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problem to some auxiliary inverse problem with trivial boundary conditions. By the Keywords:

contraction mapping principle we prove the existence and uniqueness of solutions of the Inverse boundary value

auxiliary problem. Then we make a conversion to the stated problem again and, as a result, problem, elliptic

we obtain the solvability of the inverse problem. equation, Fourier
method, classical
solution.

1. Introduction

Determination of differential equations according to the supplementary information about their solutions are
called inverse problems for differential equations. Inverse problems arise in different scientific areas such as
seismology, mineral exploration, biology, medicine, quality control of industrial products etc. so that it makes
them one of the most important problems of modern mathematics. Different inverse problems for special types
of partial differential equations have been studied in many works. Let us note here, first of all, A. N.Tikhonov’s
[1] , M. M.Lavrentiev’s [2,3],V. K.Ivanov’s [4] and their students’ works. You can find more detailed
information about it in the A. M.Denisov [5] monography.

The aim of this study is to prove the uniqueness and existence of the solution of stated inverse boundary
problem for a second-order elliptic equation with periodic and integral conditions.

2. Main Results
Let us consider the equation

Uy (X, 1) + Uy, (X,1) = p(Ou(x, 1) + F(x,1) (1)

and state it an inverse boundary value problem in the domain D, = {(x,t):0<x<1,0<t<T}.

The inverse problem has non-local conditions

u(x,0) = @(x) +} M, (t)u(x,t)dt,
0

ut(x,T):y/(x)+].M2(t)u(x,t)dt (0<x<1), 2

Neumann boundary condition

u@t)=0 (0<t<T), 3
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non- classical boundary condition

U, (0,t)—bu, (0,t)+au(0,t) =0 (0<t<T), 4)
and the additional condition

u(x,,t) =h(t) (0<t<T), (5)
where a,b are positive constants, X, € (0,1) is a fixed number, f(X,t),o(X),w(x),M,(t),M, (t),h(t) are
given functions, u(x,t) and p(t) are the unknown functions.

Definition. By classical solution of (1)-(5) inverse boundary value problem we shall understand the
{u(x,t), p(t)} pair of functions, if u(x,t)eC?(D;), p(t) e C[O,T] and relations are satisfied in the usual
sense.

For the study of (1)-(5) firstly we reduce the considered problem to the equivalent problem:
y'(xX)+Ay(x)=0, (0<x<1) (6)
y') =0, (a-A1)y(0)=by'(0), a>0,b>0. (7

The following lemma is valid:
Lemma 1. Suppose that p(t) € C[0,T],M,(t) eC[0,T],M, (t) eC[0,T]

[ p(t)||C[OVT] <R =const
Moreover,
2 1
T||Ml(t)”c[o,T] +T (”M 2 (t)”C[O,T] + E R) <1 (8)

Then the problem (6), (7) has a unique trivial solution.

Proof: It is easy to see that boundary value problem (6),(7) is equivalent to the integral equation

y(t) =I(th(T)+M (7)+ p(2)G(t, 7))y(r)dz, 9)
where
B -t,te [O,r],
Clto)= {— T,te [r,T].

Let us introduce the following denotations
T
Ay(t) = j(tM (1) +M (7) + p(7)G(t,7))y(r)dr, (10)
0

and write integral equation (9) as
y(t) = Ay(t). (11)

We shall investigate (11) in the space C[O,T]. It’s obvious that the operator A is continuous in the space
clo,T].
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Let us show that the operator A is contracting in the space C[O,T]. Indeed, for arbitrary
y(t),Y/(t) € C[O,T] we have

R T 2 _
[Ay® =AY, < TIML@ o)+ T2 Mgy + =5 POl o) YO - YO (12)

From (12) by (8), it follows that operator A is contracting in the space C[O,T]. Therefore, in the space
C[0,T ], the operator A has a single fixed point Y(t), which is the solution of the equation (11). Thus, integral
equation (9) has unique solution in C[O,T]. Since, boundary value problem (6), (7) also has unique solution in

C[O,T]. As y(t) =0 is the solution of (6), (7). So, the boundary value problem (6), (7) has a unique trivial
solution. The proof is complete.

Besides with inverse boundary value problem (1)-(5) let’s consider the following auxiliary inverse boundary
value problem. It is required to determine the pair {u(x,t), p(t)} of functions u(x,t) € C(D; ) and

p(t) e C[O,T] from the relations (1)-(4) and
h"(t) +u(X,,t) = p)h(t) + f(x,,t) (0<t<T). (13)
The following theorem is valid:

Theorem 1. Assume that f (x,t) € C(D; ),@(x),w(x) e C[0,T], M, (t),M, (t) eC[0, T},
h(t) eC? [O,T], h(t) =0 (0<t<T) and the compatibility conditions

0(%,) =h(0) - [ M, (Hh(t)dt

w (%) =h'(T) - [ M, (Oh(t)dt (14)

hold. Then the following assertions are valid:
1) Each classical solution {u(x,t), p(t)} of problem (1)-(5) is also the solution of (1)-(4), (13);
2) Each solution {u(x,t), p(t)} of problem (1)-(4), (13) satisfying

1
T||M1(t)||C[O,T] +T2(M, )| cfoT] +E” p(t)||C[OVT]) <1 (15)

is a classical solution of (1)-(5).

Proof. Let {u(x,t), p(t)} be classical solution of (1)-(5). Taking into consideration h(t) e C[O,T] and twice
differentiating (5), we find:

U, (Xo,t) =h'(t), u, (X, t) =h"(t), (0<t<T). (16)
Setting X = X, in the equation (1), we have
Uy (X, 1) + Uy (%o, ) = pu(X,, t) + F(X,,t)  (0<t<T). (17
Hence by (5) and (16) we conclude that (13) is valid.

Now, assume that {u(x,t), p(t)} is a solution of (1)-(4), (13), and the compatibility conditions (14) are
satisfied. Then from (1) and (17) we get
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(f?(u(xo,t)—h(t»:a(t)(u(xo,t)—h(t» (0<t<T). (18)

Furthermore, by (2) and the compatibility conditions (14) we have

10,8)~ (D)~ [ ML) ~ RO = Uk ) ~ [ My Ot Dt~ () -
~ [M,®h)dt) = p(x,) - (h®) - [u, (ON()dt =0
U0 T) ~ h(T) = M, (O(%,) ~ h(O)E = 0%y, T) [ M, Q0 )kt — (h(T) -

~ [M,(OR®d) = p(x,) - (A(T) ~ [ M, OR(B)dt = 0. (19)

From (18) (19) and by virtue of Lemma 1, we conclude that the condition (5) is satisfied.

The theorem is thus proved.

Let us consider the following spectral problem

y'(X)+Ay(x)=0 0<x<1 (20)
y'1) =0 (a-4)y(0) =by'(0) (21)
[9], with positive the coefficients a and b . Eigenfunctions of this problem has the form

Y (X) = x/Ecos(\/Z(l— X)), k=01.2,...

with positive eigenvalues A, from characteristic equation

tg\/_—\/_

We assign zero index to any pre-selected eigenfunction, and number all the reminded by increasing order of
eigenvalues.

It is known from [6-10]:

Lemma 2. Beginning from a certain number N the following estimations holds true:

O<\/_———7z(n ) P —

Z+;z(|< Y

Now let us compare the system, {yk (x)} without function Y, (X) to a known system,
{Vk(X)}, Vv, (X) = \/Ecos,/,uk (1-Xx) where \Jz, = % +7(k—-1),k =1,2,..., which is orthonormal basis in
L,(0,]).

In analogous manner [6-10] , we have

2 0
Loy <b? Z 2 , (22)
N3+ r(k-1)°

> 13 (v, (4] -
4
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which we get convergence of the series from the left hand side of this inequality.

Let us suppose that 77, (X) = ﬁsin(\/ﬂ—k(l— X)), & (X)= x/isin(\/u—k(l— X))
then the inequalitie

2 2
L 01 < b2 (23)

a%+nw—nf

>l (9~ £, (0)

hold.

It’s known [9] that functions of biorthogonally conjugate system {zk (x)}to the system {yk (x)}, k=12,..
are defined by the equality

cos(\/ﬂ—k) cos(\//i_o(l— X))
COS(\/ﬂ_O) )/ak ! (24)

cos? (4, ) . acos(\4,)
b

bA,

z, (x) = v2(cos/2, (1-x)) -

where o, =1+

Here it’s also known that {yk(x)} k =1,2,... formabasis Riess inspace L,(0,1).

Suppose that g(x) € L,(0,1). Then by (22), we get

([ 900y, (02 < Mg, @5)
k=1 o
where
1
M = —N(lzN)eri 2 +2

k:Ns(%+ (k1))

Similar to (25), by (23), we find:

([ 909m 0080 <M |90,

Since, the functions {y, (x)}, k =1,2,... are the basis of Riess in L, (0,1) space, then it’s known [10] that for
any function g(x) € L,(0,1)

g(x) = Z i Yic (X)
k-1
holds true, where

g =90z, (0  (k=12.)
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It is not difficult to see that

1
gl <V2(J 90y, (x)dx + g(x)ldx)
o< 2000 0o ﬂ|a Mﬂ |
From here, by virtue of (25), we have
o 1
(2902 <MgJg()|, o (27)
k=1

where

b A - 1
M,=2| M .su il
0 + c0S /10 p(|a ik|)(é /1k

Assume that g(X) € C[O,l], g'(x) eL,(0)).

_ b | _
J(9)=g(x)+ Cosmgg(x)cos\/ml— x)dx=0

Then we have

VR B B
oo cos(y/ 2o (1—X)))dx =

A

(28)

1
V2, ig(o)cos\/—+— ! Ig’(x)sin(Jl_k(l—x)dx
Ak /1k 0

Hence by (26) we have

1

(X (4932 <molg(0)+2M[g' (M) 0 - (29)
k=1

where
(Z —) 2

Now suppose that g(X) € Cl[O,l], g"(x) e L,(01),J(g) =0,9'(2) = 0.Then from (28) we get

—_— . 1

1 . V2
= ag(0)-bg'(0)sin/A, +—- .
= a i \/Tk(g() 9'(0)siny/ 4, o A

" \/_ 1 a P
jg(x)dsmw_ = i YO

—aif ;Lk\/_J.g’”(x)sm(\/—(l X))dx . (30)

From here we find:
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0 1
Q- A £ )? <myalg”(0) +2M[g" ()] 4.
k=1

where

1
~2sup e |(§ij2 .

—l

Now suppose that g(x) € C2[01], g"(x) € L,(0,1),J(g)=0,9’(1) =0,
9"(0)—bg(0)+ag(0)=0. Then from (29) we get

V21 a \/E

—— . "(0) —
oJ8 w a1 %Jag() . AJ_'
From (32) we find:

[2(,1 \/_|gk|)j < malg"(0) + 2M|

9 m(x)”LZ(o,n )

3
Denoted by B2, , the set of all the functions U(X, t) of the form

o0
u(x,t) =D U Oy (x)
k=1
is considered Dy , where each function U, (t) is continuous on [0, T] and

{5 A Ol | <5

We define the norm on this set as follows:

B2 = {i (A \//I_k”uk (t)”c[o,T])z}2 :

3
Denoted by ET2 the space that consist of the topological product

3

B2, xC[0,T].
The norm of the element z = {u, p} is defined by the formula
[2e; =l Bllgz, +[P®lcgos

3

3
Itis known that B2, and E?

are Banach spaces.

We shall seek for the first component u(x,t) of {u(x,t), p(t)}in the form
u(x,t) = > u, 0y, (x),
k=1

where
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1
u, (1) = Juxz, (dx  (k=12,..),
0

and

Yo (X) = V2 cos(/4, (1-x)).

By applying method of separation of variables, from (1), (2) we have

ug (t) —Au, (t) = F (t,u, p) (k=12,.;0<t<T), (35)
U, (0) = ¢ + [ M, (B, (B)dt (36)
ul (T) =y, +j|v|2(t)uk(t)dt k=12,..) (37)
where

F(tu,p) = f )+ pOu @), 1) =[O0y, (9dx ,

0. = 002, (dx , y, = [y (07, ()dx (k=1.2,..)

Solving problem (35)- (37) we obtain

T T
uka):w[wj Ml(t)uk(t)dtJ (2 (T - )( k+IM2(t)uk(t)dtJ+
0 0

h(AT) AN (ZT)

+%}Gk (t,7)F (z,u, p)dz,(k =12,...) -
Where

S/ (T = @+ D)= sh(A T +t=2) | 1o 1
G, (t,7) 2ch(\/4T) e

\T) =
’ sh(/A (T = (t + 7)) — sh(J A (T — (t —7))) ]
2ch(\/24, T) , :

After substitution the expression (38) in (34), by the definition of the component u(x, p) of problem, we get
(1)-(4), (13)
ch(4, (T —t)
u(x,t + | M, (t)u, (t)dt
( )Z{ LT [ j ,(©) ()j

k=1
sh(4, (T —1)
+W(Wk +£M2(t)uk(t)dt]+7k.gek (t,T)Fk (T,U, p)dT:|yk (X) (39)
Now, from (13), by (34) we have
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p(t) = [h(t)]l{h"(t) — (X, 1) - ﬁiﬂkuk (t)cos /A4, (1- xo)} . (40)

In order to get the equation for the second component p(t) of solution {u(x,t), p(t)} of problem (1)-(4), (13)
we substitute the expression (38) in (40):

A = [ch(A (T -t) T
p(t) =[h(t)] {h - f(Xo,t)—\/EkZ_;ﬂk _Wm[% +£M1(t)uk(t)dt]+

+ Szfj;gk;;)( W+ ! M, (t)u, (t)dt +%k'([Gk (t,7)F (z,u, p)d r} COS\/l_k(l— X,) } (41)

Thus, the solution of problem (1)-(4), (13) was reduced to the solution of the system (39), (41) respectively to
unknown function u(x,t) and p(t)

Now let us consider the operator @(u, p) = {ch(u, p), D, (u, p)}in the space ET% , Where
@, (u, p) =U(X,V) = ZUk V)Y, (X), @,(u,p)=p(v), au,(v) (k=12,..)
k=1

and p(v) are equal to the right-hand side parts of (38) and (41) respectively.
It is obvious that

(A (T-1) _, Sh(AT) _, sh(4 (T +t-7)

, : <1 (teo,z),
ch(4,T) ch(4,T) ch(4,T)
sh(4, (T —(t+7) -1 sh(4 (T - (t-1)) < (telnT)
ch(4,T) ’ ch(4,T) A

Using these relations, and simple transformations we find

o 1 o 1 0 1
O A0 Ol o1 )2 < VB (Al )2 + VB ()7 +
k=1 k=1 k=1
VBT M1 ()] o7 A AUk Ol 1) *)2 + VBT Mo (Mg 1) 2 Al Oll o) +
k=1 k=1

T o 1 0 1
V6T ([ 2 (A fi ) d0) 2 + VBT PO o1 A i U Ol o)) (42)
k=1

o k=L

© 1l » 1
”ﬁ(t)”C[O,T] < H[h(t)]_luc[m]{|h”(t)_ f(Xo’t)"c[o,T] + (2’1;1)2 (Z (A \/ﬂ_k|§0k|2)2 +
: k=1 k=1

© 21 0 1
+ (Z (lk |V/k| )2 +T||Ml(t)”c[o,T](z (ﬂ“k \/;L_k”uk (t)||C[O,T])2) ? +T||M 2 (t)"C[O,T] '
k=1 k=1
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o 1 T o 1
Ao Ollor P2 VT (| XA @) ?d2)2 +T[pO] o
k=1 o k=1

(A ||uk(t)||C[o,T])2)2} - (43)

Suppose that the data of (1)-(4), (13) satisfy the following conditions:
1. p(x) e C2[0,1] p"(x) € L,(0),J (¢) = 0,'(1) = 0,¢"(0) —b'(0) + ag(0) = 0,
2. y(x) e C[01]9"(x) € L,(0), 3 () = 0.y’ () =0,
3. f(xt), f,(xt), f,(xt)eL,(D;),
J(f)=0,f,(L)=0 (0<t<T)
4.a>0,b>0,M,(t),M,(t) eC[0,T] h(t) e C*[0,T] h(t) =0 (0<t<T)
Then from (42) and (43), by (30) and (32), we find

[iuJiwwumﬂ2

"0, r, VBl el 0) OM "0, o ¢

<6 [m alo"(0)|+2M

+%WMMmeWMW{iwﬁmmmnﬁ+

46T [m, (a] £ 0.0y +b] £, O+ 2M [ T (k1] o )]

1
2

+V6T[p(V)] (Zu VAo ®) m)j (44)
POl = OT g 0 5

m

@"(X)

1
) 1 E
J{Z;/I_J [m1a|¢u(0)|+2l\/l| LT +m1(a|,/,(o)|+b|l//(0)|)+

L,(0,1)) +TQ|M1(t)”c[0T +||M Z(t)”C[OT Ii (ﬁ“k \/TKHUk (t)"C O’T])zjz +
T |m, @ £ 0,1)].

+~bM|y"(x)

D, Q)] o) +2M] o (0t] o )]

[oT]

#mmm{iwﬂmmmmﬂ1 @)
k=1

Let us introduce the denotations
A(T) =V6|male" O] +2M[p" (),
+0T |m, (@] £(0,8)] g +b] £, (0.1)

L, (0,1) J+

)+vbM| f, (x1)|

won)

clo,T]
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Bl(T) = \/ET ' Dl(T) - ‘/ET (”Ml(t)”c[o,T] +||M 2 (t)”C[O,T]) '
A M =[O, 100 = 0o+
(z%j ma

k=1 7%

VT [y @ T 0,8)] oy bl £, (O ) + 2M [ £ (X,)

VI”(X)”LZ (02) +

" ()] +2M " (X 5., + M (@l (0)| + by ' (0))) +2M|

ool

e, - [0l ([T

k=1

1
i = 010)2
D= 0T S T Ol MOl
=1 %
and write the estimations (44) and (45) as follows

G053 < AT+ By () PO g U6 D53 + D (Mux,1)

||5(t)||C[O,T] < Az (T) + Bz (T)” p(t)”c[o,T]”u (X’t)”B;é + D2 (T)”u(x’t)“B:/ZT ) (47)

S (46)

From the inequalities (46) and (47) we conclude:
u0eOl5E, +HBOefor) < AQ +BMIPO o D]z + DMy (48)

where

AM) =A(M)+A,(T) . B(T)=By(T)+B,(T), D(T) =D, (T) + D,(T).
The following theorem can be proved.
Theorem 2. If conditions (1)-(4) and the condition

(BM)(A(M)+2)+D(M)(AT) +2) <1 (49)
hold. Then problem (1)-(4), (13) has a unique solution in the ball K = K (|z|_% <R = A(t)+2) of the
space ET%.

3
Proof. In the space ETA , We consider the equation
7=z (50)

where z = {u, p}, the components @, (u, p) (i =1,2,...) of operator @(u, p) is defined by the right sides of
equations (39), (41).

3
Consider the operator @(u, p) in K = Ky, of the space ETA . Similar to (48) we get that for any
z,2,,z, € K the following inequalities hold:

@zl < AT) + BT P®)]corluCx:D]gz + DMux D] < AT)+B(T)-

“(A(M)+2)* + D(T)(A(T) +2) = AT) + (B(T)(A(T) +2) + D(T)) (A(T) +2) (51)
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|®z, _CDZZ”ET% <B(M)R(|P.(t)-P, (t)||C[OYT] +||ul(x,t)—u2(x,t)||B;/%)+

+ D) u, (1) = u, (X, 1) 32 ) (52)

Then by (49) from (51) and (52), it follows that the operator @ acts in the sphere K = K, and is contracting.
Therefore in the sphere K = K operator @ has only unique fixed point {u, p}, which is the solution of the
equation (50), i.e. {u, p}, is the unique solution of the system (39), (41) in the sphere K =K.

3
Then the function u(x,t) , as an element of B, is continuous and has continuous derivatives u, (X,t) and

Uy (X,t)in D; .

Furthermore, from (38) it is obvious that u, (t) € C[O,T]and

(i (\/ﬂ“_k”l'll':(t)”c[o,T])z)E s \/é(i (/Ik \/TKHUk (t)”c[o,T])Z)E + \/é(i \/’Tk” fk (t)”c[o,T])z)E +

0 1
+ \/5” p(t)”c[o,T](z A \/ﬂ“_k"uk (t)”c[o,T])z) ?
k=1

or considering (29) we find:

WA

+
L,(0,1) )

1
U o)) < V3] FO.D)] g7y +2M [ £, (XD o1

1
0! )] o))’

VB[P ) (A

This implies that u,, (X, t) is continuous in Dy .It is easy to verify that equation (1) and conditions (2), (3), (4)
and (13) are satisfied in the usual sense.

Consequently, {u(x,t), p(t)} is the solution of (1)-(4), (13). The proof is complete.

With the aid of Theorem 1 the following theorem was proved.
Theorem 3. Suppose that all conditions of Theorem 2

TIM, @) +T2(M, @) +%(A(T)+2))<1

clo,T] cloT]

and the compatibility condition (14) hold. If
0(%) = h(0) - [ M, (®h(t)dt,
P(%) =h'(T) = [M, (Hh(t)dt.

3
then problem (1)-(5) has a unique classical solution in K = K of ETA .
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