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Abstract
In this study, we define three new type ruled surfaces obtained by using the evolution of involute-evolute
curve pair in Euclidean 3-space. Then, we give some nice results for the Gaussian curvature and the mean
curvature of these surfaces. Moreover, considering the given involute-evolute curve pair, the graphics of
these new type surfaces were drawn with the help of Mathematica.
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1. Introduction
The theory of surface in three dimensional Euclidean space is widely used in different branches of science,

particularly mathematics (differential geometry, topology, Partial Differential Equations (PDEs)), theoretical physics
(string theory, general theory of relativity), graphic design and different branches of engineering. One of the most
important of these surfaces is the ruled surfaces obtained by the movement of a line along the curve [1]. Also,
various researches have been made considering the characterization of the ruled surfaces, their geometrical and
algebraic properties [2, 3, 7, 8]. Curves theory is also an important research subject of differential geometry like
surfaces. Many studies have been done on the evolution of curves, the geometric characterization of curves and the
evolution of inelastic plane curves [9–13, 29]. Many researchers have studied ruled surfaces and surfaces from these
curves. For example, in the Euclidean space, the evolution of special ruled surfaces, evolution of translation surfaces,
special ruled surfaces using quasi frame and ruled surfaces using a modified orthogonal frame were examined
[14–21, 28]. One of the important curve pairs of curve theory is involute-evolute curves. In 1658, the concept of
involute was first mentioned by Christian Huyhens, who conducted research in the field of Optics [22, 23]. Caliskan
and Bilici gave some properties for the involute-evolute curve pair using Frenet frame in Euclidean 3-space [24].
In addition, the pair of involute-evolute curves was investigated in different spaces by using different frames in
[5, 6, 25–27].

The paper is organized as follows. In Sec. 2 we first introduce the notations that we are going to use and give
a brief summary of basic definitions and theorems related with curves and surfaces theory in Euclidean 3-space.
Moreover, we mention about intrinsic equations of a moving space curve in E3. Then, in the last section, we give
some definitions of new type ruled surfaces obtained by using the evolution of involute-evolute curve pair in
Euclidean 3-space. Also, we give some nice results for the Gaussian curvature and the mean curvature of these
surfaces. Finally, as an application, considering on a given involute-evolute curve pair, we plot the graphics of these
new type surfaces using Mathematica.

2. Preliminaries
In this section, we would like to give a brief summary of basic definitions, facts and equations in the theory of

curves and surfaces in Euclidean 3-space (see for more detail, [1, 2, 7]).
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Let E3 denotes the three-dimensional Euclidean space, i.e., the real vector space R3 endowed with the Riemann
metric

〈, 〉 = dξ21 + dξ22 + dξ23 ,

where (ξ1, ξ2, ξ3) is rectangular coordinate system of E3. Thus, the norm of a vector u ∈ E3 is ‖u‖ =
√
< u, u >.

Also, for an arbitrary curve α in E3, if ‖α′(s)‖ = 1, then the curve α is called as a unit speed curve. Now, let
α be a unit speed curve ( or parametrized by arc-length parameter s ) in Euclidean 3-space, E3. We denote by
{T (s), N(s), B(s)} the moving Frenet frame along the curve α. Then T , N and B the tangent, the principal normal
and the binormal vector of the curve α, respectively. Thus the following Frenet formulas hold

Ts = κN,

Ns = −κT + τB,

Bs = −τN

where κ is the curvature, τ is the torsion.

Definition 2.1. Let α and α∗ be any two curves in Euclidean 3-space, E3 corresponding with Frenet frames {T,N,B}
and {T ∗, N∗, B∗}, respectively. If 〈T, T ∗〉 = 0, then the curve α is called as involute of the curve α∗ and also the
curve α∗ is called as evolute of the curve α [1].

This definition suffices to define this curve mate as

α(s) = α∗(s) + λ(s)T ∗(s), (2.1)

where λ(s) = c− s, c ∈ R, [1]. Now, we would like to give some obtained relationship between involute-evolute
curve pairs as following:

Theorem 2.1. [3] Let α and α∗ be the involute-evolute curves with the Frenet frame {T,N,B} and {T ∗, N∗, B∗}, respectively.
Then, the relationship between the Frenet frames of the curves α and α∗ is

T = N∗,

N =
1√

κ∗2 + τ∗2
(−κ∗T ∗ + τ∗B∗) ,

B =
1√

κ∗2 + τ∗2
(τ∗T ∗ + κ∗B∗) .

Theorem 2.2. [3] Let α and α∗ be the involute-evolute curves with the Frenet frames {T,N,B} and {T ∗, N∗, B∗}, respec-
tively. Then, the relationship between the curvature and the torsion of the curves α and α∗ is

κ =

√
κ∗2 + τ∗2

|(−s+ c)|κ∗
,

τ =
κ∗τ∗s − κ∗sτ∗

(−s+ c)κ∗
(
κ∗2 + τ∗2

)
where c is a real constant and s is the arc-length parameter.

Now, let Π be a simply-connected domain in the plane, E2 and ϕ : Π −→ E3 be an immersion in E3. If ϕ (s, v) is
a parametrization of surface in E3, then the normal vector field of the surface is given by as

U =
ϕs ∧ ϕv
‖ϕs ∧ ϕv‖

, (2.2)

where ϕs =
∂ϕ

∂s
and ϕv =

∂ϕ

∂v
. The first fundamental form of the surface ϕ (s, t) is given by

I = 〈dϕ, dϕ〉 = Eds2 + 2Fdsdv +Gdv2,

where the coefficients of the first fundamental form are

E = 〈ϕs, ϕs〉 , F = 〈ϕs, ϕv〉 , G = 〈ϕv, ϕv〉 . (2.3)
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The second fundamental form of the surface ϕ (s, v) is given by

II = 〈dϕ, dU〉 = eds2 + 2fdsdv + gdv2,

where
e = 〈ϕss, U〉 , f = 〈ϕsv, U〉 , g = 〈ϕvv, U〉 . (2.4)

Moreover, the Gaussian curvature and the mean curvature of the surface ϕ (s, v) are defined by

K =
eg − f2

EG− F 2
and H =

1

2

Eg − 2Ff +Ge

EG− F 2
, (2.5)

respectively. As in the Euclidean 3-space, the surfaces with vanishing Gaussian curvature are called flat and the
surfaces with vanishing mean curvature are called minimal. Moreover, the surfaces with zero Gaussian curvature
are named as developable surface.

2.1 Intrinsic equations of a moving space curve
In this section, we would like to mention about the evolution of a moving space curve in Euclidean 3-space

and so we give the intrinsic equations expressing with curvatures of it corresponding with moving Frenet frame
{T,N,B}, [13]. Let α be a moving space curve described in parametric form by a position vector α (s, t) in Euclidean
3-space where s is the arc-length parameter and t is the time parameter. Thus, the moving Frenet frame {T,N,B}
of the curve with respect to s and t can be written in matrix form as follows:

 T
N
B


s

=

 0 κ 0
−κ 0 τ
0 −τ 0

 T
N
B

 and

 T
N
B


t

=

 0 ν η
−ν 0 µ
−η −µ 0

 T
N
B

 . (2.6)

Here ν, η and µ are some smooth functions of s and t. Now, by using the compatible conditions Tst = Tts, Nst = Nts
and Bst = Bts, one can obtain 0 (κt − νs + τη) (ηs − κµ+ τν)

− (κt − νs + τη) 0 (τt − µs − κη)
− (ηs − κµ+ τν) − (τt − µs − κη) 0

 = 03x3.

From here, the compatibility conditions become

κt = νs − τη,
τt = µs + κη,
ηs = κµ− τν.

As a result, the curvatures of the evolving curve are given as

κt = νs − τη, (2.7a)

τt =

(
ηs + τν

κ

)
s

+ κη. (2.7b)

Thus, according to the Frenet frame, these equations represent the motion of the curve [13].

3. On Evolution of Some Special Type Ruled Surfaces

As well knowing, a surface, which can be swept by moving a line in space, is called as a ruled surface [4]. So it
has a parameterization given by the following form

ϕ (s, v) = α(s) + vr (s) , (3.1)

where α(s) is called the base curve, r(s) is the director curve and s, v parameters, u ∈ I ⊂ R, v ∈ R. By moving
with time t the curves α(s) and r(s), one can get the evolution equation of the ruled surface given as

ϕ (s, v, t) = α(s, t) + vr (s, t) . (3.2)

Now we would like to give the following definition:
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Definition 3.1. [16] A surface of evolution ϕ (s, v, t) and its flow
∂ϕ

∂t
are said to be inextensible if its first fundamental

quantities {E,F,G} satisfies
∂E

∂t
=
∂F

∂t
=
∂G

∂t
= 0. (3.3)

Let {α, α∗} be involute-evolute curve pairs in E3 defined as in Definition 2.1. In this section, we would like to
investigate some properties of the evolution of three different type ruled surfaces arising from the choose of the
director r(s) by the following:

3.1 Associated Tangent Ruled Surface
Let us consider on a ruled surface generated by the motion of the tangent vector T ∗ = r(s) of evolute curve α∗,

called as the associated tangent ruled surface ϕT . So from (3.2), the evolution equation of this surface is rewrite as

ϕT (s, v, t) = α(s, t) + vT ∗ (s, t) . (3.4)

Then, we have

ϕT s (s, v, t) = (1 + vκ∗)N∗(s, t), (3.5a)
ϕT v (s, v, t) = T ∗(s, t) (3.5b)

where the subscripts s and v represent partial derivatives of the associated tangent ruled surface ϕT . By substituting
the above equations into (2.2), the unit normal vector field of this surface is calculated by

UT =
ϕT s ∧ ϕT v
‖ϕT s ∧ ϕT v‖

= −B∗(s, t). (3.6)

On the other hand, by considering (3.5) in (2.3), we obtain the coefficients of the first fundamental form of the
associated tangent ruled surface ϕT as

ET = (1 + vκ∗)
2
, FT = 0 and GT = 1. (3.7)

By considering the above coefficients into the Eq. 3.3, one can see that the associated tangent ruled surface is
inextensible if

κ∗ = −1

v
or κt = 0. (3.8)

Furthermore, by deriving of equations given in (3.5), one can get

ϕT ss (s, v, t) = −κ∗ (1 + vκ∗)T ∗(s, t) + vκ∗sN
∗(s, t) + τ∗ (1 + vκ∗)B∗(s, t), (3.9a)

ϕT sv (s, v, t) = κ∗N∗(s, t), (3.9b)
ϕT vv (s, v, t) = 0. (3.9c)

From the equations (2.4), (3.6) and (3.9), the coefficients of the second fundamental form of the normal surface are
given by

eT = −τ∗ (1 + vκ∗) , fT = 0 and gT = 0. (3.10)

Proposition 3.1. The Gaussian curvature and the mean curvature of the associated tangent ruled surface ϕT are

KT = 0 and HT =
−τ∗

2 (1 + vκ∗)
, (3.11)

respectively.

Proof. By substituting (3.7) and (3.10) into (2.6), one can readily obtain the Gaussian curvature and the mean
curvature of ϕT as above.

Remark 3.1. 1. The associated tangent ruled surface ϕT is developable.

2. The associated tangent ruled surface ϕT is minimal surface if τ∗ = 0.
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3.2 Associated Normal Ruled Surface
Secondly, we will take r(s) = N∗. So, we consider on the ruled surface generated by the motion of the principal

normal vector N∗ of involute curve α∗, called as the associated normal ruled surface ϕN . As defining of (3.4), one
can rewritten the evolution equation of this surface as following

ϕN (s, v, t) = α(s, t) + vN∗ (s, t) . (3.12)

Then, we have

ϕNs (s, v, t) = −vκ∗T ∗(s, t) +N∗(s, t) + vτ∗B∗(s, t), (3.13a)
ϕNv (s, v, t) = N∗(s, t), (3.13b)

respectively. In addition, by using (2.2), we obtain

UN = − τ∗√
κ∗2 + τ∗2

T ∗(s, t)− κ∗√
κ∗2 + τ∗2

B∗(s, t). (3.14)

Now by combining (3.13) with (2.3), we get

EN = 1 + v2
(
κ∗2 + τ∗2

)
, FN = 1 and GN = 1. (3.15)

Now, considering these coefficients into the Eq. 3.3, one can see that the associated normal ruled surface is
inextensible if

κ∗κ∗t + τ∗τ∗t = 0. (3.16)

By deriving of the equations in (3.13), we get

ϕNss (s, v, t) = (−κ∗ − vκ∗s)T ∗(s, t)− v
(
κ∗2 + τ∗2

)
N∗(s, t) + (τ∗ + vτ∗s )B∗(s, t), (3.17a)

ϕNsv (s, v, t) = −κ∗T ∗(s, t) + τ∗B∗(s, t), (3.17b)
ϕNvv (s, v, t) = 0. (3.17c)

By combining (3.14) and (3.17) with (2.4), we obtain

eN =
v (κ∗sτ

∗ − κ∗τ∗s )√
κ∗2 + τ∗2

, fN = 0 and gN = 0. (3.18)

Proposition 3.2. The Gaussian curvature and the mean curvature of the associated normal ruled surface ϕN are given by

KN = 0 and HN =
(κ∗sτ

∗ − κ∗τ∗s )

2 (κ∗2 + τ∗2)
3
2

,

respectively.

Proof. By substituting (3.15) and (3.18) into the equations (2.6), we directly obtain the Gaussian curvature and the
mean curvature of a normal ruled surface ϕN as above.

From these equations, the following result is obvious.

Remark 3.2. 1. The associated normal ruled surface ϕN is developable.

2. The associated normal ruled surface ϕN is minimal surface if κ
∗

τ∗ is constant and τ∗ 6= 0.

3.3 Associated Binormal Ruled Surface
Finally, we will take r(s) = B∗. Thus, we will consider on the ruled surface generated by the motion of the

binormal vector B∗ of involute curve α∗, called as the associated binormal ruled surface ϕB . As defining of (3.4),
one can rewritten the evolution equation of this surface as following

ϕB (s, v, t) = α(s, t) + vB∗(s, t). (3.19)
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Then, we have
ϕBs (s, v, t) = (1− vτ∗)N∗(s, t),
ϕBv (s, v, t) = B∗(s, t).

(3.20)

Morever, by using (2.2), we get the unit normal field of this surface as

UB =
ϕBs ∧ ϕBv
‖ϕBs ∧ ϕBv‖

= T ∗(s, t). (3.21)

By combining (3.20) with (2.3), then we obtain

EB = (1− vτ∗)2 , FB = 0 and GB = 1. (3.22)

Now, by considering these coefficients into the Eq. 3.3, one can see that the associated binormal ruled surface is
inextensible if

τ∗ = −1

v
or τt = 0. (3.23)

From the equation (3.20), the second derivative is found and given as

ϕBss (s, v, t) = −κ∗ (1− vτ∗)T ∗(s, t)− vτ∗N∗(s, t) + τ∗ (1− vτ∗)B∗(s, t), (3.24a)
ϕBsv (s, v, t) = −τ∗N∗(s, t), (3.24b)
ϕBvv (s, v, t) = 0. (3.24c)

By substituting (3.21) and (3.24) into (2.4), then we get

eB = −κ∗ (1− vτ∗) , fB = 0 and gB = 0. (3.25)

Proposition 3.3. For the binormal ruled surface ϕB , the Gaussian and mean the curvatures are

KB = 0 and HB = − κ∗

2 (1− vτ∗)
,

respectively.

Proof. By substituting (3.22) and (3.25) into (2.6), one can readily obtain the Gaussian curvature and the mean
curvature of ϕB as above.

From these equations, the following result is obvious.
Remark 3.3. 1. The associated binormal ruled surface ϕB is developable.

2. The associated binormal ruled surface ϕB is minimal surface if κ∗ = 0.

4. Applications

Example 4.1. Let α and α∗ be the involute-evolute curves as defined in (2.1). By considering the unit speed curve
α (s) : (−π, π)→ E3 given by

α (s) =
3

4

(
cos (s) +

cos (3s)

9
, sin (s) +

sin (3s)

9
,
−2 cos (s)√

3

)
, (4.1)

we have the Frenet apparatus of the curve α is given by
T = 3

4

(
− sin (s)− sin(3s)

3 , cos (s) + cos(3s)
3 , 2 sin(s)√

3

)
,

N =
(
−
√
3 cos(2s)

2 ,−
√
3 sin(2s)

2 , 12

)
, B =

(
3 cos(s)−cos(3s)

4 , sin (s)
3
,
√
3 cos(s)

2

)
,

κ =
√

3 cos (s) , τ =
√

3 sin (s)

 .

By taking c = 1 in (2.1) and considering (4.1), we get the involute curve α∗ of α such that

α∗ (s) =

 1
12 (9 cos (s) + cos (3s) + 3 (−1 + s) (3 sin (s) + sin (3s))) ,

1
12 (3 (1− s) (3 cos (s) + cos 3s) + 9 sin (s) + sin (3s)) ,

−
√
3
2 (cos (s) + (−1 + s) sin (s)) .

 . (4.2)
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Figure 1. The curve α as in (4.1) given with in green and the involute curve α∗ as in (4.2) given with in red.

Figure 2. The graph of associated tangent ruled surface ϕT as in (4.4) with s ∈ (2, 10) and v ∈ (−1, 1).

(See Fig. 1). So, the Frenet apparatus {T ∗, N∗, B∗, κ∗, τ∗} of the curve α∗ is given by


T ∗ =

(
−
√
3 cos(2s)

2 ,−
√
3 sin(2s)

2 , 12

)
,

N∗ = (sin(2s), cos(2s), 0) , B∗ =
(

cos(2s)
2 , sin(2s)2 ,

√
3
2

)
κ∗ = sec s

(s−1) , τ
∗ = sec s√

3(s−1)

 . (4.3)

Now by considering the curve α and the Frenet vectors {T ∗, N∗, B∗} of the involute curve α∗ as defined above
into (3.4), (3.12) and (3.19), respectively, then the parametric equations of the associated tangent ruled surface,
associated normal ruled surface and associated binormal ruled surface are obtained by

ϕT (s, v) =

(
3

4
(cos (s) +

cos (3s)

9
)− v

√
3 cos(2s)

2
,

3

4
(sin (s) +

sin (3s)

9
)− v

√
3 sin(2s)

2
,
−
√

3 cos (s)

2
+
v

2

)
, (4.4)

ϕN (s, v) =

(
3

4
(cos (s) +

cos (3s)

9
) + v sin(2s),

3

4
(sin (s) +

sin (3s)

9
) + v cos(2s),

−
√

3 cos (s)

2

)
, (4.5)

and

ϕB (s, v) =

(
3

4
(cos (s) +

cos (3s)

9
) +

v cos(2s)

2
,

3

4
(sin (s) +

sin (3s)

9
) +

v sin(2s)

2
,
−
√

3 cos (s)

2
+
v
√

3

2

)
, (4.6)

respectively. Now, we would like to give some explicit examples of the associated ruled surfaces in E3:
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Figure 3. The graph of associated normal ruled surface ϕN as in (4.5) with s ∈ (2, 10) and v ∈ (−1, 1).

Figure 4. The graph of associated binormal ruled surface ϕB as in (4.6) with s ∈ (2, 10) and v ∈ (−1, 1).
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