥2)�̇� + (𝑚𝑥𝑦�̇�),   

(
𝜕ℒ

𝜕�̇�
) = ( 𝐽𝑥 + 𝐽𝑏𝑎𝑙𝑙 + 𝑚𝑥2)�̇� + (𝑚𝑥𝑦�̇�),  

 

 (20) 

 𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�
) = (𝐽𝑥 + 𝐽𝑏𝑎𝑙𝑙 + 𝑚𝑥2)�̈� 

+2𝑚𝑥�̇��̇� + 𝑚�̇�𝑦�̇� + 𝑚𝑥�̇��̇� + 𝑚𝑥𝑦�̈�, 

(21) 

 𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�
) =   (𝐽𝑥 + 𝐽𝑏𝑎𝑙𝑙 + 𝑚𝑦2)�̈� 

+2𝑚𝑥�̇��̇� + 𝑚�̇�𝑦�̇� + 𝑚𝑥�̇��̇� + 𝑚𝑥𝑦�̈�,  

(22) 

 𝜕ℒ

𝜕𝛽
=  −𝑚𝑔𝑥𝑐𝑜𝑠𝛽,   

𝜕ℒ

𝜕𝛼
= − 𝑚𝑔𝑥𝑐𝑜𝑠𝛼. 

(23) 

Adding the Euler-Lagrange’s equation terms to the 

plate system 

 (𝐽𝑥 + 𝐽𝑏𝑎𝑙𝑙 + 𝑚𝑥2)�̈� + 2𝑚𝑥�̇��̇� + 𝑚�̇�𝑦�̇� +
𝑚𝑥�̇��̇� + 𝑚𝑥𝑦�̈� +  𝑚𝑔𝑥𝑐𝑜𝑠𝛽 = 𝜏𝑥 , 

  (24) 

 

 

 (𝐽𝑥 + 𝐽𝑏𝑎𝑙𝑙 + 𝑚𝑦2)�̈� + 2𝑚𝑥�̇��̇� + 𝑚�̇�𝑦�̇� +

𝑚𝑥�̇��̇� + 𝑚𝑥𝑦�̈� +  𝑚𝑔𝑥𝑐𝑜𝑠𝛼 = 𝜏𝑦 . 

 

  (25) 

Linearization of the ball equations about the plate 

angle, β and α, assuming �̇� and �̇� are zero, with the 

small angle condition gives the following linear 

relations; 𝑠𝑖𝑛𝛽 =  𝛽, 𝑠𝑖𝑛𝛼 = 𝛼,  

 
(𝑚 +

𝐽𝑏𝑎𝑙𝑙

𝑟2
) �̈� + 𝑚𝑔𝛽 = 0, 

(26) 

  (𝑚 +
𝐽𝑏𝑎𝑙𝑙

𝑟2 ) �̈� + 𝑚𝑔𝛼 = 0. 

 

(27) 

The relation between the plate angle and the angle of 

the gear can be approximately related 

 
𝛽 = 𝛼 = 

𝑑

𝐿
𝜃. 

 

(28) 

Plugging (28) this into (26,27) and taking the Laplace 

transform of the decoupled equations with zero initial 

conditions in 𝑥 and 𝑦 axis, the following input-output 

equations are found 

 
(𝑚 +

𝐽𝑏𝑎𝑙𝑙

𝑟2
)𝑋(𝑠)𝑠2 = −𝑚𝑔

𝑑

𝐿
𝜃(𝑠), 

(29) 

 
(𝑚 +

𝐽𝑏𝑎𝑙𝑙

𝑟2
)𝑌(𝑠)𝑠2 = −𝑚𝑔

𝑑

𝐿
𝜃(𝑠). 

(30) 

by rearranging the terms, the transfer function from the 

gear angle to the ball position in 𝑥 and 𝑦 axis is 

obtained 

 
𝑄(𝑠) =  

𝑋(𝑠)

𝜃(𝑠)
=

𝑌(𝑠)

𝜃(𝑠)
= −

𝑚𝑔𝑑

𝐿 (
𝐽𝑏𝑎𝑙𝑙

𝑟2 + 𝑚)
 
1

𝑠2
. 

(31) 

One can write the state-space equations of ball and 

plate system by considering 𝜏𝑥 and 𝜏𝑦 are torques 

exerted to the plate in x-axis and y-axis respectively 

[12]. The states variables defined 

[𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8]
𝑇 = [𝑥, �̇�, 𝛽, �̇�, 𝑦, �̇�, 𝛼, �̇�]𝑇 

and 𝑈 = [𝑢𝑥, 𝑢𝑦]𝑇 = [ 𝜏𝑥 , 𝜏𝑦]𝑇.Then the nonlinear 

state equations  

 

[
 
 
 
 
 
 
 
�̇�1

�̇�2

�̇�3

�̇�4

𝑥5

�̇�6

�̇�7

�̇�8

̇

]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

𝑥2

𝐾(𝑥1𝑥4
2 + 𝑥5𝑥4𝑥8 − 𝑔𝑠𝑖𝑛𝑥3

𝑥4

0
𝑥6

𝐾(𝑥5𝑥8
2 + 𝑥1𝑥4𝑥8 − 𝑔𝑠𝑖𝑛𝑥7

𝑥8

0 ]
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
0
0
0
1

0
0
0
0

0
0
0

0
0
1]
 
 
 
 
 
 

[
𝜏𝑥

𝜏𝑦
]. 

(32) 

 

The values [ 𝜏𝑥 , 𝜏𝑦]𝑇 are considered to be 0. 𝐾 =
𝑚

(𝑚+
𝐽𝑏𝑎𝑙𝑙

𝑟2 )
, and 𝐽𝑏𝑎𝑙𝑙 =

2

5
 for a ball. Then 𝐾 =

5

7
. 
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The new state-space equation is: 

 

[
 
 
 
 
 
 
 
�̇�1

�̇�2

�̇�3

�̇�4

𝑥5

�̇�6

�̇�7

�̇�8

̇

]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

𝑥2

𝐾(𝑥1𝑥4
2 − 𝑔𝑠𝑖𝑛𝑥3
𝑥4

0
𝑥6

𝐾(𝑥5𝑥8
2 − 𝑔𝑠𝑖𝑛𝑥7
𝑥8

0 ]
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
0
0
0
1

0
0
0
0

0
0
0

0
0
1]
 
 
 
 
 
 

[
𝜏𝑥

𝜏𝑦
]. 

(33) 

The ball and plate system can be regarded as two 

individual decoupled systems. Writing the 𝑥 

coordinate state equations in state-space format in (34) 

with the values yields 

�̇� = 𝐴𝑝𝑥 + 𝐵𝑝𝑢 

𝑦 = 𝐶𝑝𝑥. 

where 𝑥 is being the state vector, 𝑢 is the control input, 

and 𝑦 is the output vector.  

 

[

�̇�1

�̇�2

�̇�3

�̇�4

] = [

0 1
0 0

0 0
−7 0

0 0
0 0

0 1
0 0

] +[

0
0
0
1

] 𝜏𝑥 

𝑦 = [1 0 0 0]𝑥.  

(34) 

Note that we omit the time notation. Similar expression 

can be written for 𝑦-axis. As seen, the ball and plate 

system is an open-loop unstable stable, presenting 

challenges in control design. 

3. Formulations and Results 

3.1. PID control 

A PID control is designed to compare with 𝐻∞  control 

for the plate and ball positioning problem in the 

upcoming section. The gains of the PID is chosen as 

Kp=2.38, Ki=0.0404, Kd=4.16. The gains are selected 

based on Matlab’s PID control toolbox tuning and 

successfully stabilize the unstable plate-ball system.  

3.2. 𝐻∞ control 

In 𝐻∞  control, the design objective is to find a 

controller that minimizes the worst-case energy 

amplification over certain frequency ranges. This can 

be interpreted as minimization of the cost function in 

the presence of external disturbances.  The cost 

function is given below 

 
𝐽 =  ∫ [𝑧𝑇(𝑡)𝑧(𝑡) − 𝛾2𝑢𝑇(𝑡)𝑢(𝑡)]𝑑𝑡.

∞

0

 
(35) 

where 𝑧(𝑡) is the output signal and 𝑢(𝑡) is the input 

signal. The 𝐻∞ norm of a stable transfer function G(s) 

is the largest input/output root mean square (RMS) 

gain 𝑖. 𝑒., 

 
‖𝐺‖∞ = sup

u∈L2
u≠0

‖z‖L2

‖u‖L2

= sup
ω

σmax(G(jω)). 
(36) 

 

 

Figure 2. 𝐻∞  controller block diagram. 

where 𝑤(𝑡)  ∈  ℝ𝑛𝑤 is the exogenous disturbance with 

finite energy in the space 𝐿2[0 ∞), 𝑢(𝑡) ∈  ℝ𝑛𝑢 is the 

control input vector, 𝑧(𝑡) = ℝ𝑛𝑧 is the controlled 

outputs, 𝑦(𝑡) ∈ ℝ𝑛𝑦 is the measured outputs and 𝑃(𝑠) 

is the augmented plant model with weights and 𝐾(𝑠) is 

being the controller model. The optimal 𝐻∞ controller 

seeks to minimize ‖F(P, K)‖∞ over all stabilizing LTI 

controllers 𝐾(𝑠). 

3.3. L2 control 

The signal 𝑧(𝑡) : [0, ∞) → ℝn is said to be in the space 

𝐿ⁿ₂ [0, ∞) or simply 𝐿2, if   

 

 
∫ 𝑧𝑇(𝑡)𝑧(𝑡)𝑑𝑡 <  ∞

∞

0

. 
(37) 

The 2-norm, denoted by  ‖𝑧‖2, is defined as 

 
‖𝑧‖2≜ √∫ 𝑧𝑇(𝑡)𝑧(𝑡)𝑑𝑡

∞

0
. 

(38) 

In this section, we use the MATLAB’s Control 

Toolbox to design the controller for the plate and ball 

system. The proper weighting functions are used such 

the regulated outputs remain in specified bound. The 

weighting error transfer function is chosen such that 

the output error to be small at lower frequencies, 

introduces better tracking performance. Similarly, the 

noise in the system creates high-frequency components 

that cause the control input to saturate. In order to 

penalize the input deteriorations at high frequencies, an 

input weighting function is implemented. We consider 

Figure 3 for a given closed-loop system where  

represent the weighted outputs of the error, control 

input and output, respectively. In this design, 

disturbance (d) and noise (n) are 0. 

 

𝑊𝑒(𝑠) =  
1

𝑠 + 1
,𝑊𝑢(𝑠) =

1

𝑠 + 10
,   𝑊𝑦(𝑠) =

1

0.5𝑠 + 1
. 
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Figure 3. General block diagram for 𝐻∞ synthesis with 

weighted regulated outputs and disturbances.  

 

In the design of 𝐻∞ control, 𝑊𝑒, 𝑊𝑢, and 𝑊𝑦 are used 

to shape the plant model 𝑃 in Figure 3. The selection 

of weighting transfer functions is important that 

requires experience and skill. We choose them with 

respect to imposing a reasonable control and enhancing 

tracking property. The state-space expressions for the 

weighting functions are: 

 

𝑊𝑒(𝑠) = [
𝐴𝑒 𝐵𝑒

𝐶𝑒 0
] ,𝑊𝑢(𝑠) = [

𝐴𝑢 𝐵𝑢

𝐶𝑢 0
],  

𝑊𝑦(𝑠) = [
𝐴𝑦 𝐵𝑦

𝐶𝑦 0
], 

Linear Fractional Transformation (LFT) of the 

augmented system with omitted time notation 𝑡 is 

given as: 

 

[
 
 
 
�̇�𝑝

�̇�𝑦

�̇�𝑒

�̇�𝑢]
 
 
 
=

[
 
 
 

𝐴𝑝 1 0 0

𝐵𝑦𝐶𝑝 𝐴𝑧 0 0

−𝐵𝑦𝐶𝑝 0 𝐴𝑒 1

0 0 0 𝐴𝑢]
 
 
 

[

𝑥𝑝

𝑥𝑦

𝑥𝑒

𝑥𝑢

] 

         + [

0 𝐵𝑝

0 0
𝐵𝑒

0
0
0

] [
𝑟𝑒𝑓
𝑢

]. 

(39) 

 

[

𝑧1

𝑧2
𝑧3

𝑒

] =

[
 
 
 

0 𝐶𝑦 0 0

0 0 𝐶𝑒 0
0 0 0 𝐶𝑢

−𝐶𝑝 0 0 0 ]
 
 
 

[

𝑥𝑝

𝑥𝑦

𝑥𝑒

𝑥𝑢

] 

         + [

0 0
0 0
0
1

0
0

] [
𝑟𝑒𝑓
𝑢

]. 

(40) 

 

where 𝐴𝑝, 𝐵𝑝, 𝐶𝑝 are the state-space model of the 

linearized model. The open-loop generalized plant 

model with a new state vector is then written with the 

following state-space equation 

 

 �̇̃�(𝑡) = 𝐴�̃�(𝑡) + 𝐵1𝑤(𝑡) + 𝐵2𝑢(𝑡) 

𝑧(𝑡) = 𝐶1�̃�(𝑡) + 𝐷11𝑤(𝑡) + 𝐷12𝑢(𝑡) 

𝑦(𝑡) = 𝐶2�̃�(𝑡) + 𝐷21𝑤(𝑡) + 𝐷22𝑢(𝑡) 

 

(41) 

with 𝐴 ∈  ℝ𝑛×𝑛, 𝐵1 ∈  ℝ𝑛×𝑛𝑤  , 𝐵2 ∈  ℝ𝑛×𝑛𝑢 ,  𝐶1 ∈
 ℝ𝑛𝑧×𝑛,  𝐷11 ∈  ℝ𝑛𝑧×𝑛𝑤 ,  𝐷12 ∈  ℝ𝑛𝑧×𝑛𝑢 ,  𝐶2 ∈
 ℝ𝑛𝑦×𝑛,  𝐷21 ∈  ℝ𝑛𝑦×𝑛𝑤 ,  𝐷22 ∈  ℝ𝑛𝑦×𝑛𝑢 .  
Here, 𝑛 = 7, 𝑛𝑦 = 1, 𝑛𝑢 = 1, 𝑛𝑧 = 3, 𝑛𝑤 = 1.  

 

We aim to design a dynamic output-feedback 

controller in the form of 

 

 �̇�𝑐(𝑡) = 𝐴𝑐𝑥𝑐(𝑡) + 𝐵𝑐𝑦(𝑡) 

𝑢(𝑡) = 𝐶𝑐𝑥𝑐(𝑡) + 𝐷𝑐𝑦(𝑡) 

 

(42) 

where 𝑥𝑐(𝑡) ∈  ℝ𝑛 is the state of the controller with 

𝐴𝑐 ∈  ℝ𝑛×𝑛, 𝐵𝑐 ∈  ℝ𝑛×𝑛𝑦, 𝐶𝑐 ∈  ℝ𝑛𝑢×𝑛, and 𝐷𝑐 ∈
 ℝ𝑛𝑢×𝑛𝑦. The following theorem is used to construct 

the output-feedback control gains in terms of a set of 

LMIs solution. 

 

Theorem [15]: Given the open – loop LFT system 

governed by (41). Suppose that there exists two 

symmetric matrices X, Y and four data matrices �̂�, �̂�, 

�̂� and �̂�. The following LMIs give the controller 

matrices. 

 

[
 
 
 
 
𝐗A + �̂�C2 + (⋆) ⋆

�̂�𝐓 + A + B2�̂�C2 A𝐘 + B2�̂� + (⋆)

(𝐗B1 + �̂�D21)
T

(B1 + B2�̂�D21)
T

C1 + D12�̂�C2 C1𝐘 + D12�̂�

 

⋆ ⋆
⋆ ⋆

−𝛾𝐼𝑛𝑤×𝑛𝑤
⋆

D11 + D12�̂�D21 −𝛾𝐼𝑛𝑧×𝑛𝑧]
 
 
 
< 0, 

 

(43) 

 

 
[

𝐗 𝐼𝑛×𝑛

𝐼𝑛×𝑛 𝐘
] > 0. 

(44) 

 

(⋆) denotes being symmetric. Then, there exist a 

controller such that 

i) the closed-loop system is stable 

ii) the induced 𝐿2-norm of the operator 𝑤 →
𝑧 is bounded by 𝛾 > 0 ( 𝑖, 𝑒. , ‖𝑇𝑧𝑤‖𝑖,2 <

 𝛾) 

Once matrices X, Y, �̂�, �̂�, �̂� and �̂� matrices obtained, 

the controller matrices are computed in the following 

steps: 

 

1) Solve for N, M, the factorization problem  

 I − 𝐗𝐘 = NMT. (45) 

 

Here, we choose N:= I − XY ,M ≔ I. 
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2)  Compute 𝐴𝑐 , 𝐵𝑐 , 𝐶𝑐 and 𝐷𝑐 with 

 𝐴𝑐 = N−1(�̂� − 𝐗(A − B2�̂�C2)𝐘 − �̂�C2𝐘

− 𝐗B2�̂�)M−T, 

(46) 

 𝐵𝑐 = N−1( �̂� − 𝐗B2�̂�), (47) 

 𝐶𝑐 = (�̂� − �̂�C2𝐘)M−T, (48) 

 𝐷𝑐 = �̂�. (49) 

Then the found controller matrices by LMI Control 

Toolbox of MATLAB are 

𝐴𝑐 =

[
 
 
 
 
 
 
−0.176 15.8 267 97
−2.333 −2.265 −21.99 −7.998
−0.347 1.11 −12.42 −1.621
0.0802 −0.274 32.788 −6.184
0.0006 −0.027 0.328 −0.0515
0.0045 −0.002 −0.031 −0.024

−0.0080 0.0335 −382 −0.0418

 

13.14 −9702 −32501
−1.101 799.1 2687.4
−0.286 219.82 738.541
−0.357 254.1 853.5
−1.052 2.662 9.047
−0.0027 −6.57 −21.26
−0.075 −3.38 −10.19 ]

 
 
 
 
 
 

, 

𝐵𝑐 =

[
 
 
 
 
 
 
−0.0004
−0.0073
−10.8287
67.7571
0.670
0.3438
−0.967 ]

 
 
 
 
 
 

,  

𝐶𝑐 = [0.962 −17.32 −291.1 

105.8 −14.628 10581 35549.5], 
𝐷𝑐 = [−0.0003.05]. 
LMI methods have been successfully implemented in 

the control field in the last decades. The interior-point 

optimization solver gives the optimal values for 

controller matrices so that the desired specifications 

are met. In the above problem, the minimization 

problem is computed with MATLAB’s LMI Toolbox 

[16] using MATLAB 2018a, and optimal disturbance 

attenuation value i.e., energy-to-energy norm 𝛾 is 

found as 1.41871. The desired circular reference circle 

radius is 250 mm and the side length of the square 

shape reference is set to 500 mm, centered at the origin. 

Note that the same controller is applied for both 𝑥 axis 

and 𝑦 axis to regulate the ball’s position. The obtained 

results show that the controller design with the LMI 

approach gives perfect tracking. Notice that the 

circular trajectory performance in Figure 4 is 

acceptable whereas the square case possesses 

significant performance deterioration for square 

reference in Figure 5.   

 
Figure 4. Circular trajectory tracking performance of PID 

controller. 

 
Figure 5. Square trajectory tracking performance of PID 

controller. 

 
Figure 6. Circular trajectory tracking performance of 𝐻∞ 
controller. 

 
Figure 7. Square trajectory tracking performance of 𝐻∞ 

controller. 
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𝐻∞ controller trajectory tracking of the circular 

reference from the origin (0,0) of the ball is seen in 

Figure 6.  The tracking problem to make the ball follow 

the squared path is observed in Figure 7. The ball starts 

following the reference paths in less than 2 seconds i.e., 

settling time is less than 2 seconds. To sum up, tracking 

the references results demonstrate the effectiveness of 

the proposed solution. 

 

3.4. Performance analysis 

The desire of assessing the performance of the 

controllers is essential due to the need of a reliable and 

effective application. The closed-loop performance of 

a control system is measured based on a performance 

index. Performance index-based analysis is one of the 

commonly used methods to test whether design 

requirements are met. To this end, the closed-loop 

tracking performance of the designed control system is 

measured with three different performance indices for 

reference tracking error (of the derived PID and 𝐻∞ 

controls). The performance indices are: 

Integral of the squared value of the error (ISE): 

 
𝐼𝑆𝐸 = ∫ 𝑒(𝑡)2𝑑𝑡.

∞

0

 

 

(50) 

Integral of the absolute value of the error (IAE): 

 
𝐼𝐴𝐸 = ∫ |𝑒(𝑡)|𝑑𝑡.

∞

0

 

 

(51) 

Integral of the time-absolute value of the error 

(ITAE): 

 
𝐼𝑇𝐴𝐸 = ∫ 𝑡|𝑒(𝑡)|𝑑𝑡.

∞

0

 

 

(52) 

 
Table 1. Performance comparison of both controllers 

Ind. PID/circ. PID/sq 𝐻∞ /circ. 𝐻∞/sq. 

𝐼𝑆𝐸 1.193 2.5 0.8551 1.466 

𝐼𝐴𝐸 6.165 10 5.238 7.157 

𝐼𝑇𝐴𝐸 126.6 200 105.8 143.9 

 

Each of these indices is calculated over an interval of 

time. The simulation is run for 40 seconds. A 

performance index is a quantitative measure of the 

performance of a system, thus it is important to 

determine system specifications i.e., settling time, rise 

time, peak overshoot and steady-state performance. 

The steady-state tracking error is vital in our analysis 

and it is desired to be zero. To quantitatively compare 

the both controllers’ tracking performance for both 

references, Table 1 is reported. For instance, the 𝐼𝑆𝐸 

index for PID control is obtained as 1.193 while it is 

0.8551 for 𝐻∞ controller in circular trajectory case. It 

is observed from simulations that since the following 

square shape reference is a hard task, the tracking 

performance is deteriorated, proven by numbers. ISE 

index for PID control is obtained as 2.5 while it is 

1.466 for 𝐻∞ controller in square trajectory. 

Regardless of the tracking shapes and types of 

performance index, 𝐻∞ controller outperforms.  

 

4. Conclusions 

The plate and ball system presents several difficulties 

in terms of stabilization and control design. This work 

presents a trajectory tracking control problem for the 

plate and ball system. We derived the nonlinear model 

and linearized the plate and ball system that imposes 

restrictions on the control design step. We use a variety 

of modern controller design tools to handle the design 

difficulties. A dynamic output-feedback 𝐻∞ controller 

is then employed for the presented system based on the 

solution of linear matrix inequalities. Moreover, the 

trajectory following performance of the proposed 

controller is compared with a PID controller to better 

understand the improvements. It is shown from the 

simulations that 𝐻∞ controller outperforms on tracking 

the state variables for both circular and square 

references. 
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