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Abstract  
 

The free vibration characteristics of composite sandwich beam is examined using an efficient 

numerical solution scheme. The simply supported beam is assumed to be composed of two 

isotropic face sheets and an orthotropic core. The plane elasticity formulations are used to 

derive the equations of motion and the reduced governing differential equation is solved by 

Complementary Functions Method. The dimensionless analysis of natural frequencies is done 

to acquire the high precision along with few divisions. The influences of material and 

geometric parameters on the natural frequency are also illustrated. The solutions are validated 

with the results obtained from finite element software and it is shown that presented method 

is an efficient solution technique for the vibration problems of composite beams with a core. 
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1. Introduction 

Sandwich composites have been extensively using as a 

structural member in engineering areas such as 

automotive, aerospace, computer, biomedical and so 

on. Sandwich composites have been found in structural 

systems like beams, plates, annular members. 

Accordingly, understanding the dynamic behavior of 

such systems becomes necessary to improve their 

performance and the mathematical analysis and 

developing effective numerical methods are important 

to achieve this aim. 

 

The papers related with the free vibration analysis of 

cored composited beams are introduced. Arikoglu and 

Ozkol[1] have studied the vibration behavior of 

sandwich beam using Differential Transform Method. 

The experimental and numerical natural frequency 

analysis of sandwich beam have been conducted by 

Baba[2]. In his work, the beam made of fiber-glass 

laminate skins wrapped over polyurethane foam core 

is subjected to clamped-clamped boundary conditions. 

The vibration characteristics of layered beam are 

examined by Lou et. al.[3] where the core material is 

pyramidal lattice truss. The viscoelastic-core 

composite beam is investigated by Sadeghnejad et. 

al.[4] using extended high-order sandwich panel 

theory. They have considered the effects of transverse 

shear and core compressibility. The beam with lattice 

truss core has been studied by Xu and Qui[5] using the 

interval optimization method. In their study, the 

combining theory of Euler–Bernoulli beam and 

Timoshenko beam is used. Wang and Wang[6] have 

investigated the free vibration behavior of soft-core 

layered beams using the extended high-order sandwich 

panel theory and weak form quadrature element 

method. Cheng et. al.[7] have examined the vibration 

analysis of fiber-reinforced polymer honeycomb 

sandwich beam using refined sandwich beam theory. 

The shear-deformable Timoshenko porous beam is 

studied by Chen et. al.[8] where Ritz method in 

combination with a direct iterative algorithm is 

employed. The zig-zag beam theory is applied by 

Khdeir and Aldraihem[9] to the free vibration of soft-

core laminated beams. Zhang et. al.[10] have studied 

the vibration of honeycomb-corrugation hybrid core 

beam using finite element method. Demir et. al.[11] 

have investigated natural frequency of curved beam 

with laminated face sheets and a viscoelastic core using 

general differential quadrature method. 

Chanthanumataporn and Watanabe[12] have presented 

a finite element solution on the free vibration of a 

layered beam coupling with ambient air where the 

shear deformation of the sandwich core is considered. 

The free and forced vibration behavior of sandwich 

beam having carbon/epoxy face sheets and a 

magnetorheological elastomer honeycomb core are 

examined numerically and experimentally by Eloy et. 

al.[13] where the magnetic field is assumed to be 

applied on the free end and on the center of the beam. 
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Rahmani et. al.[14] have investigated the vibration 

characteristics of a flexible functionally-graded core 

beam where the classical beam theory for the face 

sheets and elasticity theory for core are employed. The 

natural frequency study has been conducted by Asgari 

et. al.[15] on the free vibration of simply supported 

soft-core beam resting on a nonlinear foundation. Xu 

et. al.[16] have presented a continuous homogeneous 

theory to derive the governing equations of free 

vibration problems of sandwich beam with graded 

corrugated lattice core. 

 

The problem addressed in the present study is to 

analyze the free vibration of three-layered sandwich 

beam having an orthotropic core. The plane elasticity 

formulations are employed and the coupled second-

order governing differential equations are reduced to a 

fourth-order differential equation. The face sheets and 

core material are assumed to be interconnected through 

the equilibrium and compatibility. The layers are 

considered to be in a perfect bond with each other. 

CFM has been proven to be an accurate and efficient 

numerical method [17-19] for the present type problem 

is infused into the analysis. 

 

2. Theoretical Analysis 

Consider a rectangular cross-section sandwich beam of 

length L and depth h. The beam is assumed to be under 

the conditions of plane stress in the x-z plane hence it 

has a unit width. The governing equation of motion 

including faces and core is given as follows:  
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where and are normal and shear stresses,  is 

material density, u(x,z,t) and w(x,z,t) are the axial and 

transverse displacements, respectively. Here subscripts 

b, c and t are, respectively, denote bottom face, core 

and top face. 

 

The constitutive equations are written as follows: 
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The strain components in the terms of horizontal and 

vertical displacements: 
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Substituting Eqs. (2, 3) and into Eq. (1) give the 

following two equations in the axial and transverse 

displacements: 
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The typical boundary conditions for the simply 

supported beam are: 
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The displacements satisfying the boundary conditions 

above are assumed as follows: 
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where ξ=mπ/L and ω is the natural frequency. 

Substituting Eq. (6) into Eq. (4) leads to a pair of 

coupled differential equations for U(z) and W(z): 
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where ( )  denotes the derivative with respect to 

transverse coordinate z and  
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These coupled second order equations must be reduced 

to a simple fourth-order differential equation. In order 

to obtain an uncoupled governing equation, Eq. is 

differentiated with respect to z and rearranged as: 
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where 3
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The differentiation Eq. (9) gives a fourth order 

equation as follows: 
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The first derivative of transverse displacement w can 

be obtained from Eq. (7). Taking the derivative of 

obtained equation and substituting it into Eq. (8) gives 

the followings for transverse displacement function:  
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Substituting Eq. (9) and its derivatives, the simple 

forth-order uncoupled governing differential equation 

may be obtained as: 
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where 
2 2 3 3
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4 2 2
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The beam is assumed to be composed of three layers, 

namely bottom, core and top, 12 constants (4 for each 

layer) are to be determined. The traction-free boundary 

conditions at the bottom and top surfaces are:  
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Displacement continuity conditions through lamina 

interfaces: 

 

1i iu u +=  (17) 

1i iw w += i = 1,2,3  (18) 

Axial and shear stress continuity conditions through 

lamina interfaces: 
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Upon substitution of displacements given by Eq. (6), 

the necessary conditions above may be obtained in the 

terms of iU and iW : 
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at the lamina interfaces: 
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The stiffness matrix for the isotropic face sheets and 

orthotropic core are, respectively: 
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CFM is applied to the present problem as an efficient 

solution method. The laborious mathematical 

manipulations and moderate tasks such as integral 

transformation, finite element model or series solution 

are not required by solutions steps of CFM[20]. CFM 

transforms the two-point boundary value problem to a 
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system of initial-value problems which can be solved 

by a numerical method. In this case, the fifth-order 

Runge-Kutta(RK-5) is chosen. A-six-digit accuracy is 

obtained at 4 intervals through the transverse 

coordinate for each lamina. The theoretical 

background and detailed solution steps for the present 

type of problems with CFM are available in the 

literature[18, 19, 21-23]. Upon the application of CFM 

to the problem on hand, the complete solution of Eq. is 

obtained in following form: 

1

,         
i

n

j

j j
i iU e U i b,c,t n 4

=

= = =                                   (31) 

Applying the boundary conditions prescribed in Eqs. 

(21-28) for the particular problem on hand results in 

the following system of algebraic equations for the 

coefficients 
i

j
e : 

   0 , 1,2,...,12
i

j
kl e k lT = =                                       (32) 

where  klT including the variables z, ω, ξ is the 

coefficient matrix. The frequencies which make the 

determinant of coefficients matrix  klT zero are the 

natural frequencies of the composite beam. 

 

3. Results and Discussion 

Two different materials for isotropic face sheets and 

orthotropic core are considered and the material 

properties are given in Table 1. The thickness of 

bottom and top face is equal to each other which is 

taken as 25mm and the thickness of core is 75mm. 

 

The natural frequencies ω are determined from the 

coefficient matrix given in Eq. (32) .It is mainly 

concentrated on the effectiveness of CFM for the 

present type of problems. The efficiency and accuracy 

of the method are compared to the finite element 

software and results are tabulated in Table 2. As it can 

be seen that CFM results match quite well with those 

of finite element software ones. Four divisions through 

the transverse coordinate for each laminate are 

sufficient to obtain a-six-digit accuracy. In the finite 

element model, the structural solid element having 

quadratic displacement behavior is used. The element 

has eight nodes with two degrees of freedom at each 

node which are translations in the nodal x and z axes. 

The beam is divided into 200 equal elements for each 

layer. The element has three nodes and six degrees of 

freedoms based on the first-order shear deformation 

theory may also be used in the finite element model[24, 

25].The effects of material properties of isotropic face 

sheets and orthotropic core, wave number and length-

to-thickness ratio (L/h) are also examined. Table 3 and 

4 show the variation of non-dimensional natural 

frequencies of Al face sheets beam with property of 

core material, wave number and length-to-thickness 

ratio. As an inspection of these tables, using 

Glass/Epoxy instead of Graphite/Epoxy as a core 

material decreases the natural frequency. Also, 

increasing the wave number and decreasing the length-

to-thickness ratio increase the natural frequency. The 

free vibration results of ceramic face sheet (ZrO2) 

composite beam are also obtained and illustrated in 

Figure 1 and 2 for the first three wave numbers. The 

results are given in figure form preventing the 

redundancy to properly compare the differences 

between Al and ZrO2 face sheets beams. It is seen that 

zirconia as face sheets decreases the natural frequency. 

 
Table 1. Elastic properties of the material used in the 

analysis. 

 
1 ( )GPaE  3 ( )GPaE  13 ( )GPaG  13  

3( / )kg m  

Aluminum 

(Al) 
70 70 - 0.3 2707 

Zirconia 

(ZrO2) 
200 200 - 0.22 5700 

Graphite/Ep

oxy 
181 10.3 7.17 0.28 

1600 

Glass/Epoxy 38.6 8.27 4.14 0.26 1900 

 
Table 2. Comparison of CFM with ANSYS for the first 5 

natural frequencies (Hz) 

m CFM  Finite Element 

1 1127.67836  1127.68083 

2 3015.91541  3015.90980 

3 5046.92617  5046.93427 

4 7197.83090  7197.83472 

5 9462.65677  9462.89252 

 

Table 3. Non-dimensional natural frequencies( Al AlE = ) 

of Al-Graphite/Epoxy-Al composite beam for different wave 

number 

 

   

L/h m 1=  m 2=  m 3=  4m =  5m =  

4 1.39335 3.72644 6.23594 8.89358 11.69198 

 2.61538 5.23176 7.84614 10.46252 13.07890 

 9.76088 11.03734 11.83498 13.22415 15.12607 

 

10 0.28431 0.97403 1.83720 2.76555 3.72644 

 1.04675 2.09250 3.13826 4.18401 5.23176 

 4.01882 7.90453 10.82299 10.88692 11.03734 

 

15 0.13098 0.48284 0.97403 1.53916 2.14191 

 0.69750 1.39400 2.09250 2.78901 3.48751 

 2.68761 5.33509 7.90453 10.36411 
10.83562 
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Table 4. Non-dimensional natural frequencies Al AlE =  

of Al-Glass/Epoxy-Al composite beam for different wave 

number 

 

   

L/h m 1=  m 2=  m 3=  4m =  5m =  

4 1.11007 2.97860 4.97436 7.09937 9.11956 

 1.82311 3.64722 5.47133 7.29544 9.36666 

 5.89605 9.36641 9.98482 11.07141 12.64135 

 

10 0.22439 0.77394 1.46641 2.21098 2.97860 

 0.72944 1.45989 2.18833 2.91878 3.64722 

 2.36969 4.72858 7.04112 8.91523 9.36641 

 

15 0.10317 0.38195 0.77394 1.22710 1.71103 

 0.48663 0.97226 1.45989 1.94552 2.43115 

 1.58033 3.15797 4.72858 6.28135 7.77255 

 

 
Figure 1. Non-dimensional natural frequencies(

Al AlE = ) of Graphite/Epoxy core beam for L/h=4  

 

 
Figure 2. Non-dimensional natural frequencies(

Al AlE = ) of Glass/Epoxy core beam for L/h=4 

 

4. Conclusions 

Plane vibration analysis of composite beam with an 

orthotropic core has been conducted. The governing 

equation of motion is obtained by plane elasticity 

theory and readily solved by CFM using very coarse 

collocation points. The results are obtained in the terms 

of a non-dimensional frequency parameter in order to 

accelerate the convergence of study. It is observed that 

CFM is very convenient numerical technique for the 

vibration problems of composite core beams. The 

influences of laminate properties, geometric parameter 

and wave number on the natural frequency are also 

examined. The results show that the core material with 

low elastic property ratio decreases the natural 

frequency and increasing the wave number and 

decreasing the geometric parameter also increase the 

natural frequency. 
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