On some bounded operators and their characterizations in Γ-Hilbert space

Ashoke DAS ${ }^{1 \text { (}}$ (D), Sahin Injamamul ISLAM ${ }^{1, *}$ (D)
${ }^{1}$ Raiganj University, Department of Mathematics, West Bengal/ INDIA

Abstract

Some bounded operators are part of this paper.Through this paper we shall obtain common properties of Some bounded operators in Γ-Hilbert space. Also, introduced 2 -self-adjoint operators and it's spectrum in Γ-Hilbert Space. Characterizations of these operators are also part of this literature.

Article info

History:
Received: 03.06.2020
Accepted: 03.12.2020

Keywords:

Γ-Hilbert Space, Selfadjoint Operator, Normal operator, Positive operator, 2-Self-adjoint operator and Spectrum.

1. Introduction and Preliminaries

Inner product plays an important role in advance Mathematics. Γ-Hilbert space opened the scope of defining Inner product in many way and in many cases where Inner product is not defined. Γ-Hilbert space plays an important role in generalization of general linear quadretic control problem in an abstract space[1] which was motivated by the work of L.Debnath and Pitor Mikusinski[2] but there is not enough literature found to study the operators of Γ-Hilbert space. The definition of Γ-Hilbert space was introduced by Bhattacharya D.K. and T.E. Aman in their paper " Γ-Hilbert space and linear quadratic control problem" in 2003[1].
Now we will extend this work by defining some operators and their characterizations in Γ-Hilbert space .At first we recall the definitions of Γ-Hilbert space.

Definition 1.1: Let E , Γ be two linear spaces over the field F. A mapping $\langle., \ldots\rangle:, E \times \Gamma \times E \rightarrow \mathbb{R}$ is called a Γ-Inner product on E if
(i) $\langle., .$,$\rangle is linear in each variable.$
(ii) $\langle u, \gamma, v\rangle=\langle v, \gamma, u\rangle \forall u, v \in E$ and $\gamma \in \Gamma$.
(iii) $\langle u, \gamma, u\rangle>0 \forall \gamma \neq 0$ and $u \neq 0$.
$[(E, \Gamma),\langle., .\rangle$,$] is called a \Gamma$-inner product space over F.
A complete Γ-inner product space is called Γ-Hilbert Space.

Using the Γ-Inner product ,we may define three types of norm in a Γ-Hilbert Space, namely (1) γ-Norm
(ii) $\Gamma_{\text {inf }}$-Norm and (iii) Γ-Norm.

Definition 1.2 :If we write $\|u\|_{\gamma}{ }^{2}=\langle u, \gamma, u\rangle$ for $u \in H$ and $\gamma \in \Gamma$ then $\|u\|_{\gamma}{ }^{2}$ satisfy all the conditions of Norm, then it is called γ-Norm.
Definition 1.3:If we define $\|u\|_{\Gamma i n f}=\inf \left\{\|u\|_{\gamma}: \gamma \in \Gamma\right\}$.Clearly $\Gamma_{\text {inf }}$-Norm satisfy all the condition of the Norm for $u \in H$.
Definition 1.4: If we if write $\|u\|_{\Gamma}=\left\{\|u\|_{\gamma}: \gamma \in \Gamma\right\}$ then this Norm is called the Γ-Norm of the Γ-Hilbert Space.

[^0]
2. Materials and Results

2.1 Self- adjoint operator on Γ-Hilbert space:

Let A be a bounded operator on Γ-Hilbert spaceand we denote it by H_{Γ}. Then the operator A^{*} : $\mathrm{H}_{\Gamma} \rightarrow \mathrm{H}_{\Gamma}$ defined by
$\langle A x, \gamma, y\rangle=\left\langle x, \gamma, A^{*} y\right\rangle \quad \forall x, y \in H_{\Gamma}$ and $\gamma \in \Gamma$
is called the adjoint operator of A .
If $\mathrm{A}=A^{*}$ then A is called self-adjoint of H_{Γ}.

Properties:

Theorem 2.1.1 : Let A be a bounded operator on Γ-Hilbert space H_{Γ}.Then the operators $\mathrm{T}_{1}=A^{*} A$ and $\mathrm{T}_{2}=$ $A+A^{*}$ are self-adjoint.

Proof: For all $x, y \in H_{\Gamma}$, we have

$$
\begin{aligned}
\left\langle T_{1} x, \gamma, y\right\rangle= & \left\langle A^{*} A x, \gamma, y\right\rangle \\
& =\langle A x, \gamma, A y\rangle \\
& =\left\langle x, \gamma, T_{1} y\right\rangle \text { where } \gamma \in \Gamma . \\
\text { And }\left\langle T_{2} x, \gamma, y\right\rangle & =\left\langle\left(A+A^{*}\right) x, \gamma, y\right\rangle \\
& =\left\langle x, \gamma,\left(A+A^{*}\right)^{*} y\right\rangle \\
& =\left\langle x, \gamma,\left(A+A^{*}\right) y\right\rangle \\
& =\left\langle x, \gamma, T_{2} y\right\rangle \quad \text { where } \gamma \in \Gamma .
\end{aligned}
$$

So T_{1} and T_{2} are self-adjoint.
Note: But $A-A^{*}$ is not self-adjoint.
If we take $T_{3}=A-A^{*}$ then for all $x, y \in H_{\Gamma}$, we have

$$
\begin{aligned}
\left\langle T_{3} x, \gamma, y\right\rangle=\left\langle\left(A-A^{*}\right) x, \gamma, y\right\rangle & =\left\langle x, \gamma,\left(A-A^{*}\right)^{*} y\right\rangle \\
& =\left\langle x, \gamma,\left(A^{*}-A\right) y\right\rangle \\
& =\left\langle x, \gamma,-\left(A-A^{*}\right) y\right\rangle \\
& =\left\langle x, \gamma,-T_{3} y\right\rangle
\end{aligned}
$$

So T_{3} is not self-adjoint.
For example, if we consider a 2×2 matrix A which is complex such that

$$
\mathrm{A}=\left(\begin{array}{ll}
i & i \\
i & 1
\end{array}\right)
$$

Then clearly that $A-A^{*}$ is not self -adjoint .

Theorem 2.1.2: If the product of two self -adjoint operators in a Γ-Hilbert space is self-adjoint if and only if the operators commute.

Proof: Let A and B be self adjoint operators. Then for all $x, y \in H_{\Gamma}$, we have

$$
\begin{aligned}
\langle A B x, \gamma, y\rangle & =\langle B x, \gamma, A y\rangle \\
& =\langle x, \gamma, B A y\rangle \text { Where } \gamma \in \Gamma .
\end{aligned}
$$

Thus, if $A B=B A$, then $A B$ is self-adjoint. Conversely , if $A B$ is self-adjoint,then the above implies

$$
A B=(A B)^{*}=B A .
$$

Theorem 2.1.3: Let T be a self -adjoint operator on a Γ-Hilbert space H_{Γ}. Then

$$
\|T\|_{\gamma}=\sup _{\|x\|_{\gamma}=1}^{\text {Sup }}|\langle T x, \gamma, x\rangle| \text { where } \gamma \in \Gamma .
$$

Proof:Let $\mathrm{M}={ }_{\|x\|_{\gamma}=1}^{\text {Sup }}|\langle T x, \gamma, x\rangle|$ where $\gamma \in \Gamma$.

$$
\text { If }\|x\|_{\gamma}=1 \text { then }
$$

$$
\begin{aligned}
|\langle T x, \gamma, x\rangle| & \leq\|T x\|\|\gamma\|\|x\| \\
& \leq\|T x\| \\
& \leq\|T\|\|x\| \\
& \leq\|T\|_{\gamma}
\end{aligned}
$$

Thus $\mathrm{M} \leq\|T\|_{\gamma}$
On the other hand $x, z \in H_{\Gamma}$, we have -

$$
\begin{aligned}
\langle T(x+z), \gamma, x+z\rangle-\langle T(x-z), \gamma, x-z\rangle & =2(\langle T x, \gamma, z\rangle+\langle T z, \gamma, x\rangle) \\
& =4 \operatorname{Re}\langle T x, \gamma, z\rangle[\text { Since } \mathrm{T} \text { is self-adjoint operator] }
\end{aligned}
$$

Therefore ,

$$
\begin{aligned}
\operatorname{Re}\langle T x, \gamma, z\rangle & \leq \frac{M}{4}\left(\|x+z\|_{\gamma}{ }^{2}+\|x-z\|_{\gamma}{ }^{2}\right) \\
& =\frac{M}{2} \quad\left(\|x\|_{\gamma}{ }^{2}+\|z\|_{\gamma}{ }^{2}\right) \ldots \ldots \ldots \ldots \ldots .(2) \text { [by parallelogram law] }
\end{aligned}
$$

Now Suppose $\|x\|_{\gamma} \leq 1$ and $\|z\|_{\gamma} \leq 1$. Then it follows that $\operatorname{Re}\langle T x, \gamma, z\rangle \leq M$.
If $\langle T x, \gamma, z\rangle=r e^{i \theta}$ for $r \geq 0$ and $\theta \in \mathbb{R}$, then let $x_{0}=e^{-i \theta} x$, So that $\left\|x_{0}\right\|_{\gamma}=\|x\|_{\gamma} \leq 1$.
And

$$
\begin{aligned}
|\langle T x, \gamma, z\rangle| & =r \\
& =\left\langle T x_{0}, \gamma, z\right\rangle \\
& =\operatorname{Re}\left\langle T x_{0}, \gamma, z\right\rangle \\
& \leq M
\end{aligned}
$$

Taking Supremum over all $x, z \in H_{\Gamma}$ with $\|x\|_{\gamma} \leq 1,\|z\|_{\gamma} \leq 1$, we obtain

$$
\begin{equation*}
\|T\|_{\gamma} \leq M \tag{3}
\end{equation*}
$$

Combinding (1) and (3) we get, $\quad\|T\|_{\gamma}=M$.
Hence prove the theorem.
Note: Above theorem does not hold if T is not a self-adjoint operator as we cannot write

$$
2(\langle T x, \gamma, z\rangle+\langle T z, \gamma, x\rangle)=4 \operatorname{Re}\langle T x, \gamma, z\rangle .
$$

2.2 Normal operator:- A bounded operator T of a Γ-Hilbert space H_{Γ} is called a Normal operator if It commutes with its adjoint that is $T T^{*}=T^{*} T$.

Theorem 2.2.1: A bounded operator T is Normal if and only if $\|T x\|_{\gamma}=\left\|T^{*} x\right\|_{\gamma}$ for all $x \in H_{\Gamma}$ and $\gamma \in \Gamma$.

Proof: For all $x \in H_{\Gamma}$ and $\gamma \in \Gamma$, we have-

$$
\begin{aligned}
\left\langle T^{*} T x, \gamma, x\right\rangle & =\left\langle T x, \gamma, T^{*} x\right\rangle \\
& =\|T x\|_{\gamma}{ }^{2}
\end{aligned}
$$

If T is normal, then we have-

$$
\begin{aligned}
\left\langle T^{*} T x, \gamma, x\right\rangle & =\left\langle T T^{*} x, \gamma, x\right\rangle \\
& =\left\langle T^{*} x, \gamma, T^{*} x\right\rangle \\
& =\left\|T^{*} x\right\|_{\gamma}{ }^{2}
\end{aligned}
$$

And thus $\|T x\|_{\gamma}=\left\|T^{*} x\right\|_{\gamma}$.
Now assume that $\|T x\|_{\gamma}=\left\|T^{*} x\right\|_{\gamma}$ for all $x \in H_{\Gamma}$ and $\gamma \in \Gamma$. Then By preceding argument we have$\left\langle T T^{*} x, \gamma, x\right\rangle=\left\langle T^{*} T x, \gamma, x\right\rangle$ for all $x \in H_{\Gamma}$ and $\gamma \in \Gamma$.

So we can write -

$$
T T^{*}=T^{*} T .
$$

Note: The condition $\|T x\|_{\gamma}=\left\|T^{*} x\right\|_{\gamma}$ for all $x \in H_{\Gamma}$ and $\gamma \in \Gamma$ is much stronger than $\|T\|_{\gamma}=\left\|T^{*}\right\|_{\gamma}$.

Theorem 2.2.2: If T is a Normal operator on H_{Γ}, then $\left\|T^{n}\right\|_{\gamma}=\|T\|_{\gamma}{ }^{n}$ for all $\mathrm{n} \in N$ and $\gamma \in \Gamma$.
Proof:From previous discussion we have- $\left\|T^{n}\right\|_{\gamma} \leq\|T\|_{\gamma}{ }^{n}$ for any bounded operator T.
To show that $\left\|T^{n}\right\|_{\gamma} \geq\|T\|_{\gamma}{ }^{n}$ we fix x such that $\|x\|_{\gamma}=1$ and use induction to show that

$$
\left\|T^{n} x\right\|_{\gamma} \geq\|T x\|_{\gamma}{ }^{n} \ldots \ldots \ldots \ldots \ldots . . \text { (i) } \quad \text { for all } n \in N .
$$

Clearly (i) holds for $\mathrm{n}=1$. If $T x=0$,then the inequality is trivially satisfied for all $n \in N$.

Assuming that $T x \neq 0$ and that holds for $n=1,2 \ldots, m$. First we see that-

$$
\begin{aligned}
\left\|T^{2} x\right\|_{\gamma} & =\left\|T^{*} T x\right\|_{\gamma} \\
& \geq\left\langle T^{*} T x, \gamma, x\right\rangle \\
& =\|T x\|_{\gamma}{ }^{2}[\text { by theorem 2.1.3 and theorem 2.2.1] } \\
\left\|T^{2} x\right\|_{\gamma} & \geq\|T x\|_{\gamma}{ }^{2} \ldots \ldots \ldots \ldots . . . \text { (ii) }
\end{aligned}
$$

Now from (ii) and the inductive assumption, we have-

$$
\begin{gathered}
\left\|T^{m+1} x\right\|_{\gamma}=\|T x\|_{\gamma}\left\|^{m} \frac{T x}{\|T x\|_{\gamma}}\right\|_{\gamma} \geq\|T x\|_{\gamma}\left\|T \frac{T x}{\|T x\|_{\gamma}}\right\|_{\gamma}{ }^{m} \\
\quad=\|T x\|_{\gamma}{ }^{1-m}\left\|T^{2} x\right\|_{\gamma}{ }^{m} \\
\quad=\|T x\|_{\gamma}{ }^{1-m}\|T x\|_{\gamma}{ }^{2 m}{ }^{m+1}
\end{gathered}
$$

$$
\text { So, }\left\|T^{m+1} x\right\|_{\gamma} \geq\|T x\|_{\gamma}{ }^{m+1}
$$

This concludes the theorem .
Theorem 2.2.3: Let H_{Γ} be a Γ-Hilbert space and $\mathrm{A} \in B L\left(H_{\Gamma}\right)$ where A be a bounded linear operator on H_{Γ}. Then
A is unitary if and only if $\|A(x)\|_{\gamma}=\|A x\|_{\gamma}$ for all $x \in H_{\Gamma}, \gamma \in \Gamma$ and A is Surjective. In that Case, $\left\|A^{-1}(x)\right\|_{\gamma}=\|x\|_{\gamma}$ for all $x \in H_{\Gamma}, \gamma \in \Gamma$ and also $\|A\|_{\gamma}=1=\left\|A^{-1}\right\|_{\gamma}$.
2.3. Positive operators: This is an important sub-class of self-adjoint operators to which we now turn.

Definition 2.3.1 : A self-adjoint operator A on a Γ-Hilbert space H_{Γ} over K is said to be positive if $\langle A(x), \gamma, x\rangle \geq 0 \forall x \in H_{\Gamma}$ and $\gamma \in \Gamma$.

Then we write $A \geq 0$. If A and B are self-adjoint operators and $A-B \geq 0$, then we write $A \geq B$ or $B \leq A$. The relation \geq on the set of all self-adjoint operators on H_{Γ} is a partial order.

Example 2.3.2:Let K be a positive continuous function defined on $[a, b] \times \Gamma \times[a, b]$.The integral operator T of H_{Γ} on $L^{2}([a, b])$ defined by $(T x)(s)=\int_{a}^{b} K(s, t) x(t) d t \quad$ is positive.
Indeed we have, $\langle T x, \gamma, x\rangle=\int_{a}^{b} \int_{a}^{b} K(x, t) x(t) \gamma \overline{x(t)} d t d s$

$$
=\int_{a}^{b} \int_{a}^{b} K(x, t)|x(t)|^{2} \gamma d t d s
$$

Hence $\langle T x, \gamma, x\rangle \geq 0$ for all $x \in L^{2}([a, b])$ and $\gamma \in \Gamma$.

Properties 2.3.3: Let A and B be two operators on H_{Γ}. Then-
(i) $\quad A+B$ is a positive operator on H_{Γ}.
(ii) The composition operator AB may not be a positive operator.

We will prove property (ii) by an example
Example 2.3.4: Let $H_{\Gamma}=K^{2}$ where K^{2} is scalar field of real number or complex number of two Dimension and

$$
\begin{aligned}
& A(x(1), \gamma, x(2))=(x(1)+x(2), \gamma, x(1)+2 x(2)), \\
& B(x(1), \gamma, x(2))=(x(1)+x(2), \gamma, x(1)+x(2))
\end{aligned}
$$

Where $\gamma \in \Gamma$.
Then
$A B(x(1), \gamma, x(2))=\left(2 x(1)+2 x(2), \gamma, 3 x(1)+3 x(2)\right.$ for all $(x(1), \gamma, x(2)) \in K^{2}$
Here note that A and B are positive operators. But AB is not a positive operator since it is not
Self-adjoint operator if $x=(-4,3)$ then $\langle A B(x), \gamma, x\rangle=-1$. So we can conclude that is A and B are Positive operators and $\mathrm{AB}=\mathrm{BA}$ then AB is a Positive Operator.
(iii) Each orthogonal Projection is a positive operator.

Proof: Let Y be a closed subspace of H_{Γ} and let P denote the orthogonal projection onto Y. For $i=1,2$, consider $x_{i} \in H_{\Gamma}, x_{i}=y_{i}+z_{i}$ with $y_{i} \in Y$ and $z_{i} \in Y^{\perp}$, so that $\mathrm{P}\left(x_{i}\right)=y_{i}$. Then

$$
\left\langle P\left(x_{1}\right), \gamma, x_{2}\right\rangle=\left\langle y_{1}, \gamma, y_{2}+z_{2}\right\rangle \quad \text { Where } \gamma \in \Gamma .
$$

$$
\begin{aligned}
& =\left\langle y_{1}, \gamma, y_{2}\right\rangle \\
& =\left\langle y_{1}+z_{1}, \gamma, y_{2}\right\rangle \\
& =\left\langle x_{1}, \gamma, P\left(x_{2}\right)\right\rangle, \text { So that } \mathrm{P} \text { is self-adjoint. }
\end{aligned}
$$

Since $\left\langle P\left(x_{1}\right), \gamma, x_{1}\right\rangle=\left\langle y_{1}, \gamma, y_{1}\right\rangle \geq 0$ for all $x_{1} \in H_{\Gamma}$ and $\gamma \in \Gamma$. Clearly
P is a positive operator.

2.4. 2 -Self adjoint operator on Γ-Hilbert space

Definition 2.4.1:Let $T_{\gamma} \in B L\left(H_{\Gamma}\right)$. We say that T_{γ} is a 2 -self adjoint operator defined on H_{Γ} if and Only if $T_{\gamma}{ }^{2}=T_{\gamma}{ }^{* 2}$. The class of a 2-self adjoint operator defined on H_{Γ} is denoted by 2-Se $\left(H_{\Gamma}\right)$.

Example2.4.2: Let T_{γ} : $H_{\Gamma} \rightarrow H_{\Gamma}$ and H_{Γ} is any complex Γ-Hilbert space, which is defined as follows $T_{\gamma} x=5 i x$ for all $x \in H_{\Gamma}$. Then $T_{\gamma} \in 2-\operatorname{Se}\left(H_{\Gamma}\right)$.

It is clear that if T_{γ} is self adjoint operator then $T_{\gamma} \in 2-\operatorname{Se}\left(H_{\Gamma}\right)$. However T_{γ} in this example is not Self-adjoint operator.

Note: From definition we have $T_{\gamma} \in 2-\operatorname{Se}(H)$ if and only if $T_{\gamma}{ }^{*} \in 2-S e(H)$.
Proposition2.4.3: Let $T_{\gamma}, S_{\gamma} \in \mathrm{BL}\left(\mathrm{H}_{\Gamma}\right)$, if $T_{\gamma}, S_{\gamma} \in 2-\mathrm{Se}\left(\mathrm{H}_{\Gamma}\right)$ then the following statements are true:
(i) If $T_{\gamma} S_{\gamma}=S_{\gamma} T_{\gamma}$ then $T_{\gamma} S_{\gamma}$ as well as $S_{\gamma} T_{\gamma} \in 2-\operatorname{Se}\left(H_{\Gamma}\right)$.
(ii) If $\left(T_{\gamma}+S_{\gamma}\right) \in 2-S e\left(H_{\Gamma}\right)$ if and only if $\operatorname{Im}\left(S_{\gamma} T_{\gamma}\right)=-\operatorname{Im}\left(T_{\gamma} S_{\gamma}\right)$

Proof: (i) We have $\left(T_{\gamma} S_{\gamma}\right)^{2}=\mathrm{T}_{\gamma}{ }^{2} \mathrm{~S}_{\gamma}{ }^{2}$

$$
\begin{aligned}
& =\mathrm{T}_{\gamma}{ }^{* 2} \mathrm{~S}_{\gamma}{ }^{* 2} \\
& =\mathrm{T}_{\gamma}{ }^{2} \mathrm{~S}_{\gamma}{ }^{2 *} \\
& =\left(\mathrm{S}_{\gamma}{ }^{2} \mathrm{~T}^{2}\right)^{*} \\
& =\left(\mathrm{S}_{\gamma} \mathrm{T}_{\gamma}\right)^{2 *} \\
& =\left(\mathrm{T}_{\gamma} \mathrm{S}_{\gamma}\right)^{* 2}
\end{aligned}
$$

Which implies that $T_{\gamma} S_{\gamma}$ and $S_{\gamma} T_{\gamma}$ are in $2-\mathrm{Se}\left(H_{\Gamma}\right)$.
(ii) Suppose that $\mathrm{T}_{\gamma}+\mathrm{S}_{\gamma} \in 2-\mathrm{Se}\left(\mathrm{H}_{\Gamma}\right)$ then

$$
\left(\mathrm{T}_{\gamma}+\mathrm{S}_{\gamma}\right)^{2}=\left(\mathrm{T}_{\gamma}{ }^{*}+\mathrm{S}_{\gamma}{ }^{*}\right)^{2} \text { and }\left(\mathrm{T}_{\gamma}+\mathrm{S}_{\gamma}\right)^{2}=\mathrm{T}_{\gamma}{ }^{2}+\mathrm{T}_{\gamma} \mathrm{S}_{\gamma}+\mathrm{S}_{\gamma} \mathrm{T}_{\gamma}+\mathrm{S}_{\gamma}{ }^{2}
$$

Also, $\left(\mathrm{T}_{\gamma}{ }^{*}+\mathrm{S}_{\gamma}{ }^{*}\right)^{2}=\mathrm{T}_{\gamma}{ }^{* 2}+\mathrm{T}_{\gamma}{ }^{*} \mathrm{~S}_{\gamma}{ }^{*}+\mathrm{S}_{\gamma}{ }^{*} \mathrm{~T}_{\gamma}{ }^{*}+\mathrm{S}_{\gamma}{ }^{* 2}$

$$
=\mathrm{T}_{\gamma}{ }^{* 2}+\left(\mathrm{T}_{\gamma} \mathrm{S}_{\gamma}\right)^{*}+\left(\mathrm{S}_{\gamma} \mathrm{T}_{\gamma}\right)^{*}+\mathrm{S}_{\gamma}{ }^{* 2}
$$

Which implies that $T_{\gamma} S_{\gamma}+S_{\gamma} T_{\gamma}=\left(S_{\gamma} T_{\gamma}\right)^{*}+\left(T_{\gamma} S_{\gamma}\right)^{*}$.
Hence $\operatorname{Im}\left(\mathrm{S}_{\gamma} \mathrm{T}_{\gamma}\right)=-\operatorname{Im}\left(\mathrm{T}_{\gamma} \mathrm{S}_{\gamma}\right)$.
Now if $\operatorname{Im}\left(S_{\gamma} T_{\gamma}\right)=-\operatorname{Im}\left(T_{\gamma} S_{\gamma}\right)$ then $\left(S_{\gamma} T_{\gamma}\right)-\left(S_{\gamma} T_{\gamma}\right)^{*}=-\left(T_{\gamma} S_{\gamma}\right)+\left(T_{\gamma} S_{\gamma}\right)^{*}$.
So, $\quad\left(T_{\gamma}+S_{\gamma}\right)^{2}=T_{\gamma}{ }^{2}+T_{\gamma} S_{\gamma}+S_{\gamma} T_{\gamma}+S_{\gamma}{ }^{2}$

$$
\begin{aligned}
& =T_{\gamma}^{* 2}+\left(S_{\gamma} T_{\gamma}\right)^{*}+\left(T_{\gamma} S_{\gamma}\right)^{*}+S_{\gamma}^{* 2} \\
& =\left(T_{\gamma}+S_{\gamma}\right)^{* 2}
\end{aligned}
$$

And

$$
T_{\gamma}+S_{\gamma} \in 2-\operatorname{Se}\left(H_{\Gamma}\right)
$$

Corollary2.4.4: $\operatorname{Let}_{\gamma} \in B L\left(H_{\Gamma}\right)$ be a self-adjoint operator on H_{Γ}, if λ is real or pure imaginary number then $\lambda T_{\gamma} \in 2-\operatorname{Se}\left(H_{\Gamma}\right)$.

2.5. Spectrum of 2-self adjoint operator:

In this section, we study the spectrum of 2 -self-adjoint operator defined on Γ-Hilbert space.
We denote the spectrum of 2-self adjoint operator of a Γ-Hilbert space by $\sigma\left(T_{\gamma}\right)$ which is a subset of \mathbb{R}.
Theorem 2.5.1: Let $T_{\gamma} \in 2-\operatorname{Se}\left(H_{\Gamma}\right)$ then $\sigma\left(T_{\gamma}\right) \subseteq \mathbb{R}$ or $\sigma\left(T_{\gamma}\right) \subseteq i \mathbb{R}$,where $i \mathbb{R}=\{i x: x \in \mathbb{R}\}$.
Proof: Suppose $\lambda \in \sigma\left(T_{\gamma}\right)$ and $\lambda=a+i b$ where a and b are real numbers.
Then by Spectrul mapping theorem we have-

$$
\lambda^{2} \in \sigma\left(T_{\gamma}^{2}\right)
$$

Therefore $\lambda^{2}=a^{2}+2 i a b-b^{2}$ is real number which implies that

$$
\begin{aligned}
2 i a b & =0 \\
\text { So, } a b & =0
\end{aligned}
$$

Hence $\lambda \in \mathbb{R}$ or $\lambda \in i \mathbb{R}$
Which leads $\sigma\left(T_{\gamma}\right) \subseteq \mathbb{R}$ or $\sigma\left(T_{\gamma}\right) \subseteq i \mathbb{R}$.
Proposition 2.5.2: Let $T_{\gamma} \in 2-\mathrm{Se}\left(H_{\Gamma}\right)$. If $\lambda \in \sigma\left(T_{\gamma}{ }^{2}\right)$ then λ is a real number.
Proof: Let $\lambda \in \sigma\left(T_{\gamma}{ }^{2}\right)$ then there exist $x(\neq 0) \in H_{\Gamma}$ Such that $T^{2} x=\lambda x$, therefore

$$
\begin{aligned}
\langle\lambda x & , \gamma, x\rangle=\left\langle T^{2} x, \gamma, x\right\rangle \\
& =\left\langle x, \gamma, T^{* 2} x\right\rangle \\
= & =\left\langle x, \gamma, T^{2} x\right\rangle \\
= & \langle x, \gamma, \lambda x\rangle \\
= & \bar{\lambda}\langle x, \gamma, x\rangle
\end{aligned}
$$

Which implies

$$
(\lambda-\bar{\lambda})\langle x, \gamma, x\rangle=0 \text { and } \lambda=\bar{\lambda} .
$$

Theorem 2.5.3: $\operatorname{Let} T_{\gamma} \in 2-\operatorname{Se}\left(H_{\Gamma}\right)$, if T_{γ} is invertable operator then $T_{\gamma}{ }^{-1} \in 2-\operatorname{Se}\left(H_{\Gamma}\right)$.
Proof:

$$
\begin{aligned}
\left(T_{\gamma}{ }^{-1}\right)^{2}=\left(T_{\gamma}{ }^{2}\right)^{-1} & \\
& =\left(T_{\gamma}{ }^{* 2}\right)^{-1} \\
& =\left(\left(T_{\gamma}{ }^{*}\right)^{-1}\right)^{2} \\
& =\left(\left(T_{\gamma}{ }^{-1}\right)^{*}\right)^{2}
\end{aligned}
$$

Then $T_{\gamma}{ }^{-1} \in 2-\operatorname{Se}\left(H_{\Gamma}\right)$.
Corollary 2.5.4: If $T_{\gamma}-\lambda \in 2-\operatorname{Se}\left(H_{\Gamma}\right)$ for all $\lambda \neq \sigma\left(T_{\gamma}\right)$ and $\gamma \in \Gamma$, then $\left(T_{\gamma}-\lambda\right)^{-1} \in 2-\operatorname{Se}\left(H_{\Gamma}\right)$.
Proposition 2.5.5: $\operatorname{If} T_{\gamma} \in 2-\mathrm{Se}\left(H_{\Gamma}\right), \gamma \in \Gamma$ and $T_{\gamma}{ }^{2}$ or $T_{\gamma}{ }^{* 2}$ is onto then

$$
\text { (i)Range }\left(T_{\gamma}\right)=\operatorname{Range}\left(T_{\gamma}{ }^{*}\right)
$$

(ii) $\quad T_{\gamma}$ and $T_{\gamma}{ }^{*}$ are invertible operators.

3. Conclusion

Here we work with two linear spaces. As a result of this study any one can introduce a new linear finite dimensional operator and their characterizations in Γ-Hilbert space. Further we will experiment on more new operators and inequalities of Γ-Hilbert space and extend our work on this topic.

Acknowledgment

Second author would like to acknowledge Mr. Rabiul Islam for his precious suggestion and cooperation to writing this paper.

Conflicts of interest

The authors state that there is no financial interests or non financial interests in the subject matter or materials discussed in the manuscript.

References

[1] Aman T.E. and Bhttacharya D.K., Г-Hilbert Space and linear quadratic control problem,. Rev. Acad. Canar. Cienc; XV(Nums. 1-2)(2003)107-114.
[2] Debnath L., Piotr Mikusinski. Introduction to Hilbert Space with applications, ,3rd ed, USA: Elsevier, 2005; 158-175.
[3] Limaye.B V., Functional Analysis, 2nd ed., Delhi: New age International(p) Limited, 1996; 460-465.
[4] Lahiri B.K., Elements Of Functional Analysis, .5th ed., Calcutta: The World Press, 2000.
[5] Kreyszig E., Introductory Fuctional Analysis with applications, John Wiley and Sons, 1978; ch 3.
[6] Sadiq Al-N., On 2-self-adjoint operators, Mathematical Theory and Modeling, 6(3)(2016) 125-128.
[7] Jibril A.A.S, On 2- normal operators, Dirasat, 23 (1996).
[8] Alabiso C., Ittay Weiss.A primer on Hilbert Space Theory , 1st ed., Switzerland: Springer, 2015; 158-159.
[9] Conway J B., A Course in Functional Analysis, .2nd ed., USA: Springer, 1990:ch II.
[10] Young N., An Introduction to Hilbert Space, 14th printing, Cambridge:, Cambridge University Press, 1998; 21-23.
[11] Carlos S. Kubrusly.Spectral Theory of Bounded Linear Operators, New york,USA: Springer, 2012; Ch 1.
[12] Bryan P.Rynne and Martin A. Youngson. Linear Functional Analysis, 2nd ed., London: Springer, 2008: Ch 3.

[^0]: *Corresponding author. e-mail address: sahincool92@gmail.com
 http://dergipark.gov.tr/csj ©2020 Faculty of Science, Sivas Cumhuriyet University

