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Abstract Article info
Vertex coloring problem is a well-known NP-Hard problem where the objective is to minimize  History:

the number of colors used to color vertices of a graph ensuring that adjacent vertices cannot Received: 02.10.2019
have same color. In this paper, we first discuss existing mathematical formulations of the Accepted:15.06.2020
problem and then consider two different heuristics, namely HEUR-RA and HEUR-RC, based Keywords:

on Lagrangian relaxation of adjacency and coloring constraints. HEUR-RA does not require  Vertex coloring
solving any optimization problem through execution whereas at each iteration of HEUR-RC problem, Heuristics,
another NP-Hard problem, maximal weight stable set problem, is solved. We conduct Optimization.
experiments to observe computational performances of these heuristics. The experiments

reveal that although it requires longer running times, HEUR-RC outperforms HEUR-RA since

it provides lower optimal gaps as well as upper bound information.

1. Introduction

Let G = (V,E) be a graph where V is set of vertices and E is set of edges. Two vertices i,j € V are called as
adjacent if e = (i,j) € E. A vertex coloring of a graph G is a mapping c: V — C such that c(i) # c(j) whenever
i and j are adjacent. The elements of the set C are called colors. A graph G is said to be k-colorable if there exist
a vertex coloring c: V — {1, ..., k} and such c is called as k-coloring of G. The vertex coloring problem (VCP) is
to determine chromatic number, denoted as y(G), of a given graph G where chromatic number of a graph is the
smallest number of colors to color it. VCP is an NP-Hard problem according to [1].

Aside from its theoretical importance, VCP has many practical applications in scheduling, timetabling, map
coloring etc. For each instance of these problems, we can construct a graph and solve VCP to find the desired
solutions. Figure 1 depicts an example graph whose chromatic number is 4.

Figure 1. An example of graph G with y(G)=4.

There are many articles and books (such as [2] from which our notation is adapted) on graph theory that include
VCP. However, in this paper, we will provide only studies with operations research perspective. Although first
coloring problems were proposed in 19th century, the number of exact approaches of VCP is relatively recent
compared to heuristic approaches. First exact approach was proposed by [3]. The idea is based on coloring one
vertex at each step and obtain upper and lower bounds for the optimal value. Their approach for VCP can be seen
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as an analogous to that of Branch-and-Bound method for solving mixed-integer problems. Later, [4,5] suggested
improvements for the method such as tie breaking rules and computing initial upper bounds for the optimal value.

[6] proposed a column generation approach for the problem. Their formulation has exponential humber of
variables; thus, they solve its continuous relaxation with a subset of variables and then solve a pricing problem
to detect that if a negative reduced cost exists. The pricing problem is a weighted independent set problem which
is initially solved by a heuristic. If the heuristic does not generate a negative reduced cost values, an exact solution
of the problem is performed. When LP relaxation of their model has a fractional solution, they perform a
branching operation to recover integrality. This column generation approach solves VCP problems up to random
instances of 70 vertices.

[7,8] proposed some extra constraints to eliminate symmetry (see Section 2) and proposed several valid
inequalities for the models with these new constraints. With these valid inequalities, they could have solved
random instances with more than 80 vertices.

Most of the heuristic approaches for VCP are greedy algorithms, that is ranking vertices (or independent sets)
based on some criteria, selecting the one with the highest (or smallest rank) and color it either via color which is
already used or a new color. [9-11] are examples of studies that proposed greedy algorithms for VCP. Some
metaheuristic approaches were also employed for solving VCP. Local search ([12,13]), tabu search ([14]) and
simulated annealing algorithms ([15]) enable us to solve VCP problems with 1000 vertices near-optimally.

VCP lies in the intersection of several disciplines such as graph theory, computer science and optimization.
Although it attracts attention of researchers from various disciplines, our study is the first to propose heuristic
methods based on different Lagrangian relaxations of a VCP. Therefore, the contribution of this paper is proposal
of these methods and a discussion of the results obtained from the computational experiments on randomly
generated instances.

The rest of the paper is organized as follows: In Section 2, we provide several existing mathematical models of
VCP in the literature and give a detailed discussion on these models. In Section 3, we propose two different
Lagrangian relaxations of a VCP model by relaxing adjacency and coloring constraints. We also discuss how to
solve these relaxed problems. In Section 4, we propose two heuristics based on the two relaxations discussed in
Section 3. In Section 5, we conduct a computational experiment on randomly generated VCP instances to observe
the quality of bounds obtained from the proposed heuristics and discuss the results of the experiment. Finally, in
Section 6, we present some concluding remarks and possible future extensions of the existing study.

2. Mathematical Models

Let n = |V] be the number of vertices. Since any graph with n vertices is n-colorable (because each vertex can
be colored with a different color), number of colors to color a graph is at most n. Moreover, we can label vertices
of the graph from 1 to n without loss of generality.

Let y, = 1 if color h is used and, 0 otherwise for all h € {1, ...,n}. Also let x;, = 1 if vertex i is colored with
color h and, O otherwise for all i € {1, ...,n} and for all h € {1, ..., n}. Then, the following mathematical model
VCP-1 solves VCP.

(VCP — 1) minimize Y}_; vu )
subjectto Yp_; x;p =1 Vi€e{l,..,n} 2

Xin +Xjn <yn V(,j) EE,VhE{],..,n} (3)

X € {01} Vi€({l,..,n}Vhe(l,..,n} (4)

yn €{0,1} Vhe{l,..,n} (5)

Objective function (1) minimizes number of used colors. Constraints (2) and (3) ensure that each vertex is colored
exactly with one color and adjacent vertices are colored with different colors, respectively. Constraints (4) and
(5) are domain constraints.

VCP-1 has two major drawbacks as stated in [16]. The first one is the symmetry due to fact that colors are
indistinguishable. There are (Z) possible ways to choose k colors and once k colors are selected, they can be
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permutated in k! ways. Thus, given a solution with k colors, there exists (Z) k! equivalent solutions. The second

drawback is the weakness of LP relaxation of the model. Indeed, LP relaxation of VCP-1 has an optimal value
of 2 by letting x;; = x;, =1/2forallie{1,..,n},y; =y, =1, x;, =0foralli € {1,..,n},h>2and y, =
0 for h > 2. [7,8] tried to overcome these drawbacks. To eliminate symmetry, they proposed adding some extra
constraints to VCP-1. The first one is:

Yh=Vne1 h=1,..,n—1 (6)

Constraints (6) ensure that color h 4+ 1 can be used only if color h is used. An alternative constraint to reduce
symmetry is using following constraint:

Yioq Xin = Xieq Xipg1 h=1,..,n—-1 (7)

Constraints (7) ensure that the number of vertices with color h + 1 is not greater than the number of vertices with
color h.

Finally, following constraints completely eliminate symmetry of VCP-1:
Xip =0 h>i+1, €))
Xip STk Xy ViE{2,..m}2<h<i-1. (9)

Constraints (8) and (9) ensure that independent sets are labeled with the minimum label of its vertices and the
vertices in this independent set h are colored with color h.

[6] proposed another formulation of VCP by using independent sets. An independent (or stable) set S of a graph
G = (V,E) is asubset of V such that whenever i,j € S then (i,j) € E. Hence, all vertices in an independent set
can be colored with same color. Let S be collection of all independent sets of G and zg = 1 if all vertices in S are
colored with same color, and 0 otherwise for all S € §. Then, following mathematical model VCP-2 solves VCP.

(VCP —2) minimize Yges Zs (10)
subjectto Y ses.ies Zs =1 Vi€({l,..,n} (11)
zs €{0,1} VSES (12)

Obijective function (10) minimizes number of selected independent sets. Constraints (11) ensure that each vertex
is included in some independent set and (12) are domain constraints. Although number of variables, that is |S],
is huge, a column generation algorithm can be employed to solve VCP-2. Also, LP relaxation of VCP-2 is as
good as LP relaxation of VCP-1 due to [17].

Another mathematical model was proposed in [18] by manipulating constraint (11) in VCP-2. The following set
packing model VCP-3 solves VCP.

(VCP —3) maximize Ygeq (|S|— 1)z (13)
subjectto  Yseqies Zs <1 Vi€ {l,..,n} (14)
zg €{0,1} VSE€EQ (15)

where Q = {S € §:|S| = 2}. The number of used colors is n — z* where z* is optimal value of VCP-3. [18] also
showed that LP relaxations of VCP-2 and VCP-3 are equivalent in terms of solution value and proposed valid
inequalities for VCP-3. VCP-2 and VCP-3 have exponential number of constraints and hence these models cannot
be solved directly even for moderate size instances. These models can only be considered for the solution methods
such as column generation and branch-and-cut.

3. Lagrangian Relaxations for VCP
In this section, we propose two different Lagrangian relaxations of VCP.

3.1. Relaxing adjacency constraints
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Consider VCP-1 with additional constraints (8):

(VCP — 1a) minimize Y}_; yp (@)
subjectto Yp_; x;p =1 Vi€e{l,..,n} (2

Xin + Xjp <yn V(i,j) €EE,Vhe(],..,n} 3

Xip =0 h>i+1, (8)

xn €{0,1} Vie{l,..,n},Vhe{l,..,n} (@)

yn €{0,1} Vhe({l,..,n} (5)

Relaxing adjacency constraints (3) in a Lagrangian manner, we get LR1:
(LR1) minimize Y}_; Yn + X jyer Dhe1 Uijn(Xin + Xjn — ¥n) (16)
subject to (2), (4), (5) and (8).
LR1 is arelaxation of VCP-1a for any u = 0. By rearranging terms of the objective function (16), LR1 becomes:
(LR1) minimize Y}_; (1— X e Uijn)Vn + i1 2r=1 (Zees() Uen)Xin (17)
subject to (2), (4), (5) and (8).
where §(i):={e € E:e = (i,j) ore = (j,i) for some j € {1, ..., n}} is the set of edges adjacent to i.

LR-1 decomposes for each color and vertex. Also, an optimal solution (x*,y*) of LR-1 can be found by
inspection. Since y variables appear only in objective function, y;, takes value 1 only if its objective value
coefficient is non-positive for any h € {1, ...,n}. Moreover, constraints (2) and (8) ensures that ¥ _; x;, = 1.
Therefore, the color from set {1, ...,i} with smallest objective value coefficient is used to color vertex i €
{1, ...,n}. Hence,

(L if 1=2ajer Uijn <0
= ' Vhe{l,..,n 18
Y {0, otherwise t } (18)
. (L if h=argminYecsg) Uer
Xip = ke(1,...i} Vie{l,..,n},Vhe{l,..,n} (19)
0, otherwise

3.2. Relaxing coloring constraints

Consider VCP-1: (1)-(5) without anti-symmetry constraints. Relaxing coloring constraints (2) in a Lagrangian
manner, we get LR2:

(LR2) minimize Yj_; yp + iz (1 — Xh=1 Xi)v; (20)
subject to (3) — (5).

LR2 is a relaxation of VCP for any choice of Lagrangian multipliers v. By rearranging terms of the objective
function (20), LR2 becomes:

(LR2) minimize YXh_; (Y — Xizq vixin) + Xizq Vi (21)
subject to (3) — (5).
LR2 decomposes for each color such that:

LR2(v) = Sty LR2,(v) + T, v; (22)
where
LR2;,(v) = minimize y, — X1 ViXip (23)
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subjectto x; +xj <yp V(i,j) EE (24)
xin € {0,1},y, € {0,1} Vi€e{l,..,n} (25)

The value of LR2,, (v) depends on whether y,, takes value 0 or 1. If y,, = 0, then x;, = 0, Vi € V due to constraint
(24); otherwise LR2, (v) takes value of following problem:

minimize 1 — Y,/2; vx; (26)

subjectto x;+x; <1 V(i,j)€E 27
x; €{0,1}, Vie{l,..,n} (28)

which can equivalently be restated as:

1 — maximize }}}-; v;x; (29)

subject to (27) and (28)

Hence,

LR2,(v) = min{0,1 — f(v)} (30)

where f(v) is the objective of the maximum weight stable set problem

(MWSSP) maximize )1, v;iX; (31)

subjectto (27) and (28)
Let X;, Vi € {1, ..., n} be an optimal solution of MWSSP. Based on the value that minimum in (30) is attained, an
optimal solution of LR2 can be found as:

. (0, if f<1
Yh = {1, otherwise VhE{L,.,n} (32)

” _{o, if fw)<1

in =%, otherwise Vie{l,..,n},Vhe{l,..,n} (33)

Note that in any optimal solution of MWSSP, we have %; = 0 for any i € {1, ..., n} with v; < 0 since otherwise
we can always have feasible solution with a better objective value by changing the value of the variable with a
strictly negative coefficient to 0.

4. Heuristics

In this section, we propose two heuristics for VCP based on the Lagrangian relaxations proposed in the previous
section. The first heuristic is based on the relaxation of adjacency constraint and called as HEUR-RA. The
outline of HEUR-RA is given below.

HEUR-RA
Initialize: Iteration counter t « 1, Lagrangian multipliers uf]-h =0 for all (i,j) €E and h €
{1, ...,n}, step-sizes {us};= 1, lower bound LB < —oo.
while some termination criteria is not met do
Compute an optimal solution (xt, y%) of the Lagrangian relaxation by (18) and (19).

Update lower bound
n

n
LB, « Z yh+ Z Z ufin (xf + Xfn — v5)
h=1 ()eE h=1
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LB « max{LB, LB;}

Update Lagrangian multipliers
ufft < max{0,uf;, + ut(xfy, + xf, — yi)} forall (i,j) € Eand h € {1, ...,n}
t—t+1
end
Return: A lower bound LB and an upper bound UB.

At each iteration of HEUR-RA, an optimal solution of LR1 is found by inspection using equations (18) and (19)
and a lower bound for VCP is obtained from this solution. The Lagrangian multipliers are also updated in each
iteration. Since adjacency constraints are relaxed in LR1, a solution of the relaxed problem is only an assignment
of colors to the vertices. Therefore, it does not provide any information about a feasible coloring and hence an
upper bound.

The second heuristic is based on relaxation of coloring constraints and hence called as HEUR-RC. The outline
of HEUR-RC is given below.

HEUR-RC
Initialize: Iteration counter t « 1, Lagrangian multipliers vf = 0 for all i € {1, ...,n}, lower
bound LB « —oo and upper bound UB « oo.
while some termination criteria is not met do
Solve MWSSP problem given with given vf,i € {1, ...,n} values and compute an optimal
solution (x¢, y') of the Lagrangian relaxation by (32) and (33). Update lower bound

LBiyq « maX{LBt'ZZ=1 }’ﬁ + X (1 — Xh=1 xfh)vi}
LB « max{LB,LB;,1}

Letx « x* and y « y* be a coloring which does not necessarily satisfy coloring constraints (2)
For vertices i € {1, ...,n} such that Y1_; x;, = 2 only keep the color with smallest index, that
is, Ty {1, if h =.m1n{k €{1,..,n}xy =1}
0, otherwise
For vertices i € {1, ...,n} such that Y1_; x;;, = 0 assign the color with the smallest index that
1, if h=min{{],..,n}\C}
0, otherwise

{h: X1, = xjr, = 1 for some (i, j") € 5(i)} is the set of colors that creates a conflict,

Update used colors

does not create a conflict, that is, x;;, < { where C: =

o {1, if 3ie{l,.,njs.txh, =1

Vhe{l,..,n
Yh 0, otherwise t }

Update upper bound
UB¢y1 < min{UB., Yh_1 yh}

Update Lagrangian multipliers
ufft < max{0,uf;, + ut(xf, +xf, — yi)}forall (i,j) € Eand h € {1, ...,n}
t—t+1
end
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Return: A feasible coloring, lower and upper bounds.

At each iteration of HEUR-RC, a solution of LR2 is obtained by solving MWSSP as discussed in the previous
section. Unlike LR1, the adjacency requirement is maintained in LR2, it is possible to generate a feasible solution
to VCP using x;;, in equation (33). However, some vertices are colored more than once and some of them are not
colored since coloring constraint (2) does not appear in LR2. If a vertex has been colored more than once, only
the color with the smallest index is maintained and other colors are discarded. If a vertex has not been colored,
then any color which does not violate adjacency requirement can be assigned to that vertex. Such color with the
smallest index is used to color any uncolored vertex. Therefore, a feasible coloring and hence an upper bound for
VCP is obtained. Finally, Lagrangian multipliers are updated.

5. Computational Study

In order to observe the efficiency of the proposed heuristics, some computational experiments are conducted on
randomly generated instances. Random class on Java 1.6.023 running on NetBeans IDE 6.9.1 is used to generate
random values. IBM ILOG CPLEX Optimization Studio 12.6 is used to solve optimization problems on a PC
with specifications Intel(R) Core (TM)2 Duo CPU P7450 2 x 2.13GHz. with 4.00 GB RAM. Five instances are
generated for each |V| = n € {10,20,30,40} and edge density coefficient f € {0.2,0.5,0.8} pair. Edge density
coefficient indicates the probability of existence of an edge between each edge pairs.

The classical subgradient algorithm discussed in [19] is used to solve Lagrangian dual problems with stepsize
_,t

rule u, = 1/t for HEUR-RA (due to absence of upper bound information) and u; = “ZZ—QZ”Z for HEUR-RC

where ||infea|| indicates the Euclidean norm of the infeasibility vector of the relaxed constraint, UB indicates

current upper bound and z¢ is the value of Lagrangian relaxation at iteration t. The algorithm terminates if no

improvement is made in last 10n iterations in LB so as to prevent memory errors.

Table 1 summarizes optimal values and required CPU seconds for solving VCP-1 with anti-symmetry constraints
(8) and (9) of all five instances for each parameter settings (n, f). Although all instances with n < 30 are able to
be solved less than 10 seconds, instances with n = 40 require higher CPU times. For the instances with n > 40,
memory errors occur due to the fact that the Branch-and-Bound tree is quite large.

Required CPU time and optimality gap percentage of HEUR-RA on each instance are summarized in Table 2.
Since LR1 can only be solved by inspection, CPU times are under 36 seconds for all instances. On the other hand,
lower bounds obtained by LR1 is not tight with average optimality gap of 40.48%. Also, no upper bound

information is obtained during execution of HEUR-RA. Therefore, the optimality gap for these instances are
Obj.value—Lower bound

cacluated as Gap % = 100

bower Bound

Table 3 summarizes lower and upper bounds, optimality gaps, number of iterations and CPU times of execution
0 HEUR-RC. For 53 out of 60 instances the heuristic is able to find optimal solution. These instances are indicated
with bolded upper bound values in Table 3. For the instances with n = 40 and f = 0.5 or 0.8 CPU times of
Lagrangian dual problem is smaller than CPU times required to solve VCP-1 with constraints (8) and (9). Also,
the average optimality gap of the instances in Table 3 is 2%.

HEUR-RC is also tested with larger instances presented in Table 4. For six out of 20 instances, the heuristic
yields optimal solutions (these instances are indicated with bolded upper bound values in Table 4). Also, average
gap for the instances in Table 4 is 11.18 %. Although, VCP-1 with constraints (8) and (9) cannot find optimal

values for the instances in Table 4, the algorithm figures out reasonable bounds even though CPU times are high.

Upper bound—Lower bound

In Tables 3 and 4, the optimality gaps are calculated as Gap % = 100 since both lower

Lower bound

and upper bounds are available in HEUR-RC.
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6. Conclusion

In this study, two different Lagrangian relaxations of VCP are investigated and then we propose two heuristics
based on these relaxations. First, adjacency constraints (3) in VCP-1a are relaxed in Lagrangian manner.
Although corresponding relaxed problem can be solved by easily, corresponding lower bounds are not tight. A
possible improvement in lower bound can be obtained by adding inequalities that are valid for VCP-1a to LR1.
For example,

xin <yp, 1€{1,..,n},he{l,..,n} (34)
or
IK| < ¥h=1 ¥n (35)

where K € V is a maximum cardinality clique of G. Adding (34) and/or (35) to LR1 definitely improves quality
of the lower bound. However, solving the relaxed problem with (34) or finding a maximum cardinality clique
prohibit color-wise decomposition of LR1. This trade off should be investigated by conducting computational
experiments.

Second, coloring constraints (2) are relaxed in Lagrangian manner. The lower bounds obtained by Lagrangian
dual problem induced by LR2 are much tighter than the previous relaxation with a computational cost of solving
another NP-Hard problem, namely weighted stable set problem, at each iteration. Also, an upper bound can also
be obtained by a heuristic whose input is optimal solution of the relaxed problem. Indeed, optimal solution is
attained for 58 of 80 instances with average gap is 4%. An improvement for the bound of this relaxation can be
achieved solving weighted stable set problem at each iteration more efficiently.

500



Mahmutogullar: | Cumhuriyet Sci. J., 41(2) (2020) 493-505

Table 1. Computational performance of VCP-1 with constraints (8) and (9)

n 10 20 30 40
# 1 f | 02 | 05 ] 08 |02 ] 05 08 | 02 ] 05 | 08 | 02 05 0.8
Opt | 4 3 5 4 5 9 4 7 12 5 8 15
1 value
CPU
0016 | 0016 [ 0031 | 0.031 | 0.109 | 0.141 | 0.764 | 2.293 | 3.073 | 14274 | 292516 | 656.012
R 4 7 3 5 10 4 7 12 5 8 15
value
2 I epu
oo 0016 | 0046 | 0015 | 0141 | 0.156 | 0.156 | 0.671 | 3.417 | 5:819 | 11279 | 130349 | 647.323
Opt | 4 4 5 4 6 10 4 7 12 5 9 15
value
3 I ¢eru
oo | 001 0312 | 0374 | 0124 | 0.203 | 0,063 | 039 | 3.026 | 17 | 092 | 830.14 | 10032
Opt. | 4 5 6 4 6 10 4 8 13 5 8 16
value
4 I eru
o[ 001 0015 | 0 | 0047 | 0109 | 0.046 | 0.234 | 0.562 | 0.749 | 4431 | 505581 | 235.139
Opt. | 4 3 5 4 5 10 | 2 7 13 5 9 14
5 value
CPU
oo | 001 0031 | 0031 | 0.004 | 0.562 | 0.125 | 092 | 7.316 | 0.858 | 5.054 | 632956 | 3.37
Average | 012 | 0.084 | 0.09 | 0.087 | 0.228 | 0.106 | 0596 | 3.323 | 244 | 7.192 | 712.937 | 312.175
Opt. value
Mitime;PU 0.016 | 0.312 | 0.374 | 0.141 | 0.562 | 0.156 | 0.92 | 7.316 | 5.819 | 14.274 | 1303.49 | 656.012
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Table 2. Computational performance of HEUR-RA

n 10 20 30 40
w1 f 02 | 05 | 08 | 02 | 05 ] 08 | 02 | 05 | 08 | 02 | 05 0.8
Opt. | 4 3 5 4 5 9 4 7 12 5 8 15
Value
Lower |, 3 4 3 3 5 3 3 5 3 3 4
1 Bound
C’;Zp 333 | 0 20 | 25 | 40 | 444 | 25 | 571|583 | 40 | 625 | 733
CPU
oo | 0.016 | 0078 | 0047 | 1123 | 0.405 | 1201 | 8829 | 1607 | 1467 | 25.334 | 5.179 | 3759
Opt. |4 4 7 3 5 | 10 4 7 12 5 8 15
Value
Lower | 4 3 4 3 3 6 3 3 5 3 3 5
9 Bound
C’;Zp 0 25 | 429 | o | 40 | 40 | 25 | 571|583 | 40 | 625 | 667
CPU
oo | 0.047 | 0016 | 0016 | 1747 | 0.156 | 1185 | 9594 | 1.779 | 3916 | 11.372 | 2281 | 17.971
Opt. |4 4 5 4 6 10 4 7 12 5 9 15
Value
Lower | 4 3 4 3 3 4 3 3 4 3 3 4
3 Bound
C’;Zp 0 25 | 20 | 25 | 50 | 60 | 25 | 571 | 667 | 40 | 667 | 733
CPU
- | 0109 | 0063 | 053 | 0842 0562 | 0358 | 1186 | 0.936 | 0936 | 23.291 | 8.643 | 4758
Opt. |4 5 6 4 6 | 10 4 8 13 5 8 16
Value
Lower | 4 3 4 3 3 6 3 3 4 3 3 5
4 Bound
Gozp 0 | 40 [ 333| 25 | 50 | 40 | 25 | 625|692 | 40 | 625 | 688
CPU
o~ | 0249 | 0016 | 0046 | 039 | 0.328 | 0889 | 1778 | 1.076 | 0717 | 10.608 | 1.794 | 9454
Opt. |4 3 5 4 5 | 10 4 7 13 5 9 14
Value
Lower | 4 3 4 3 3 4 3 3 4 3 3 5
5 Bound
?)Zp 0 | 0 | 20 | 25 | 40 | 60 | 25 |571|692| 40 | 667 | 643
CPU
o | 025 | 0062 0016 | 1.06 | 1.357 | 0219 | 20,031 | 1965 | 2745 | 4836 | 10.342 | 35.256
A"t?nipu 0.134 | 0.047 | 0131 | 1.032 | 0562 | 0.77 | 8.284 | 1.473 | 1.956 | 15.088 | 5.638 | 14.24
Mi)i(mipu 025 | 0.078 | 053 | 1.747 | 1.357 | 1.201 | 20.031 | 1.965 | 3.916 | 25.334 | 10.342 | 35.256
Average | oo | 1 | 272 | 20 | 44 | 489 | 25 | 582 | 644 | 40 | 642 | 693
Gap %
Max Gap
" 333 | 40 | 429 | 25 | 50 | 60 | 25 | 625 | 692 | 40 | 667 | 733
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Table 3. Computational performance of HEUR-RC

n 10 20 30 40
#| F |02 05 ] 08 | 02 ] 0508 ]| 02] 05 | 08 | 02 05 0.8

Lower | 5 3 5 4 5 9 4 7 12 5 8 14

Bound

Upper | 4 3 5 4 5 9 4 7 12 5 8 15
1 Bound

Gap% | 0 0 0 0 0 0 0 0 0 0 0 6.7

Fiter | 12 | 9 | 16 | 27 | 22 | 39 | 49 | 214 | 299 | 487 | 569 49

E;Lej 023 | 0187 | 0.234 | 0.671 | 0.734 | 0.84 | 1.55 | 20.015 | 44.444 | 85207 | 210.725 | 17.394

Lower | 4 4 7 3 5 [ 10 | 4 7 12 4 8 15

Bound

Upper | 5 | 4 7 3 5 | 10 | 4 7 12 5 9 15
5 Bound

Gap% | 0 0 0 0 0 0 0 0 0 20 111 0

Hiter | 9 | 14 | 14 | 15 | 23 | 35 | 53 | 50 48 | 1346 | 1032 | 854

E;l: 0.03 | 0.078 | 0.39 | 0.093 | 0.265 | 0.47 | 066 | 429 | 4.103 | 230.29 | 333.513 | 467.298

Lower | 4 4 5 4 6 | 10 | 4 7 12 5 9 15

Bound

Upper |5 | 5 6 4 6 | 10 | 4 8 12 5 9 15
3 Bound

Gap% | 0 | 20 | 167 | 0 0 0 0 | 125 0 0 0 0

Hiter | 12 | 207 | 139 | 95 | 69 | 92 | 35 | 757 | 71 40 26 224

E;l: 0.19 | 1.342 | 0.765 | 1.545 | 1.248 | 1.58 | 034 | 111.74 | 7.114 | 1.731 | 1.779 | 72634

Lower | 4 5 6 4 6 | 10 | 4 8 13 5 8 16

Bound

Upper |5 | 5 6 4 7 | 10| a4 8 13 5 9 16
4 Bound

Gap% | 0 0 0 0 | 143 0 0 0 0 0 111 0

Hiter | 12 | 14 | 22 | 33 | 482 | 38 | 33 | 126 | 418 | 459 | 1312 | 195

E;Lej 0.05 | 0.078 | 0.125 | 0.234 | 4.103 | 0.39 | 028 | 9.142 | 12.183 | 55.817 | 404.166 | 29.141

Lower | 4 3 5 4 5 | 10 | 4 7 13 5 8 14

Bound

Upper | 4 3 5 4 5 | 10 | 4 7 13 5 10 14
5 Bound

Gap% | 0 0 0 0 0 0 0 0 0 0 20 0

Fiter | 11 | 10 | 11 | 30 | 22 | 44 | 30 | 444 | 107 | 29 625 585

E;Lej 0.02 | 0.031 | 0.046 | 0.14 | 0171 | 0.62 | 042 | 65941 | 7.114 | 0.843 | 177.949 | 214.594
Avt?n(]lePU 01 | 0343|0312 | 0537 | 1.304 | 0.78 | 065 | 42.226 | 14.992 | 74.777 | 225.626 | 160.212
Mi)i(rripu 023 | 1.342 | 0.765 | 1.545 | 4103 | 1.58 | 1.55 | 111.74 | 44.444 | 230.29 | 404.166 | 467.298
Average | 4 | 33| 0o | 29| o 0 25 0 4 8.4 1.3
Gap %
Ma’;fap o | 20 | 167 | o | 143 o 0o | 125 | o0 20 20 6.7
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Table 4. Computational performance of HEUR-RC on larger instances

n 50 60
# f 0.2 0.5 0.8 0.2
Lower Bound 4 9 16 5
Upper Bound 4 11 19 7
1 Gap % 0 18.2 15.8 28.6
# iter 64 1024 1211 1944
CPU time 9.02 511.38 474,12 1204.85
Lower Bound 5 9 16 7
Upper Bound 5 11 17 8
2 Gap % 0 18.2 59 12.5
# iter 553 812 1763 1603
CPU time 140.65 380.61 680.82 1574.36
Lower Bound 4 10 16 8
Upper Bound 4 10 19 8
3 Gap % 0 0 15.8 0
# iter 66 526 1018 1056
CPU time 10.17 244.33 411.79 1008.83
Lower Bound 5 6 17 6
Upper Bound 5 6 19 7
4 Gap % 0 0 10.5 14.3
# iter 236 38 1097 2615
CPU time 65.83 7.64 462.06 1876.73
Lower Bound 5 8 17 6
Upper Bound 6 11 20 8
5 Gap % 16.7 27.3 15 25
# iter 1153 1268 1040 1862
CPU time 376.23 584.85 402.54 1755.13
Avg CPU time 120.38 345.76 486.27 1483.98
Max CPU time 376.23 584.85 680.82 1876.73
Average Gap % 3.3 12.7 12.6 16.1
Max Gap % 16.7 27.3 15.8 28.6
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