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Abstract 

  

The aim of the present study is to investigate the forward kinematics of spin-rolling contact motion of one 

timelike surface on another timelike surface along their timelike trajectory curves in Lorentzian 3-space. 

This study does not take sliding motion into consideration but applies a new Darboux frame method to 

establish the kinematics of spin-rolling motion. 
 

Keywords: Darboux frame; forward kinematics; Lorentzian 3-space; pure-rolling; rolling contact; spin-

rolling. 
 

 

1. Introduction 

 

Rolling contact has been widely used in robotics and 

engineering in order to manipulate the configurations 

(positions and orientations). Rolling contact is also 

associated with surface geometry. Each surface has 

trajectory curves that we can determine arbitrarily and 

during the rolling contact motion, these curves trace 

each other. When there is no sliding in rolling contact, 

non-integrable kinematic constraints occur. It calls for 

that the arc lengths of the trajectory curves are equal to 

each other [10]. 

 

The kinematics of rolling contact motion has two 

categories: spin-rolling motion and pure-rolling motion 

[8]. On the other hand, there occur two geometric 

constraints for rolling contact. One is that the unit 

normal vectors of the two surfaces are coincident at the 

contact point. The other is that the contact points have 

the same velocity. Namely, the two contact trajectory 

curves are tangent to each other and have the same 

rolling rate. In this study, one of the surfaces is assumed 

to be fixed surface and the other is assumed to be 

moving surface which rolls on fixed one. In this sense, a 

moving surface undergoes spin-rolling motion or pure-

rolling motion under these two geometric constraints. 

Furthermore, when a moving surface undergoes pure-

rolling motion, one more constraint is needed. We can 

mention for this constraint that the two contact 

trajectory curves have the same geodesic curvature, that 

is, the angular velocity component 
3

  in the direction 

of the unit normal vector n  to the surface is zero. 

Therefore, the contact trajectory curves are not arbitrary 

[9]. For this reason, a pure-rolling motion has two 

degrees of freedom (2DOFs) and instantaneous rotation 

axis passes through the contact point in all cases and 

this axis is parallel to the common tangent plane of the 

two surfaces. Spin-rolling motion, which is also known 

as twist-rolling motion, has three degrees of freedom 

(3DOFs), that is, a moving surface has the angular 

velocity components: 
1

  and 
2

  about the axes T  and 

g  on the tangent plane, respectively, and 
3

  about the 

common normal axis n  at the contact point. The 

instantaneous rotation axis of a moving surface has no 

obligation to be parallel to the common tangent plane, 

namely, it may be in any direction [8]. 

 

The contact kinematics can be categorized into two 

main parts: forward and inverse kinematics. The 

forward kinematics is used for observing how the 

moving surface can roll in a period of time, when the 

geometry of the trajectory curves on surfaces are 
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calculated. The inverse kinematics is used for obtaining 

the rolling direction, rolling rate and compensatory spin 

rate, when the geometry of two surfaces and the desired 

motion of the moving surface is determined [9,10].  

The kinematics of a point contact between rigid bodies 

have attracted many researchers. Neimark and Fufaev 

[17] were the first to establish the moving frame along 

the lines of curvature in order to derive the velocity 

equation of spin-rolling motion. Cai and Roth [4,5] 

investigated instantaneous time-based kinematics of 

rigid objects in point contact, both in planar and spatial 

cases including sliding and pure-rolling motion and they 

aimed to measure the relative motion at the point of 

contact. Montana [15] studied the kinematics of sliding-

spin-rolling motion and derived a differential-geometric 

model of the rolling constraint between general bodies. 

Li and Canny [13] used Montana’s contact equations to 

study the existence of an admissible path between two 

configurations in the case of pure rolling and, if it does, 

then how to find it. Sarkar et al. [21] extended 

Montana’s definition but with a different approach by 

obtaining the acceleration equations and they proved the 

obvious dependence on Christoffel symbols and they 

simplified the derivative of the metric tensor. Marigo 

and Bicchi [14] obtained similar equations with 

Montana’s contact equations by applying a different 

approach that allowed an analysis of admissibility of a 

pure-rolling contact. Agrachev and Sachkov [1] solved 

the controllability problem of a pair of pure-rolling rigid 

bodies. Chelouah and Chitour [6] presented two 

procedures to analyze the motion-planning problem 

when one manifold was a plane and the other was a 

convex surface. Chitour et al. [7] studied the pure-

rolling of a pair of smooth convex objects. Tchon [22] 

identified the property of repeatability of inverse 

kinematics algorithms for mobile manipulators and 

formulated a necessary and sufficient condition under 

repeatability. Tchon and Jakubiak [23] designed an 

extended Jacobian repeatable inverse kinematics 

algorithm for doubly nonholonomic mobile 

manipulators based on the concept of endogenous 

configuration space. Cui and Dai [8] studied the forward 

kinematics of non-sliding spin-rolling motion by 

establishing a new Darboux frame method and then Cui 

[9] investigated the kinematics of sliding-rolling motion 

of two contact surfaces. Cui and Dai [10] also 

investigated the inverse kinematics of rolling contact by 

using polynomial formulation when the desired angular 

velocity, the geometry of two surfaces and the 

coordinates of the contact point on each surface were 

given in Euclidean 3-space. Then, they obtained 

admissible rolling motion between two contact surfaces. 

For the fundamental concepts of kinematics, see [3, 12, 

16]. 

 

This study is organized as follows:  

In Section 2, we present basic concepts in Lorentzian 3-

space.  

In Section 3, we investigate the forward kinematics of 

spin-rolling motion without sliding of one timelike 

surface on another timelike surface by applying a new 

moving-frame method. Initially, we give the Darboux-

frame-based translational velocity equation of an 

arbitrary point in Lorentzian 3-space. Then, we get a 

new equation of angular velocity with respect to the 

rolling speed and two sets of geometric invariants 

containing the geodesic curvature, the normal curvature, 

and the geodesic torsion, that is, { , , }
g n g

k k   and 

{ , , }.
g n g

k k   We determine the instantaneous 

kinematics of a timelike moving surface by applying the 

translational velocity and the angular velocity equations. 

Then, we present two examples that give spin-rolling 

motion and pure-rolling motion of two timelike surfaces 

without sliding, respectively. 

 

In Section 4, we conclude the study. 

 

2. Material and Methods 

 

In this section, we give basic concepts related to 

Lorentzian 3-space. For more details, we refer to ref. [2, 

19, 20, 24]. 

 

The Lorentzian space 
3

1IR  is the real vector space 
3

1IR  

endowed with the standard flat metric given by 

 

1 1 2 2 3 3  , u v u v u v  u v , 

 

where  1 2 3, ,  u u uu ,  1 2 3,  ,  v v vv  are two 

vectors in 
3

1IR . An arbitrary vector  1 2 3, ,u u uu  in 

3

1IR  can have one of three Lorentzian causal characters 

with respect to this metric. If   , 0u u  or   0u  

then u  is called a spacelike vector; if   , 0u u  then 

u  is called a timelike vector; if   , 0u u  and 0u  

then u  is called a null (lightlike) vector [19]. We 

should note that a timelike vector is future pointing or 

past pointing if the first compound of the vector is 

positive or negative, respectively. The norm of a vector 

3

1  IRu  is given by ,u u u . If the vector u  

is a spacelike vector, then 
2

,u u u ; if u  is a 

timelike vector, then 
2

  , u u u  [24]. 

 

Let  1 2 3, ,u u uu  and  1 2 3, ,  v v vv  be two 

vectors in 
3

1IR . Then Lorentzian vector product of u  

and v  is defined by 
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 3 2 2 3 1 3 3 1 1 2 2 1  u v u v , u v u v , u v u v    u v  [24]. 

Definition 2.1. — [2, 20] 

 

(i) Let u  and v  be future pointing (or past pointing) 

timelike vectors in 
3

1IR . Then there is a unique real 

number 0   such that , cos  h u v u v , 

and this number is called the hyperbolic angle between 

the vectors u  and v . 

 

(ii) Let u  and v  be spacelike vectors in 
3

1IR  and they 

span a timelike vector subspace. Then there is a unique 

real number 0   such that   , coshu v u v , 

and this number is called the central angle between the 

vectors u  and v . 

 

(iii) Let u  and v  be spacelike vectors in 
3

1IR  and they 

span a spacelike vector subspace. Then there is a unique 

real number 0   such that   , cosu v u v , 

and this number is called the spacelike angle between 

the vectors u  and v . 

 

(iv) Let u  be a spacelike vector and v  be a timelike 

vector in 
3

1IR . Then there is a unique real number 

0   such that   , sinhu v u v , and this 

number is called the Lorentzian timelike angle between 

the vectors u  and v . 

 

An arbitrary curve ( )s   in 
3

1IR  can locally be 

spacelike, timelike, or lightlike (null), if all of its 

velocity vectors d ds  are spacelike, timelike, or 

lightlike (null), respectively. A surface in Lorentzian 

space 
3

1IR  is called a spacelike (timelike, or lightlike) 

surface if the normal vector of the surface is a timelike 

(spacelike, or lightlike) vector, respectively [19].  

 

The spheres in the space 
3

1IR  are three types and can be 

defined as follows: 

 

The Lorentzian and hyperbolic unit spheres are given by  

  2 3

1 1 2 3 1, , 1  , :S u u u IR   u u u  

and 

  2 3

0 1 2 3 1, , : ,  1u u uH IR    u u u  

respectively, where 
2

1S  is a timelike surface and 
2

0H  is 

a spacelike surface. Lastly, the light cone is given by 

  2 3

1 2 3 1, 0  , : ,u u u IR    u u u  

where 
2  is a lightlike surface [19, 24]. 

Let S  be a timelike surface and ( )s   be any 

arbitrary curve lying on the surface .S  Then, the curve 

  has causal characters, namely,   is either spacelike, 

timelike or lightlike.  

 

When   is a timelike curve, Darboux frame denoted 

by  , ,T g n  of   is a solid perpendicular trihedron 

in 
3

1IR  associated with each point M  , where T  

is the unit tangent timelike vector to the curve  , n  is 

the unit normal spacelike vector to the timelike surface 

S  and   g n T  (that is, g  is tangential to S  

which is also a spacelike vector) at the point .M  Then, 

the Lorentzian vector product and inner product of the 

unit vectors are given as follows: 

 

,  T g n  , g n T    n T g  

and 

, 1 T T , , 1g g , , 1n n . 

 

Let s  be arc length of the timelike curve  . In this 

case, the derivative formulae (the equations of motion) 

of the Darboux frame (trihedron) is given by 

 

,  0

0

 

0 g n

g g

n g

k k
d

k
ds

k

d

ds




    
    

     
        



T T

g

n

m
T g

n

 

 

where the vector m  is the position vector of the point 

M  that depends on the choice of the coordinate 

system. Further, the position vector corresponding to an 

arbitrary trajectory curve on a surface in 
3

1IR  can have 

three causal characters. Hence, we express that m  is 

either spacelike, timelike or lightlike position vector. 

The components of the vector m  are obtained from the 

measurement along the axes of the coordinate system. 

In these formulae, 
gk , 

nk  and 
g  are called the 

geodesic curvature, the normal curvature and the 

geodesic torsion, respectively. It can be easily shown 

that the geodesic curvature 
gk , the normal curvature 

nk  and the geodesic torsion 
g  of the timelike curve 

  are given by  

/ ,gk d ds T g , / ,nk d ds T n , 

/ ,g d ds   g n . 

The Darboux instantaneous rotation vector of the 

Darboux trihedron is given by 

  g n gk k  T g n  [24]. 
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Then, for a timelike curve ( )s  lying on a timelike 

surface S , the followings are well-known [24]:  

(i) ( )s  is a geodesic curve 0gk  , 

(ii) ( )s  is an asymptotic line 0nk  , 

(iii) ( )s  is a principal line 0g  . 

 

3. The Forward Kinematics of Rolling Contact 

Motion 

 

In this section, we study the forward kinematics of 

rolling contact of timelike surfaces along their timelike 

trajectory curves by adopting the Darboux frame 

method in Lorentzian 3-space. The main contribution of 

this section is that a new equation of the angular 

velocity of the spin-rolling motion of a timelike moving 

surface is generated. The new equation is specified with 

regards to three unit vectors and geometric invariants, 

which are arc lengths of the timelike contact trajectory 

curves and the induced curvatures of the two timelike 

surfaces. 

 

3.1. The Kinematics of Spin-Rolling Motion 

 

In this subsection, we present the geometric kinematics 

of the spin-rolling motion of two contact timelike 

surfaces along their timelike trajectory curves. Note that 

during the rolling motion, both of the two timelike 

surfaces have the coincident spacelike unit normal 

vectors at the contact point. When a timelike moving 

surface relative to fixed surface undergo spin-rolling 

motion without sliding as in Figure 1, the moving 

surface entirely maintains its timelike surface character 

at every moment. This means that the timelike moving 

surface has the spacelike unit normal not only at the 

contact point, but also at every point on the moving 

surface during the rolling contact. 

 
Figure 1.  A timelike moving surface 

2S  spin-rolling 

on a timelike fixed surface 
1S  along timelike curves   

and .  

Now, assume that   and   are timelike contact 

trajectory curves on timelike surfaces 
1S  and 

2S , 

respectively. Let us denote the Darboux frames (the 

right handed orthonormal frames) attached to the 

contact point M of   and   as  , ,T g n  and 

 , , ,T g n  respectively. The vectors T , g , n  and T , 

g , n  are the unit vectors of the timelike fixed and 

timelike moving surfaces, respectively and there is not 

any intrinsic coordinate system for these vectors. By 

rolling constraints, the vectors T  and T  are always 

collinear and, hereby, are n  and n . For this reason, the 

two frames are coincident, as shown in Figure 1, where 

n  points outward of the surface 
1S , and n  points 

inward of the surface 
2S . Suppose the arc lengths of 

the curves   and   are s  and s , respectively. Then 

the derivative formulas of the Darboux frames  , ,T g n  

and  , ,T g n  are 

 

,  0

0

 

0 g n

g g

n g

k k
d

k
ds

k

d

ds




    
    

     
        



T T

g

n

m
T g

n

 

and  

,  0

0

 

0 g n

g g

n g

k k
d

k
ds

k

d

ds




    
    

     
    

    



T T

g

n

m
T g

n

, 

 

where m  and m  are the position vectors of the point 

M  with respect to the Darboux frames  , ,T g n  and 

 , ,T g n , respectively. Both m  and m  have three 

causal characters. Now, assume that P  is an arbitrary 

point on 
2S . Then the (spacelike, timelike or lightlike) 

position vector, denoted by p ,  of the point P  in the 

frame  , ,T g n  can be given as 

 

1 2 3     p m T g n . 

 

By differentiating p  with respect to s  we have 

1
2 3

2
1 3

3
1 2

1

,

g n

g g

n g

dd
k k

ds ds

d
k

ds

d
k

ds


 


  


  

 
    
 

 
   
 

 
   
 

p
T

        g

        n

          (3.1) 
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where gk , 
nk  and 

g  are the geodesic curvature, the 

normal curvature, and the geodesic torsion at point M  

of the timelike curve  , respectively. Since P  is a 

fixed point on the surface of 
2S , then 0

d

ds


p
. By 

putting this equality into equation (3.1) yields 

 

1 2
2 3 1 31, ,g n g g

d d
k k k

ds ds

 
            

3
1 2n g

d
k

ds


     . 

 

Let p  denote the (spacelike, timelike or lightlike) 

position vector of the point P  in the frame  , ,T g n . 

Then 

1 2 3     p m T g n . 

 

By differentiating p  with respect to s  we have 

1
2 3

2
1 3

3
1 2

1

,

g n

g g

n g

dd
k k

ds ds

d
k

ds

d
k

ds


 


  


  

 
    
 

 
   
 

 
   
 

p
T

        g

        n

                 (3.2) 

 

where 
gk , 

nk  and 
g  are the geodesic curvature, the 

normal curvature, and the geodesic torsion at point M  

of the timelike curve  , respectively. The vector p  

has three causal characters and, thus, 
d

ds

p
 has three 

causal characters. By the constraints for rolling contact, 

two timelike contact trajectory curves have the same arc 

lengths at the contact point. Since the Darboux frames 

 , ,T g n  and  , ,T g n  are coincident at the contact 

point, it follows that  

 

1 1 2 2 3 3, ,         

and consequently 

3 31 1 2 2, ,
d dd d d d

ds ds ds ds ds ds

    
                  (3.3) 

 

By substituting Eqs. (3.1) and (3.3) into Eq. (3.2), we 

have 

   

 

2 3 1 3

1 2 ,

g n g g

n g

d
k k k

ds

k

    

  

   

 

     

  

p
T g

        n

    (3.4) 

where  

g g gk k k   , 
n n nk k k   .g g g         (3.5) 

The scalars gk 
, 

nk 
 and g


 are called induced geodesic 

curvature, induced normal curvature, and induced 

geodesic torsion, respectively. In Euclidean 3-space, for 

the Darboux trihedron and the induced curvatures, see 

[9,11]. 

 

3.2.  Darboux Frame Based Equation of Spin-Rolling 

Motion 

 

From the Eq. (3.4), the velocity of an arbitrary point P  

on the timelike moving surface 
2S  in terms of time t  

can be obtained as 

 

2 3

1 3

1 2

( )

( )

( )

P g n

g g

n g

d ds
k k

ds dt

k

k

  

   

   

 

 

 

   

  

  

p
v T

                    g

                    n

         (3.6) 

where ds dt   is the magnitude of the rolling 

velocity. Note that 
Pv  has three causal characters. This 

equation gives the Darboux frame based translational 

velocity equation of an arbitrary point.  Assume that the 

angular velocity of 
2S  relative to the fixed surface 

1S  

is 

x y z     T g n .                (3.7) 

 

When the vector
1 2 3MP     r T g n   is also given, 

then the velocity 
P MP v r  of the point P  is 

obtained as 

 

3 2 3 1

1 2

( ) ( )

( ) .

P y z x z

y x

      

  

   

 

v T g

      n
   (3.8) 

 

By comparing Eq. (3.6) with Eq. (3.8), we have 

, ,x g y n z gk k             

 

and by putting these equalities into (3.7), we obtain the 

angular velocity of 
2S  as 

 

( )g n gk k       T g n               (3.9) 

 

In Eq. (3.9), the angular velocity   has three terms. 

The first two terms give the pure-rolling velocity about 

an axis in the timelike tangent plane at the contact point 

and the third term gives the velocity of spin motion 

about the spacelike unit normal direction at the contact 

point in Lorentzian 3-space. Then, the pure-rolling 

velocity is given by g nk   T g  and the velocity 
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of spin motion is given by gk n . As a result, the 

timelike moving surface can follow the desired 

trajectory timelike curve on the timelike fixed surface 

by the help of these three terms. We should note that a 

pure-rolling motion does not have spin-rolling motion in 

the direction of the unit spacelike normal of the timelike 

surfaces. Then we give the following results: 

 

Corollary 3.1. When two timelike surfaces undergo 

pure-rolling motion in Lorentzian 3-space, the geodesic 

curvatures of the two corresponding contact trajectory 

timelike curves have to be equal, that is, 
g gk k . 

 

Corollary 3.2. Suppose the contact trajectory timelike 

curves   and   are geodesic curves on timelike 

surfaces 
1S  and 

2S , respectively. Then the rolling 

motion is a pure-rolling motion in Lorentzian 3-space. 

 

3.3. Examples 

 

In this subsection, two examples are given to understand 

the rolling contact motion of two timelike surfaces 

along their timelike trajectory curves in Lorentzian 3-

space. The first example demonstrates how the spin-

rolling motion of a Lorentzian unit cylinder on a 

timelike plane occurs. The second example 

demonstrates the pure-rolling motion of a Lorentzian 

unit sphere on a timelike cylinder of radius 1

2
. 

 

3.3.1. Spin-rolling Motion of a Lorentzian Unit 

Cylinder on a Timelike Plane 

 

Assume that a Lorentzian unit cylinder (surface
2S ) 

rolls without sliding on a timelike plane (surface 
1S ) at 

a contact point M  along the timelike curves   and   

as in Figure 2. Suppose timelike curves   and   are 

parameterized by arc lengths s  and s , respectively. 

Let denote the Darboux frames (the right handed 

orthonormal frames) attached to the contact point M of 

the curves   and   as  , ,T g n  and  , ,T g n , 

respectively. Let the parametrization of timelike plane 

be 

( , ) ( ,1, )x u v v u , 

 

and let   be a timelike ellipse lying on the timelike 

plane parameterized as 

 ( ) ( ), ( ) ( 1 cosh ,1,2sinh )t x u t v t t t     . 

 

The derivative of arc length s  with respect to t  is 

 

2, 1 3cosh
ds d d

t
dt dt dt

   
  . 

The unit timelike tangent vector d ds T  of the 

curve   is obtained as 

 

2

1
(sinh ,0,2cosh ).

1 3cosh
t t

t



T     (3.10) 

 

We consider that the unit spacelike normal vector n  

points outward and it is obtained as 

 

(0, 1,0).u v

u v


  



x x
n

x x
             (3.11) 

 

The unit spacelike vector   g n T  (tangential to 

the surface 
2S ) is obtained as 

 

2

1
( 2cosh ,0, sinh ).

1 3cosh
t t

t
  


g    (3.12) 

 

From the Lorentzian inner product of (3.10) (3.12) and 

their derivatives with respect to s , the geodesic 

curvature, the normal curvature, and the geodesic 

torsion of the timelike curve   are obtained as  

 

2 3/2

2
, ,

(1 3cosh )

, 0,

, 0,

g

n

g

ds
k d dt

dt t

ds
k d dt

dt

ds
d dt

dt


 
  




  



   


T g

T n

g n

    (3.13) 

 

respectively. Then, the curve   is both a principal line 

and an asymptotic line. Let the parameterization of the 

Lorentzian unit cylinder (see Figure 2) be 

 

( , ) ( ,cosh ,sinh )y u v v u u  . 

 

Suppose   is a timelike u  parametric curve 

(namely, a Lorentzian unit circle) lying on the 

Lorentzian unit cylinder parameterized as 

 

( ) ( ,0) (0,cosh ,sinh )u y u u u    

 

where 
0 0v v  . Since the differentiation of arc 

length s  of the curve   with respect to u  is 

1
ds d

du du
 


, it can be clearly seen that   is a unit-

speed curve. The unit timelike tangent vector T  of the 

curve   is given by 
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(0,sinh ,cosh )u uT                  (3.14) 

 

Assume that the unit spacelike normal vector n  points 

inward and it is obtained as  

(0, cosh , sinh )u v

u v

u u


    


y y
n

y y
       (3.15) 

 

The unit spacelike vector g , which is tangential to the 

surface 
2S , is obtained as 

( 1,0,0)    g n T .                (3.16) 

 

From the Lorentzian inner product of (3.14) (3.16) and 

their derivatives with respect to s , the geodesic 

curvature, the normal curvature, and the geodesic 

torsion of the timelike curve   are obtained as  

 

, 0,

, 1,

, 0,

g

n

g

ds
k d du

du

ds
k d du

du

ds
d du

du



  




   



   


T g

T n

g n

             (3.17) 

 

respectively. Then the curve   is both a principal line 

and a geodesic line. Substituting (3.13) and (3.17) into 

(3.5), we have 
2 3/2

2

(1 3cosh )
gk

t

 


, 1nk   , 

0.g
   Then, from (3.9), the angular velocity of the 

Lorentzian unit cylinder is obtained as 

2 3/2

2

(1 3cosh )t

 

  
 

g n             (3.18) 

The coordinate of the center point P  of the unit 

cylinder in the frame  , ,T g n  at a point M  is origin. 

From Darboux frame based translation equation (3.6) 

and (3.8), the velocity of point P  is 

P MP   v r T , 

where 
MP r n . After the information is used from the 

velocity equation to control the timelike moving surface 

to follow the desired trajectory timelike curve   lying 

on the fixed timelike surface, a brief discussion is 

provided. The moving surface has 2 DOFs. At any 

instant, the first term   of (3.18) gives the angular 

velocity about the axis that is perpendicular to the 

Lorentzian unit cylinder. The second term gives the 

information about how fast the unit cylinder spins to 

follow the curve  . In Figure 2 (a) and Figure 2 (b), 

we clearly show how the spin-rolling motion occurs for 

a Lorentzian unit cylinder on a timelike plane at 0t   

and 1t  , respectively. In this example, we see that the 

Lorentzian unit cylinder can always undergo spin-

rolling motion on the timelike plane, that is, the spin-

rolling motion is not restricted. 

 
Figure 2. Spin-rolling of a Lorentzian unit cylinder on a timelike plane along timelike curves   and .  
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3.3.2. Pure-rolling Motion of a Lorentzian Unit 

Sphere on a Timelike Cylinder of Radius 1/ 2  

 

Suppose a Lorentzian unit sphere 
2

1S  (surface
2S ) rolls 

without sliding on a timelike cylinder of radius 1/ 2  

(surface 
1S ) at a contact point M  along timelike 

curves   and   as in Figure 3.  

 

Assume that the parametric equation of the timelike 

cylinder with radius 
1

2
 is given by 

 

1 cos sin 2 sin
( , ) , ,

2 3 3 3 2 3

v u v u v
x u v

 
   
 

 

which is generated by rotating the surface 

1

1 cos sin
( , ) , ,

2 2

v v
x u v u

 
  
 

 around x  axis 

(spacelike axis) with the hyperbolic angle 

1 2
cosh

3

  
 
 

 in the negative direction, and let 

   ( ), ( ) ,x u t v t x t t    be a timelike helix curve 

lying on the timelike cylinder parameterized as 

 

1 cos sin 2 sin
( ) , ,

2 3 3 3 2 3

t t t t t
t

 
   
 

. 

 

The derivative of arc length s  with respect to t  is 

obtained as 

3
,

2

ds d d

dt dt dt
 

  . 

 

The unit timelike tangent vector ( , )t tT T  of the 

curve   is obtained as 

2 sin 1 cos 2 cos
, ,

23 3 3 3 2 3

t t t 
   

 
T         (3.19) 

 

Consider that the unit spacelike normal vector 

( , )t tn n  is outward. In this case, we have 

2sin sin
cos , ,

3 3

t t
t

 
  
 

n                   (3.20) 

 

The unit spacelike vector ( , )t t   g n T g  

(tangential to the surface 
1S ) is obtained as 

2 1 4cos 1 cos
sin , ,

3 2 3 3

t t
t
    

  
 

g         (3.21) 

 

From the Lorentzian inner product of (3.19) (3.21) and 

their derivatives with respect to s , the geodesic 

curvature, the normal curvature, and the geodesic 

torsion of the timelike helix curve   lying on a 

timelike cylinder are obtained as 

2 4
0, , ,

3 3
g n gk k                     (3.22) 

respectively. Then, the curve   is a geodesic curve.  

 

Now, let parameterize the Lorentzian unit sphere 
2

1S  as 

( , ) (cos cosh ,sin cosh ,sinh )y u v v u v u u . 

 

Suppose   is a timelike u  parametric curve (that is, 

a Lorentzian unit circle) lying on 
2

1S  parameterized as 

 

( ) ( ,0) (cosh ,0,sinh )u y u u u   . 

where 0v  . Since the derivative of s  with respect to 

u  is 1
ds d

du du
 


, it is clearly seen that   is a 

unit-speed curve. The unit timelike tangent vector T  of 

the curve   is given by 

(sinh ,0,cosh )
d

u u
du

 T
 .           (3.23) 

 

Assume that the unit spacelike normal vector n  of 
2

1S  

is inward (points origin). Then we have 

( cosh ,0, sinh )u v

u v

u u


    


y y
n

y y
.    (3.24) 

 

The unit spacelike vector   g n T , which is 

tangential to the surface 
2S , is obtained as 

 0,1,0g .                        (3.25) 

 

From the Lorentzian inner product of (3.23) (3.25) and 

their derivatives with respect to s , the geodesic 

curvature, the normal curvature, and the geodesic 

torsion of the timelike curve   are obtained as 

 

0, 1, 0,g n gk k                  (3.26) 

respectively. It is clearly seen that the curve   is both a 

principal line and a geodesic line. Substituting (3.22) 

and (3.26) into (3.5), we have 0gk  , 
5

3
nk   , 

4
.

3
g
    From (3.9), the angular velocity of the 

Lorentzian unit sphere is obtained as 
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4 5

3 3

 

  
 

T g . 

In Figure 3 (a) and Figure 3 (b), we clearly show how 

the pure-rolling motion occurs for a Lorentzian unit 

sphere on a timelike cylinder of radius 1/ 2  at 0t   

and 1,t   respectively. In this study, we consider that 

x   and y   axes are spacelike axes, and z  axis is 

timelike axis. For this reason, the rolling contact motion 

is not restricted in Lorentzian 3-space. In this example, 

we obviously observe that the Lorentzian unit sphere 

can always undergo pure-rolling motion, namely, there 

is not any restriction for this rolling contact. 

 
Figure 3. Pure-rolling of a Lorentzian unit sphere on a timelike cylinder along timelike curves   and .  

 

Consequently, we can see that this method is expressed 

with regards to geometric invariants that can be easily 

applied to arbitrary timelike parametric surfaces and 

timelike curves. 

 

4.  Conclusion 

 

In this study, we established a new Darboux frame 

method to investigate the forward kinematics of the 

instantaneous spin-rolling motion and pure-rolling 

motion between the timelike moving surface and the 

timelike fixed surface through the contact point in 

Lorentzian 3-space. We remarked that the moving 

surface always maintains its causal character during a 

rolling motion. The forward kinematics of the moving 

surface was determined by the magnitude of rolling 

velocity   and induced curvatures ,gk
 ,nk

 and g


. 

The result was given with regards to geometric 

invariants that can be easily generalized to arbitrary 

timelike parametric surfaces and timelike contact 

curves. 
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