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 Abstract  
An inverse boundary value problem for a second-order elliptic equation with periodic and  

integral condition is investigated. The problem is considered in a rectangular domain. To 

investigate the solvability of the inverse problem, we perform a conversion  from the original 

problem to some auxiliary inverse problem with trivial boundary conditions. By the 

contraction mapping principle we prove the existence and uniqueness of solutions of the 

auxiliary problem. Then we make a conversion to the stated problem again and, as a result,  

we obtain the solvability of the inverse problem. 
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1. Introduction  

Determination of differential equations according to the supplementary information about their solutions are 

called inverse problems for differential equations. Inverse problems arise in different scientific areas such as 

seismology, mineral exploration, biology, medicine, quality control of industrial products etc. so that it makes 

them one of the most important problems of modern mathematics. Different inverse problems for special types 

of partial differential equations have been studied in many works. Let us note here, first of all, A. N.Tikhonov’s  

[1] , M. M.Lavrentiev’s  [2,3],V. K.Ivanov’s  [4] and their students’ works. You can find more detailed 

information  about it in the A. M.Denisov  [5] monography. 

The aim of this study is to prove the uniqueness and existence of the solution of stated inverse boundary 

problem for a second-order elliptic equation with periodic and integral conditions.  

2. Main Results 

Let us consider the equation  

 
),(),()(),(),( txftxutptxutxu xxtt 

                                                
 (1)  

and state it an inverse boundary value problem in the domain   .0,10:, TtxtxDt 

    
 The inverse problem has non-local conditions                          

,),()()()0,(

0

1 dttxutMxxu

T



 

 


T

t dttxutMxTxu
0

2 ),()()(),(    ,)10(  x                                          (2)  

Neumann boundary condition 

0),1( tu x       )0( Tt  ,                                                                 (3)  

https://orcid.org/0000-0001-6754-2283
https://orcid.org/0000-0002-2054-2283-3219
https://orcid.org/0000-0002-4250-3939


Amirov et al. / Cumhuriyet Sci. J., 41(2) (2020) 443-455 

444 
 

non- classical boundary condition 

 
0),0(),0(),0(  tautbutu xxx  ,)0( Tt 

                                                
(4)  

and the additional condition 

)(),( 0 thtxu 
  

,)0( Tt                                                                        (5)  

 where  ba, are positive constants, )1,0(0 x  is a fixed number, )(),(),(),(),(),,( 21 thtMtMxxtxf  are 

given functions, ),( txu
 
and )(tp  are the unknown functions.

 

Definition.  By classical solution of (1)-(5) inverse boundary value problem we shall understand the 

 )(),,( tptxu  
pair of functions, if  ,)(),( 2

TDCtxu    TCtp ,0)(   
and relations are satisfied in the usual 

sense. 

    For the study of (1)-(5) firstly we reduce the considered problem to the equivalent problem: 

,0)()(  xyxy 
 

)10(  x
                                                                         

 (6)                                             

,0)1( y    ,)0()0()( ybya     .0,0  ba                                                    (7) 

     

   The following lemma is valid: 

   Lemma 1. Suppose that      ,,0)(,,0)(,,0)( 21 TCtMTCtMTCtp   

 
constRtp

TC


,0
)(

 

   Moreover, 

  
   

.1)
2

1
)(()(

,02

2

,01  RtMTtMT
TCTC

                                                        (8) 

  Then the problem (6), (7) has a unique trivial solution. 

   Proof: It is easy to see that boundary value problem (6),(7) is equivalent to the integral equation  

   

,)()),()()()(()( 1

0

2  dytGpMtMty

T

 
                                                                                         

 (9) 

 where  

   

 
 









.,,

,,0,
),(

Tt

tt
tG




  

   Let us introduce the following denotations 

,)()),()()()(()( 1

0

2  dytGpMtMtAy

T

 
                                

          (10) 

 and write integral equation (9) as  

.)()( tAyty                                                                             (11) 

   We shall investigate (11) in the space  TC ,0 . It’s obvious that the operator A  is continuous in the space 

 TC ,0 . 
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   Let us show that the operator A  is contracting in the space  TC ,0 . Indeed, for arbitrary 

 TCtyty ,0)(),(   
we have 

         TCTCTCTCTC
tytytp

T
MTMTtyAtAy

,0,0

2

,02

2

,01
,0

)()())(
2

)()(()()(                     (12) 

  From (12) by (8), it follows that operator A is contracting in the space  TC ,0 . Therefore, in the space 

 ,,0 TC the
 
operator A  has a single fixed point )(ty , which is the solution of the equation (11). Thus, integral 

equation (9) has unique solution in  TC ,0 . Since, boundary value problem (6), (7) also has unique solution in 

 .,0 TC  
As 0)( ty  is the solution of (6), (7). So, the boundary value problem (6), (7) has a unique trivial 

solution. The proof is complete.  

Besides with inverse  boundary value problem (1)-(5) let’s consider the following auxiliary inverse boundary 

value problem. It is required to determine the pair  )(),,( tptxu  
of functions )(),( TDCtxu  and 

 TCtp ,0)(   
from the relations (1)-(4) and  

),()()(),()( 00 txfthtptxuth 
 

.)0( Tt                                            (13) 

The following theorem is valid: 

Theorem 1. Assume that  ,,0)(),(),(),( TCxxDCtxf T    ,,0)(),( 21 TCtMtM 

  )0(0)(,,0)( 2 TtthTCth 
 
and the compatibility conditions  

dtthtMhx

T

)()()0()(
0

10    

dtthtMThx

T

)()()()(
0

20 

                                                             

 (14) 

hold. Then the following assertions are valid:
 

1) Each classical 
 
solution  )(),,( tptxu  

of  problem (1)-(5) is also the solution of (1)-(4), (13); 

2) Each solution  )(),,( tptxu  
of  problem (1)-(4), (13) satisfying       

     
1))(

2

1
)(()(

,0,02
2

,01 
TCTCTC

tptMTtMT                                 (15) 

 is a classical solution of (1)-(5). 

  Proof. Let  )(),,( tptxu  
be classical solution of (1)-(5). Taking into consideration  TCth ,0)(   

and twice 

differentiating (5), we find: 

)(),(),(),( 00 thtxuthtxu ttt
 ,  .)0( Tt 

                                       
 (16) 

  Setting 0xx   in the equation (1), we have  

  
),(),()(),(),( 0000 txftxutptxutxu xxtt      .)0( Tt 

                       
 (17) 

    Hence by (5) and (16) we conclude that (13) is valid. 

   Now, assume that  )(),,( tptxu  
is a solution of (1)-(4), (13), and the compatibility conditions (14) are 

satisfied. Then from (1) and (17) we get  
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))(),()(())(),(( 002

thtxutathtxu
dt

d
     .)0( Tt                               (18) 

Furthermore, by (2) and the compatibility conditions (14) we have  

  )((),()(),())(),()(()(),( 0

0

100

0

10 thdttxutMtxudtthtxutMthtxu

TT

                                                                             

0))()()(()())()(
0
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0

1   dtthtuthxdtthtM

TT



  )((),()(),())(),()(()(),( 0

0

200

0

20 ThdttxutMTxudtthtxutMThTxu

TT

.0))()()(()())()(
0

20

0

2   dtthtMThxdtthtM

TT

                                                                              (19) 

  From (18) (19) and by virtue of Lemma 1, we conclude that the condition (5) is satisfied. 

  The theorem is thus proved. 

  Let us consider the following spectral problem  

0)()(  xyxy      10  x                                                             (20)                                                                       

0)1( y  )0()0()( ybya  
                                

                            (21) 

[9], with positive the coefficients a  and b .  Eigenfunctions of this problem has the form 

))1(cos(2)( xxy kk   , ,...2,1,0k  

with positive eigenvalues  k  from characteristic equation 

 





b

a
tg


  .          

  We assign zero index to any pre-selected eigenfunction, and number all the reminded by increasing order of 

eigenvalues. 

   It is known from [6-10]: 

   Lemma 2. Beginning from a certain number N  the following estimations holds true:  

.

)1(
4

)1(
2

0





k

b
nk







  

  Now let us compare the system,  )(xy k  
without  function )(0 xy to a known system, 

  )1(cos2)(,)( xxvxv kkk  
 
where )1(

2
 kk 


 , ,...2,1k , which is orthonormal basis in 

.)1,0(2L  

  In analogous manner [6-10] , we have  








 


Nk

L

Nk

kk

k

bxvxy
2

2
)1,0(

2

))1(
4

(3

2
)()(

2




  ,                                  (22) 
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 which we get convergence of the series from the left hand side of this inequality. 

   Let us suppose that ))1(sin(2)( xx kk   ,  ))1(sin(2)( xx kk    

then the inequalitie  

2

2
)1,0(

2

))1(
4

(3

2
)()(

2






 k

bxx L

Nk

kk




                                                          (23)  

hold.  

  It’s known [9] that functions of  biorthogonally conjugate system  )(xz k to the system  )(xy k , ,...2,1k
 

are defined by the equality  

k

k

kk

x
xxz 




 /)

)cos(

))1(cos()cos(
))1((cos(2)(

0

0 
  ,                      (24)  

where    
k

kk

k
b

a

b 




)(cos)(cos
1

22

  

  Here it’s also known that  )(xy k  
,...2,1k

 
form a basis  Riess in space

 )1,0(2L . 

  Suppose that .)1,0()( 2Lxg  Then by (22), we get  

)1,0(

2

1

1

1

0
2

)()))()(((
L

k

k xgMdxxyxg  


                                                 

 (25) 

 where 

2

1

2

2

))1(
4

(3

2

2

)1(


























 


Nk k

b
NN

M




 

  Similar to (25), by (23), we find: 

                               

   
)1,0(

2

1

2

1

1

0
2

)()))()(((
L

k

k xgMdxxxg  






  

                                                                     

 

  Since, the functions   )(xy k , ,...2,1k
 
are the basis of Riess in )1,0(2L space, then it’s known [10] that for 

any function )1,0()( 2Lxg   

)()(
1

xygxg k

k

k




                                                    

  holds true, where 

)()(

1

0

xzxgg kk        ,...)2,1( k  
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  It is not difficult to see that  

  ))(
cos

1
)()((2

1

00

1

0

dxxg
a

b
dxxyxgg

k

k
kk  









 

  From here, by virtue of (25), we have  

)1,0(0
2

1

1

2

2

)()(
L

k

k xgMg 




                                                       (27) 

 where 

.)
1

)((sup
cos

2
1

2

1

0

0















 



k kkk a

b
MM






 

    Assume that   .)1,0()(,1,0)( 2LxgCxg   
 

   

0)1(cos)(
cos

)()(

1

0

0

0

  dxxxg
b

xggJ 


                            

     

Then we have

 

       

  dxxxxgg
k

k

k

k )))1(cos(
cos

cos
))1()(cos((

2
0

0

1

0








                               (28)

 

               

dxxxgg
b

a
k

kk

k

kk

)1(sin()(
12

cos)0(
2

1

0

  





 

      Hence by (26) we have 

 

,)(2)0())((
)1,0(0

2

1

2

1
2L

k

kk xgMgmg 






                   

                        (29) 

 where  

2

1

1

0 )
1

(
2






k kb

a
m


 

   Now  suppose that  1,0)( 1Cxg  , )1,0()( 2Lxg  , 0)( gJ , 0)1( g .Then from (28) we get  

    



kkk

k

kkk

k gbag
a

g





12
sin)0()0((

112
       

      




  )0(
12

))1(sin()(

1

0

g
a

a
xdxg

kkkk

k




 

         

dxxxg k

kkk

))1(sin()(
12

1

0

  


 .                                                (30)

 

 

  From here we find: 
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)1,0(1

2

1
2

1
2

)(2)0()((
Lkk

k

k xgMgamf 




                             (31) 

where 

2

1

1

1

1
sup2 












 



k kk

k

k a
m




 . 

 Now suppose that  1,0)( 2Cxg  , )1,0()( 2Lxg  , 0)( gJ , 0)1( g ,
   

 

0)0()0()0(  agbgg .  Then from  (29) we get 

dxxxgg
a

a
g k

kkkkkkk

k ))1(sin()(
12

)0(
12

1

0




  


 .                         (32)                                              

  From (32) we find: 

)1,0(1

2

1

2

1
2

)(2)0()(
Lkk

k

k xgMgamg 












 .                                         (33)  

Denoted by 2

3

,2 TB , the set of all the functions ),( txu  of the form  







1

)()(),(
k

kk xytutxu , 

is considered TD , where each function  )(tuk  is continuous on ],0[ T  and 














2

1

1

2

],0[
))((

k
TCkkk tu . 

        We define the norm on this set as follows:  

.))((),(
2

1

1

2

],0[2

3

,2 







 


k
TCkkkB

tutxu
T

  

Denoted by 
2

3

T
E  the space that consist of the topological product  

.],0[2

3

,2 TCB T   

The norm of the element  puz ,  is defined by the formula 

.)(),(
],0[

,
2

3

,2
2

3

TCBE
tptxuz

TT

  

 It is known that  2

3

,2 TB  and  
2

3

T
E  are Banach spaces. 

 We shall seek for the first component ),( txu
  

of   )(),,( tptxu in the form                             

 
)()(),(

1

xytutxu k

k

k




 ,                                                       (34) 

where  
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 dxxztxutu kk )(),()(

1

0

     ,...)2,1( k , 

 

and  

))1(cos(2)( xxy kk   . 

 By applying method of separation of variables, from (1), (2) we have  

),,()()( putFtutu kkkk            )0,...;2,1( Ttk   ,                            (35)     

dttutMu k

T

kk )()()0(
0

1   ,               (36) 

dttutMTu k

T

kk )()()(
0

2      ,...)2,1( k                                      (37) 

 

 where  

)()()(),,( tutptfputF kkk  ,     dxxytxftf kk )(),()(

1

0

   , 

 

dxxzx kk )()(

1

0

     , dxxzx kk )()(

1

0

    ,...)2,1( k  

  Solving problem (35)- (37) we obtain 
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1
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(38) 

Where 
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
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
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
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After substitution the expression (38) in (34), by the definition of the component ),( pxu of problem, we get 

(1)-(4), (13) 
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 Now, from (13), by (34) we have  
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 In order to get the equation for the second component )(tp of 
 
solution  )(),,( tptxu  

of  problem (1)-(4), (13) 

we substitute the expression (38) in (40):  
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Thus, the solution of problem  (1)-(4), (13) was reduced to the solution of the system (39), (41) respectively to 

unknown function ),( txu
 
and )(tp  

Now let us consider the operator  ),(),,(),( 21 puФpuФpuФ  in the space 2
3

TE , where  
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   Using these relations, and simple transformations we find  
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 Suppose that the data of (1)-(4), (13) satisfy the following conditions: 
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  Then from (42) and (43), by (30) and (32), we find 
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    Let us introduce the denotations 
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and write the estimations (44) and (45) as follows
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   From the inequalities (46) and (47) we conclude:  
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where  

)()()( 21 TATATA   , )()()( 21 TBTBTB  , )()()( 21 TDTDTD  . 

The following theorem can be proved. 

 Theorem 2. If conditions (1)-(4) and the condition 
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 Proof. In the space ,2
3

TE we consider the equation  
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 where  ,, puz   the components ),( puФi  ,...)2,1( i
 
of operator ),( puФ  is defined by the right sides of 

equations (39), (41). 
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Then by (49) from (51) and (52), it follows that the operator Ф  acts in the sphere RKK   
and is contracting. 

Therefore in the sphere RKK  operator Ф  has only unique fixed point  pu, , which is the solution of the 

equation (50), i.e.  pu, , is the unique solution of the system (39), (41) in the sphere .RKK   

 Then the function ),( txu , as an element of 2
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This implies that ),( txutt is continuous in TD .It is easy to verify that equation (1) and conditions (2), (3), (4) 

and (13) are satisfied in the usual sense. 

Consequently,  )(),,( tptxu  
is the solution of (1)-(4), (13). The proof is complete. 

With the aid of Theorem 1 the following theorem was proved. 

 Theorem 3. Suppose that all conditions of Theorem 2                   
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then problem (1)-(5)  has a unique classical solution in  RKK  of 2
3

TE .  
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