
 

Cumhuriyet Science Journal 
e-ISSN: 2587-246X                                             Cumhuriyet Sci. J., 41(2) (2020) 506-520 

   ISSN: 2587-2680                                                             http://dx.doi.org/10.17776/csj.632197  

 

 

*Corresponding author. Email address: cemertek@cumhuriyet.edu.tr 
http://dergipark.gov.tr/csj     ©2020 Faculty of Science, Sivas Cumhuriyet University 

 

Comparison of functionally graded and ungraded cylinder liners with 

finite element analysis 

Fatih CİVELEK 1 , Cem ERTEK1,*  

1Department of Manufacturing Engineering, Sivas Cumhuriyet University, 58140 Sivas/ TURKEY 

       

Abstract 
In this study, functionally graded and ungraded Al-Si cylinder liners have been compared 

by the finite element analysis. At the beginning of the study, the most sold gasoline-

powered automobiles in recent years have been investigated and the dimensions of the Al-Si 

cylinder liner have been determined. Al-Si alloy based cylinder liners with a wall-thickness 

of 6 mm and inner diameter of 74 mm, an outer diameter of 86 mm and a length of 165 mm 

have been designed. The functionally graded cylinder liner has a twenty-layered structure, 

and the silicon content of each layer is distinct. Si contents on the inner and the outer 

surfaces of the functionally graded liner are 32 vol.% and 8.5 vol.%., respectively. The 

ungraded cylinder liner, on the other hand, has a homogeneous structure and the silicon 

content of 21 vol.%. The maximum Von Mises stresses reached as a result of thermal loads 

in the functionally graded and ungraded cylinder liners are determined to be 47.526 MPa 

and 95.951 MPa, respectively. It has been observed that maximum Von Mises stress 

decreases by approximately 50% thanks to the functional grading. 
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1. Introduction 

Nowadays as an alternative to cast iron, Al-Si alloys are increasingly used to manufacture engine parts. In 

addition to having a high strength to weight ratio, Al-Si alloys also have excellent thermal conductivity 

property which is necessary to remove the heat released by combustion [1]. The applications of Al-Si alloys in 

the automotive industry include engine parts, in particular, cylinder liners, and engine blocks. The use of these 

alloys reduces engine weight, exhaust gas emissions and fuel consumption [2]. 

The use of engine blocks made of hypereutectic Al-Si alloy has been contemplated by many companies. 

Al17Si4CuMg alloy casting to produce cylinder block is a very difficult and expensive process, therefore low-

priced hypoeutectic Al-Si alloys are used to manufacture engine blocks. The tribological characteristics of these 

alloys cannot provide the properties necessary for the combustion chamber surface. Surface coating or use of 

cylinder liner is required in order to solve this problem [2]. The surface of the cylinder can be coated with 

Ni/SiC (Nikasil) composite materials to provide the required tribological properties. However, coatings 

consisting of nickel are extremely sensitive to sulfur; over time, coatings can be broken down when sulfur-

containing gasoline is used [3]. Due to economic considerations, cylinder liners used in hypoeutectic Al-Si 

engine blocks are mostly cast iron. However, the use of cast iron liner causes some problems. The main 

problems can be summarized as follows. The bond between the cast iron liner and the cylinder block is only 

mechanical, no metallic bond; this makes the heat conduction difficult. The mismatch in coefficients of thermal 

expansion of Al-Si alloy and cast iron can cause deformation of the cylinder liner. Besides, cast iron liners 

bring about an increase in engine weight [3]. 

Functionally graded materials (FGMs) are an advanced composite type consisting of two or more phases. The 

gradual structure is formed through the changes in the composition and/or microstructure of the phases within 

the material in a specific direction. The graded structure reduces local stress concentration, thermal and residual 

stresses frequently encountered in conventional composites. The centrifugal casting method is one of the 

simplest methods so that functionally graded material manufacturing can be realized economically. The 

concentration of the reinforcing particles in the radial direction can be controlled by centrifugal casting. Thus, 

parts with better thermal dimensional stability and better wear resistance can be manufactured [4]. 
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Liew et al. [5] studied the thermomechanical behavior of functionally graded hollow circular cylinders. They 

observed that FGMs cannot expand freely in a steady temperature field, unlike homogeneous materials, and this 

can cause large stresses in FGMs. Also, thermal stresses in the functionally graded cylinder depend on more 

factors (non-uniform thermal conductivity and linear thermal expansion coefficient, etc.), dissimilar to its 

homogeneous counterparts, and it is more complicated to estimate. For all cases in this study, it was observed 

that hoop stress is the dominant stress. 

 Jabbari et al. [6] presented an analytical solution for the calculation of asymmetric thermal and mechanical 

stresses in a thick hollow cylinder made of functionally graded material. They designed a material having 

properties which are depending on the variable r (radius), and material properties were defined as power 

functions of r. They observed that the magnitude of the radial stress increased when m (power law index) was 

increased. In this study, it is presented that when m < 1, the hoop stress through the radius declined. Because 

the modulus of elasticity is an increasing function of the radius, the hoop stress increased along the radius, 

when m > 1. Obata and Noda [7] investigated the thermal stresses in a hollow sphere and a hollow circular 

cylinder made of functionally graded material. They presented that the values and distributions of the hoop 

stress and axial stress are similar. However, they observed that the distribution of the radial stress is different 

from them and the magnitude of it is lesser than theirs. Ekici et al. [8] studied the thermal stress behaviors of 

temperature-dependent functionally graded rectangular plates (FGRPs) using Finite Difference Method (FDM) 

and Finite Element Method (FEM). They presented that FEM and FDM analyses show very similar results with 

respect to strain, temperature, and normal stress component levels. In addition, they observed that the 

distribution characteristics of temperature, strain, displacement, and stress components are highly similar. 

However, they noted that there are quite differences between the displacement levels of FEM and FDM 

analyses. They concluded that the finite difference method, which does not lose importance for structures with 

linear geometry, gives better results than the finite element method. Zhang et al. [9] investigated the mechanical 

properties and microstructure of functionally graded cup-shaped specimens. The specimens were produced 

using a backward extrusion process during the semi-solid state of aluminum alloy (A390). They observed that 

the content of primary Si gradually increased from the upper region to the bottom region of the cup-shaped 

functionally graded samples, and the hardness values through the axis of the cup-shaped specimen gradually 

decreased from the bottom region to the upper region. They stated that during the wear test, the weight loss of 

the upper region is higher than that of the lower region because of the accumulation of numerous Si particles in 

the bottom region. Lin et al. [10] studied the effects of different process parameters on the particle distributions 

and the particle segregation ratio of in situ primary Si/Mg2Si particles in Al-Si-Mg functionally graded tubes 

produced by centrifugal casting method. They observed that in the functionally graded tubes, many primary Si 

and Mg2Si particles segregated in the inner layer, (reinforcement layer), whereas few particles segregated in the 

outer layer (un-reinforcement layer). They presented that the particle segregation ratios of k (ratio of the width 

of the reinforcement layer to distance from the inner wall to the outer wall) increased as pouring or mold 

temperatures increased, but decreased when the mold rotation rate increased. It is stated that when the pouring 

or mold temperatures or rotation rate were increased, the particle size of primary Si and primary Mg2Si became 

smaller. They reported that the largest hardness of HRB 72–75 observed at the middle position of the 

reinforcement layer of the functionally graded tube. 

Although there are many studies on thermal analysis of functionally graded materials in literature, such as those 

presented above, there are few studies examining thermal stresses in functionally graded cylinder liners and Al-

Si based functionally graded materials. It is found that mechanical and microstructural characteristics of the 

functionally graded cylinder liners are frequently investigated in those studies. 

For all these reasons, it was considered that the functionally graded cylinder liner made of Al-Si alloy would 

bring many benefits in practice. The cylinder liner, which can be manufactured by a centrifugal casting method, 

will be functionally graded. Since the density of silicon is lower than the density of aluminum, the 

concentration of silicon by the effect of centrifugal force will be maximum on the inner surface, and it will be 

minimal on the outer surface of the cylinder liner by gradually decreasing through the radial direction. When 

compared to cast iron cylinder liner, the functionally graded cylinder liner made of Al-Si alloy will provide the 

following advantages. 

1-Reduction of engine weight due to low density, 

2-Eliminating the problems arising from the mismatch in the coefficients of thermal expansion of the cast iron 

liner and the aluminum cylinder block, 
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3-Since the outer surface of the liner will have the same amount of silicon as the cylinder block will, 

functionally graded liners will be more compatible with the engine block and the wear resistance will increase 

due to the high silicon content on the inner surface of the cylinder liner. 

 

Thanks to all these advantages, functional graded and ungraded cylinder liners made of Al-Si alloy were 

analyzed by finite element method and they were evaluated in this study. 

 

2. Material and Methods 

Recently, Al-Si alloys have been widely used in cylinder block manufacturing to reduce engine weight. Thus, 

Al-Si alloy was chosen as the material in this study. A319 and A356 aluminum alloys are the most commonly 

used materials in engine block manufacturing [1]. A356 aluminum alloy contains 6.5-7.5% (7.45-8.58% 

volume fraction) silicon. Therefore, the functionally graded cylinder liner was designed as having an outer 

surface containing 8.5 vol.% silicon to be compatible with engine block and an inner surface with 32 vol.% 

silicon for better wear resistance. The functionally graded cylinder liner (Fig. 1) was divided into twenty layers, 

each has a thickness of 0.3 mm. In the ungraded cylinder liner, which was designed for the comparison, the 

silicon distribution is homogeneous and the volume fraction of silicon is 21%. Cylinder liners were designed 

with a wall-thickness of 6 mm, an inner diameter of 74 mm, an outer diameter of 86 mm and a length of 165 

mm. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 1. Functionally graded cylinder liner: (a) the entire liner; (b) 20 times magnified view of the 10 ° section, and the 

silicon  content of the layers. 

 

3. Determination Of Material Properties 
 

In this study, the functionally graded cylinder liner has a twenty-layered structure. The silicon content of each 

layer (alloy) is distinct, so the material properties for each layer must be determined one by one. 

 

3.1. Determination of mechanical properties 

 

Mori-Tanaka method [11] was used to calculate the modulus of elasticity, shear modulus, bulk modulus and 

Poisson’s ratio of the alloys. 

 

The bulk modulus for each layer (alloy) was calculated by using an equation (1). 

 

BCom = BAl +
(BSi − BAl). vSi

1 +
(1−vSi).(BSi−BAl)

BAl+(
4

3
).SAl

 
 

                     (1) 
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Here, BAl is the bulk modulus of aluminum, BSi is the bulk modulus of silicon, SAl is the shear modulus of 

aluminum and vSi is the volume fraction of silicon in the alloy. 

 

The shear modulus for each layer was calculated by using an equation (2). 

 

SCom = SAl +
(SSi − SAl). vSi

1 +
(1−vSi).(SSi−SAl)

SAl+f1

                         (2) 

 

Here, SSi is the shear modulus of silicon. 

The density for each layer was calculated by using an equation (4). 

 

Here, dAl is the density of aluminum, dSi is the density of silicon, and vAl is the volumetric fraction of aluminum 

in the alloy. 

 

The Poisson’s ratio for each layer was calculated by using an equation (5). 

 

 

The modulus of elasticity for each layer was calculated by using an equation (7). 

 

 

The modules of elasticity, Poisson’s ratios and densities of aluminum and silicon at 25 °C are given in Table 1. 

Table 1. Modulus of elasticity, Poisson’s ratio and density of Al and Si elements at 25 °C [12,13]. 

 

  Elastic modulus (GPa)  Poisson’s ratio Density (kg/m3) 

Aluminum 70.2              0.345 2700 

Silicon 162              0.22 2330 

 

 

 

 

 

f1 =
SAl. (9. BAl + 8. SAl)

6. (BAl + 2. SAl)
                                                                                       (3) 

dCom = dAl. vAl + dSi. vSi                            (4) 

νCom =
1

2. (1 +
SCom

λ
)
 

 

                            (5) 

λ = BCom −
2

3
SCom                          (6) 

ECom = 3. (1 − 2. νCom). BCom (7) 

By using equations (8) and (9), bulk modulus and shear modulus of aluminum and silicon were calculated 

(Table 2) 

B =
E

3(1 − 2ν)
                            (8) 

S =
E

2(1 + ν)
                           (9) 
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Table 2. Bulk modulus and shear modulus of Al and Si elements at 25 °C. 

 

 
Bulk modulus (GPa) Shear modulus (GPa) 

Aluminum 75.48 26.1 

Silicon 96.4 66.4 

 

To calculate the mechanical properties at different temperatures, Davoudi's study [14] was used, and Table 3 

was formed. 
 

Table 3. Shear modulus and Poisson’s ratio of aluminum at 100 °C and 200 °C. 

 

Temperature Shear modulus (GPa) Poisson’s ratio 

100 °C 25.076 0.349 

200 °C                               23.71 0.355 

  

By using the equations (9) and (8), bulk modulus and modulus of elasticity of aluminum at 100 °C and 200 °C 

were calculated and presented in Table 4. 

 

Table 4. Bulk modulus and modulus of elasticity of aluminum at 100 °C and 200 °C. 

 

Temperature Bulk modulus (GPa) Modulus of elasticity (GPa) 

100 °C 74.73                    67.66 

200 °C                      74.1 64.274 

Since the mechanical properties of silicon had little changes between 20 °C and 200 °C [15], the differences in 

mechanical properties of silicon were not included in the calculations. 

For each Al-Si alloy (layer), the density at 25 °C was calculated by the equation (4), and mechanical properties 

at 25 °C, 100 °C and 200 °C were calculated using the equations (1), (2), (5) and (7). In addition, the elastic 

modules and the shear modules of the Al-Si alloys with various silicon content at 25 °C, 100 °C and 200 °C are 

given in Fig. 2 and Fig. 3. 

 

 

 

 

 

 

 

 

 

 

Figure 2. The elastic modules of Al-Si alloys with various silicon content at 25 °C, 100 °C and 200 °C. 
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Figure 3. The shear modules of Al-Si alloys with various silicon content at 25 °C, 100 °C and 200 °C. 

3.2. Determination of thermal properties 

In the study by Huang et al., it was observed that the thermal expansion coefficients of Al-Si alloys obtained 

with an experimental method were very close to those calculated by using the Turner model [16]. Therefore, 

the Turner model [17] was used in this study to calculate the coefficients of thermal expansion of the Al-Si 

alloys, and the equation is shown below. 

 

Here, CTEAl, CTESi and CTECom are respectively the thermal expansion coefficient of aluminum, silicon and the 

Al-Si alloy. 

The thermal expansion coefficients of aluminum and silicon at 20 °C, 100 °C and 200 °C are given in Table 5. 

 
Table 5. Linear thermal expansion coefficients of aluminum and silicon at 20 °C,    100 ° and 200 °C [18-20]. 

 

          Linear thermal expansion coefficient (µm/m.°C) 

    20 °C   100 °C    200 °C  

Aluminum 23 24.2 25.7 

Silicon 2.5 3 3.4 

 

The coefficients of thermal expansion at 20 °C, 100 °C and 200 °C were calculated for each Al-Si alloy (layer) 

by using the equation (10) and it is given in Fig. 4. 

          
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. The thermal expansion coefficient of Al-Si alloy at 20 °C, 100 °C and 200 °C versus Si content. 

 

CTECom = (CTEAlvAlBAl + CTESivSiBSi)/(vAlBAl + vSiBSi)                          (10) 
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The thermal conductivity coefficients of the Al-Si alloys at 25 °C with Si content of 8.5 vol.%, 15 vol.%, 20.5 

vol.%, 30 vol.% and 45.5 vol.% were determined from the study of Sadatomi et al. [21], and are given in Table 

6. The thermal conductivity coefficient was assumed to vary linearly between these values. 
 

Table 6. Thermal conductivity coefficients of the Al-Si alloys. 

 

Si content (m3/m3) Coefficient of Thermal Conductivity (W/m. °C) 

0.085 202.94 

0.15 180 

0.205 166.9 

0.3 161.18 

0.455 154.4 

 

Every et al.’s study [22] was examined, and the thermal conductivity coefficients of the Al-Si alloys at different 

temperatures were calculated by using equations (11) and (12). The equation (11) was used for the Al-Si alloys 

having low silicon content (8.5 vol.%, 15 vol.% and 20.5 vol.%) and the equation (12) was used for the Al-Si 

alloys with high silicon content (30 vol.% and 45.5 vol.%). 

 

KCom

KAl
=

[KSi(1 + 2α) + 2KAl] + 2vSi[KSi(1 − α) − KAl]

[KSi(1 + 2α) + 2KAl] − vSi[KSi(1 − α) − KAl]
 (11) 

 

Here, KAl, KSi and KCom are respectively the thermal conductivity coefficient of aluminum; silicon and Al-Si 

alloy. 

Thermal conductivity coefficients of aluminum at 25 °C and silicon at 25 °C, 127 °C and 227 °C are given in 

Table 7. 

 
Table 7. Thermal conductivity coefficients of aluminum and silicon [23-25]. 

 

 

Coefficient of Thermal Conductivity (W/m. °C) 

  25 °C 127 °C 227 °C 

Aluminum 235.2 232.3  229  

Silicon 149 105 80 

 

Since the thermal conductivity coefficient of aluminum slightly changes between 20 °C and 200 °C [23], the 

differences in the coefficients of thermal conductivity of aluminum were not taken into consideration in 

calculations. 

 

The α values calculated by using the equations (11) and (12) which are given in Table 8. 

 

Table 8. Calculated α values for different Si contents. 

 

Si content 

(m3/m3) 
0.085 0.15 0.205 0.3 0.455 

α -13.8613 -13.4757 -35 3.2995 1.0197 

 

By substituting KSi values at 127 °C and 227 °C and α values into equations (11) and (12), thermal conductivity 

coefficients at 127 °C and 227 °C were calculated for the Al-Si alloys having various silicon content (8.5 

vol.%, 15 vol.%, 20.5 vol.%, 30 vol.% and 45.5 vol.%). It is assumed that the thermal conductivity coefficient 

has linear changes between these values. The calculated values for each alloy are shown in Table 9. 
 

 

 

 

(1 − vSi)
3 = {

KAl

KCom
}

(1+2α)/(1−α)

x  {
KCom − KSi(1 − α)

KAl − KSi(1 − α)
}

3/(1−α)

 (12) 
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Table 9. Thermal conductivity coefficients of each Al-Si alloy at 25 °C, 127 °C and 227 °C. 

 

Silicon content of Al-Si 

alloys (m3/m3) 

    Thermal conductivity coefficient  

(W/m. °C) 

      25 °C           127 °C  227 °C 

0.085 202.940 202.730 202.480 

0.1 197.646 197.399 197.108 

0.115 192.352 192.068 191.735 

0.13 187.058 186.738 186.363 

0.145 181.765 181.407 180.991 

0.16 177.618 177.305 176.942 

0.175 174.045 173.816 173.555 

0.19 170.473 170.328 170.167 

0.205 166.900 166.840 166.780 

0.21 166.599 166.417 166.254 

0.22 165.997 165.571 165.201 

0.23 165.395 164.724 164.148 

0.24 164.793 163.878 163.096 

0.25 164.191 163.032 162.043 

0.26 163.588 162.185 160.991 

0.27 162.986 161.339 159.938 

0.28 162.384 160.493 158.885 

0.29 161.782 159.646 157.833 

0.3 161.180 158.800 156.780 

0.31 160.743 157.839 155.465 

0.32 160.305 156.879 154.150 

 

4.     Thermal Stress Analysis 

 

ANSYS 17.1 Workbench software was used to determine the thermal stresses in the cylinder liners. First, 

steady state thermal analysis was performed to obtain three-dimensional temperature distribution of the liners.  

A twenty-layered geometry consisting of the layers with a thickness of 0.3 mm and a length of 165 mm was 

formed by using the ANSYS Workbench for the functionally graded cylinder liner. A bonded connection was 

created between the layers. Then all material properties determined by using mathematical models and 

experimental data were entered into the program, and material assignment was realized for each layer. After 

that, a volumetric prismatic finite element mesh consisting of 193480 elements, was generated. Quadrilateral 

(3x3 mm) and triangular (0.3x3 mm) elements were used for cylindrical and flat surfaces, respectively. The 

generated finite element mesh is shown in Fig. 5 and Fig. 6. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Figure 5. The finite element mesh on the flat surfaces of the functionally graded cylinder liner. 
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Figure 6. The finite element mesh of the functionally graded cylinder liner. 

Wang et al. [26] studied three-dimensional temperature distribution in cylinders of a water-cooled gasoline 

engine by numerical methods. The average values obtained from this study were entered into the program as 

the final temperature values of the functionally graded cylinder liner. 180 °C, 120 °C, 110 °C and 85 °C, which 

were taken from the study of Wang et al., are the temperature values at the upper and lower edges of the inner 

surface and at the upper and lower edges of the outer surface of the cylinder liner, respectively. A model with 

an inner diameter of 74 mm, a thickness of 0.3 mm and a length of 165 mm was designed to find the 

temperature distribution on the inner surface of the liner. Al-Si alloy containing 32% Si was assigned as 

material for this model, and 180 °C and 120 °C temperature values were respectively entered into the program 

for the upper and lower surfaces of the model (Fig. 7(a)). The resulting temperature distribution is shown in 

Fig. 8(a). 

 

 
 
Figure 7. The boundary conditions for the steady-state thermal analysis of the functionally graded cylinder liner: (a) inner surface, (b) 

outer surface. 
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A model with an outer diameter of 86 mm, a thickness of 0.3 mm and a length of 165 mm was designed to find 

the temperature distribution on the outer surface of the functionally graded cylinder liner. Al-Si alloy with an 

8.5 vol.% silicon content was assigned as material for this model, and 110 °C and 85 °C temperature values 

were respectively entered into the program for the upper and lower surfaces of the model (Fig. 7(b)). The 

temperature distribution on the outer surface of the cylinder liner is given in Fig. 8(b). The temperatures of 

inner and outer surfaces were taken into the functional graded model and three-dimensional temperature 

distribution was obtained (Fig. 8(c)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Temperature distribution of the functionally graded cylinder liner: (a) inner surface, (b) outer surface and (c) three-

dimensional temperature distribution of the liner. 

 

The temperature change through the thickness of the functionally graded cylinder liner is given in Fig. 9 and 

Fig. 10. 
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      Figure 9. Temperature change through the thickness for the upper surface of the cylinder liner. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10. Temperature change through the thickness for the lower surface of the cylinder liner. 

 

For the static structural analysis of the functionally graded cylinder liner, the same geometric model (twenty-

layer) was used, and the same finite element mesh used in the thermal analysis was generated, only the element 

size was changed as 3.5 mm. The three-dimensional temperature distribution, which was obtained from the 

thermal analysis, was taken into the static analysis and it was applied as a thermal load. In statistical analysis, 

the ambient temperature entered into the program was 22 °C, and no constraints were applied. During the 

analysis, some weak springs were automatically applied by the program to restrain the rigid body motion. 

The ungraded (homogeneous) cylinder liner with an inner diameter of 74 mm, an outer diameter of 86 mm and 

a length of 165 mm was designed for the comparison to the functionally graded cylinder liner. 

In the thermal analysis, finite element mesh was generated with an average element size of 3mm by 3mm for 

the ungraded cylinder liner. Al-Si alloy containing 21% Si was assigned as material. The same of the boundary 

conditions applied to the functionally graded cylinder liner were applied and the three-dimensional temperature 

distribution of the ungraded cylinder liner (Fig. 11) was found. 
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Figure 11. Three-dimensional temperature distribution of the ungraded (homogeneous) cylinder liner. 

By respectively using quadrilateral (3.5x3.5 mm) and triangular (0.3x3.5 mm) elements for the cylindrical and 

flat surfaces, a volumetric prismatic finite element mesh was generated in the statistical structural analysis of 

the ungraded cylinder liner. The three-dimensional temperature distribution of the ungraded cylinder liner was 

taken into the static structural analysis and applied as a thermal load. The same boundary conditions in the 

statistical structural analysis of the functionally graded cylinder liner were applied to the ungraded cylinder 

liner as well.Von Mises stresses in the functional graded and ungraded cylinder liners obtained from statistical 

analyzes are given in Fig. 12. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 12. Von Mises stresses in the cylinder liners: (a) functionally graded cylinder liner, (b) ungraded cylinder liner, (c) the upper 

surface of the functionally graded cylinder liner, (d) the upper surface of the ungraded cylinder liner. 
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In addition, the statistical structural analysis of the functionally graded cylinder liner was performed by using 

elements with different sizes in order to see the effect of the element size on the results of the analysis. The 

maximum Von Mises stresses obtained from these analyses are presented in Table 10. 

 
 

Table 10. Maximum Von Mises stresses in the functionally graded cylinder liner analyzed by using elements with different sizes. 

 

Element Type 
Element Size 

(mm) 

Number of Finite 

Elements 

Maximum Von Mises  

Stress  (MPa) 

Triangular Prism 

3.5 147024 47.526 

5 76160 47.849 

6 53760 48.199 

 

 

Table 10 shows that maximum Von Mises stress changed little when element sizes were increased. For 

instance, when the element size was increased from 3.5 mm to 5 mm, the maximum Von Mises stress increased 

by 0.68%. 

In the literature, no similar study could be found to compare to our study since the results of the analysis vary 

greatly depending on cylinder liner dimensions, thermal load application, cylinder liner material and boundary 

conditions. 

There are many studies in the literature presenting that thermal stresses are reduced in functionally graded 

materials. For example, in the study of Tahani [27], it is observed that temperature and thermal stress 

distributions are improved in the functionally graded shells compared to the classical layered composites. 

In addition, Bako et al. [28] studied the simulation of a cast iron cylinder liner. In this study, the interior and the 

exterior temperatures of the cylinder liner were applied to be 2227 °C and 400 °C respectively, and the 

maximum compression pressure was applied to be 20 bar. They presented that the maximum Von Mises stress 

(21.08 MPa) occurred at the inner surface of the cylinder liner, and the minimum Von Mises stress (1.21 MPa) 

was observed at the outer surface of the cylinder liner. Abdalla et al. [29] investigated the thermo-mechanical 

stress behaviors in functionally graded (FG) rotating hollow disks with variable thickness. They designed a 

material as functionally graded in the radial direction. They assumed that materials properties vary along the 

radius according to a highly accepted power-law model. They designed four different structures: totally metal 

(TM), totally ceramic (TC), CM (inside is ceramic, outside is metal), and MC (inside is metal, outside is 

ceramic). The FG structures (MC and CM) were assumed to be a composition of steel and alumina. They 

assigned the inner and outer surface temperatures to be 300 °C and 100 °C, respectively. They stated that 

maximum and minimum Von Mises stresses were occurred in the MC and CM structures, respectively. The fact 

that the functionally graded material with CM structure exhibits the minimum Von Mises stress supports the 

results of our study. 

 

5.   Conclusion 

The functionally graded cylinder liner, which can be manufactured by the centrifugal casting of Al-Si alloy 

containing 21 vol.% silicon, was designed with a silicon content of 32 vol.% on the internal surface and 8.5 

vol.% Si on the outer surface. As for the ungraded cylinder liner, it is homogeneous and it contains 21% Si. The 

Cylinder liners were analyzed by using a finite element method, and the following results were obtained. 

Considering the results obtained from the mathematical models and the previous researches in the literature, it 

was observed that the increase of silicon content in Al-Si alloys increased the modulus of elasticity of the alloy 

and decreased the thermal expansion and thermal conductivity coefficients. The temperature rises in the Al-Si 

alloys increased the coefficient of thermal expansion of the alloy but reduced the modulus of elasticity and 

thermal conductivity coefficient. 

As a result of the applied thermal load, thermal stresses were observed in the functional graded and ungraded 

cylinder liners. The cause of the thermal stresses in the ungraded cylinder liner is the non-uniform temperature 

distribution. It is seen that not only the non-uniform temperature distribution is a reason for the thermal stresses 

in the functionally graded cylinder liner, but also it is the silicon content changing. 
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The maximum Von Mises stresses in the functionally graded and ungraded cylinder liners were determined to 

be 47.526 MPa and 95.951 MPa, respectively. The maximum Von Mises stress was reduced by approximately 

50% due to the functionally grading. The temperature (between 180 °C and 120 °C) of the inner surface of the 

functionally graded cylinder liner is higher than the temperature (between 110 °C and 85 °C) of the outer 

surface. The increase of the Si content decreased the thermal expansion coefficient of the alloy. Since the 

thermal expansion is directly proportional to the product of the temperature difference and the coefficient of 

thermal expansion, the differences of thermal expansion between regions in the functionally graded cylinder 

liner are less than that in the ungraded cylinder liner. Therefore, the thermal stresses in the functionally graded 

cylinder liner are lower. 

As a result of the analyses, it was found that the thermal stresses were lower in the functionally graded cylinder 

liner. Therefore, it is anticipated that the lifetime of the functionally graded cylinder liners will be longer than 

that of the ungraded liners. 
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