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Abstract 

Some bounded operators are part of this paper.Through this paper we shall obtain common 

properties of Some bounded operators in Г-Hilbert space. Also, introduced  2-self-adjoint 

operators and it’s spectrum  in Г-Hilbert Space. Characterizations of these operators are also 

part of this literature. 
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1. Introduction and Preliminaries 
 
Inner product  plays an important role in advance Mathematics. Г-Hilbert space opened the scope of defining 
Inner product in many way and in many cases where Inner product is not defined.  Г-Hilbert space plays an 
important role in generalization of general linear quadretic control problem in an abstract space[1] which was 
motivated by  the work of L.Debnath and Pitor Mikusinski[2] but there is not enough literature found to study 
the operators of  Г-Hilbert space. The definition of Г-Hilbert space was introduced by Bhattacharya  D.K.  
and T.E. Aman in their paper “Г-Hilbert space and linear quadratic control problem” in 2003[1]. 
Now we will extend this work by defining some operators and their characterizations   in Г-Hilbert space .At 
first we recall the definitions of Г-Hilbert space. 

 

Definition 1.1:  Let E, Г be two linear spaces over the field 𝐹. A mapping 〈. , . , . 〉: 𝐸 × Г × 𝐸 → ℝ is called  a 
Г-Inner product on 𝐸 if  

(i) 〈. , . , . 〉 is linear in each variable. 
(ii) 〈𝑢, 𝛾, 𝑣〉 = 〈𝑣, 𝛾, 𝑢〉 ∀ 𝑢, 𝑣 ∈ 𝐸 𝑎𝑛𝑑 𝛾 ∈ Г. 
(iii) 〈𝑢, 𝛾, 𝑢〉 > 0 ∀ 𝛾 ≠ 0 𝑎𝑛𝑑 𝑢 ≠ 0. 

 [(𝐸, Г), 〈. , . , . 〉] is called a Г-inner product space over 𝐹. 

A complete Г-inner product space is called  Г-Hilbert Space. 

 

Using the Г-Inner product ,we may define three types of norm in a Г-Hilbert Space, namely (1) 𝛾-Norm 

           (ii) Г𝑖𝑛𝑓-Norm and (iii) Г-Norm. 

Definition 1.2 :If we write ‖𝑢‖𝛾
2 = 〈𝑢, 𝛾, 𝑢〉 for 𝑢 ∈ 𝐻 and 𝛾 ∈ Г then ‖𝑢‖𝛾

2
 satisfy all the conditions  

                            of Norm,then it is called 𝛾-Norm. 

Definition 1.3 :If we define ‖𝑢‖Г𝑖𝑛𝑓
= inf {‖𝑢‖𝛾 ∶  𝛾 ∈  Г} .Clearly Г𝑖𝑛𝑓-Norm satisfy all the condition 

                            of the Norm for 𝑢 ∈ 𝐻.    

Definition 1.4 : If we if write ‖𝑢‖Г ={‖𝑢‖𝛾  : 𝛾 ∈ Г} then this Norm is called the  Г-Norm of the  

                            Г-Hilbert Space. 
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2.  Materials and Results  

2.1 Self- adjoint operator on Г-Hilbert space: 

Let A be a bounded operator on  Г-Hilbert spaceand we denote it by HГ.Then the operator 𝐴∗: HГ → HГ 
defined by   

〈𝐴𝑥, 𝛾, 𝑦〉 = 〈𝑥, 𝛾, 𝐴∗𝑦〉    ∀𝑥, 𝑦 ∈ 𝐻Г and 𝛾 ∈ Г 

 

 is called the adjoint operator of A. 

 

 If A=𝐴∗ then A is called self-adjoint of  𝐻Г. 

 

Properties: 

 

Theorem 2.1.1 : Let A be a bounded operator on   Г-Hilbert space 𝐻Г.Then the operators T1 = 𝐴∗ 𝐴 and T2 =
𝐴 + 𝐴∗ are self-adjoint. 

Proof:  For all 𝑥, 𝑦 ∈ 𝐻Г, we have 

〈𝑇1𝑥, 𝛾, 𝑦〉 = 〈𝐴∗𝐴𝑥, 𝛾, 𝑦〉 

                                                                          =〈𝐴𝑥, 𝛾, 𝐴𝑦〉 
                                                                          =〈𝑥, 𝛾, 𝑇1𝑦〉   where   𝛾 ∈ Г. 
 
                                                 And 〈𝑇2𝑥, 𝛾, 𝑦〉 = 〈(𝐴 + 𝐴∗)𝑥, 𝛾, 𝑦〉 
                                                                                = 〈𝑥, γ, (𝐴 + 𝐴∗)∗𝑦〉 
                                                                                = 〈 𝑥, 𝛾, (𝐴 + 𝐴∗)𝑦〉 
                                                                                =  〈𝑥, 𝛾, 𝑇2𝑦〉         where 𝛾 ∈ Г . 

So T1 and T2 are self –adjoint. 

Note:    But 𝐴 − 𝐴∗ is not self-adjoint. 

If we take 𝑇3 = 𝐴 − 𝐴∗ then for all 𝑥, 𝑦 ∈ 𝐻Г, we have 

                〈𝑇3𝑥, 𝛾, 𝑦〉 = 〈(𝐴 − 𝐴∗)𝑥, 𝛾, 𝑦〉= 〈𝑥, γ, (𝐴 − 𝐴∗)∗𝑦〉 
                                                                = 〈 𝑥, 𝛾, (𝐴∗ − 𝐴)𝑦〉 
                                                               = 〈 𝑥, 𝛾, −(𝐴 − 𝐴∗)𝑦〉 
                                                               =  〈𝑥, 𝛾, −𝑇3𝑦〉 

So 𝑇3  is not self-adjoint. 

For example, if we consider a 2 × 2 matrix  A which is complex such that 

                                                A=(
𝑖 𝑖
𝑖 1

). 

Then clearly that 𝐴 − 𝐴∗ is not  self -adjoint . 

 

Theorem 2.1.2: If the product of two self –adjoint operators in a Г-Hilbert space is self-adjoint if and  only if 
the operators commute. 

Proof: Let A and B be self adjoint operators. Then for all 𝑥, 𝑦 ∈  𝐻Г , we have 

                       〈𝐴𝐵𝑥, 𝛾, 𝑦〉 =  〈𝐵𝑥, 𝛾, 𝐴𝑦〉 

                                          =   〈𝑥, 𝛾, 𝐵𝐴𝑦〉  Where   𝛾 ∈ Г. 

Thus, if 𝐴𝐵 = 𝐵𝐴 , then 𝐴𝐵  is self-adjoint. Conversely ,if  𝐴𝐵  is self-adjoint,then the above implies 



 

856 
 

Das, Islam/Cumhuriyet Sci. J., 41(4) (2020) 854-861 
 

                                         𝐴𝐵 = (𝐴𝐵)∗  = 𝐵𝐴. 

 Theorem 2.1.3: Let T be a self –adjoint operator on a Г-Hilbert space𝐻Г. Then 

                                        ‖𝑇‖𝛾= |〈𝑇𝑥, 𝛾, 𝑥〉|‖𝑥‖𝛾=1
𝑆𝑢𝑝

 where 𝛾 ∈ Г. 

 

Proof:Let   M= |〈𝑇𝑥, 𝛾, 𝑥〉|‖𝑥‖𝛾=1
𝑆𝑢𝑝

 where 𝛾 ∈ Г. 

 

                                   If ‖𝑥‖𝛾 = 1 then 

|〈𝑇𝑥, 𝛾, 𝑥〉| ≤  ‖𝑇𝑥‖‖𝛾‖‖𝑥‖ 

   ≤  ‖𝑇𝑥‖ 

        ≤   ‖𝑇‖‖𝑥‖ 

    ≤   ‖𝑇‖𝛾 

 

Thus  M  ≤  ‖𝑇‖𝛾……………………….                                                                                                          (1) 

 

 On the other hand 𝑥, 𝑧 ∈ 𝐻Г  , we have – 

                              〈𝑇(𝑥 + 𝑧), 𝛾, 𝑥 + 𝑧〉 − 〈𝑇(𝑥 − 𝑧), 𝛾, 𝑥 − 𝑧〉 = 2(〈𝑇𝑥, 𝛾, 𝑧〉 + 〈𝑇𝑧, 𝛾, 𝑥〉) 

                                                                                               = 4 𝑅𝑒〈𝑇𝑥, 𝛾, 𝑧〉 [Since T is self-adjoint operator ] 

 

Therefore , 

                                        𝑅𝑒 〈𝑇𝑥, 𝛾, 𝑧〉 ≤
𝑀

4
 (‖𝑥 + 𝑧‖𝛾

2 +  ‖𝑥 − 𝑧‖𝛾
2
) 

 

                                                       =
𝑀

2
   (‖𝑥‖𝛾

2
+ ‖𝑧‖𝛾

2
)  ………………(2) [by parallelogram law] 

Now Suppose  ‖𝑥‖𝛾 ≤ 1 and ‖𝑧‖𝛾 ≤ 1 .Then it follows that   𝑅𝑒 〈𝑇𝑥, 𝛾, 𝑧〉 ≤ 𝑀.  

If  〈𝑇𝑥, 𝛾, 𝑧〉 = 𝑟𝑒𝑖𝜃 for 𝑟 ≥ 0  and 𝜃 ∈ ℝ , then let  𝑥0 = 𝑒−𝑖𝜃𝑥 ,  So that    ‖𝑥0‖𝛾 = ‖𝑥‖𝛾 ≤ 1.                  

                   And                                    |〈𝑇𝑥, 𝛾, 𝑧〉| = 𝑟 

                                                                             =  〈𝑇𝑥0, 𝛾, 𝑧〉 

                                                                             = 𝑅𝑒 〈𝑇𝑥0, 𝛾, 𝑧〉 

                                                                             ≤ 𝑀 

Taking Supremum over all 𝑥, 𝑧 ∈  𝐻Г with   ‖𝑥‖𝛾 ≤ 1 ,  ‖𝑧‖𝛾 ≤ 1 , we obtain  

                                                       ‖𝑇‖𝛾  ≤ 𝑀  .....................                        .(3) 

Combinding (1) and (3) we get,     ‖𝑇‖𝛾 = 𝑀. 

                                            Hence prove the theorem.  

Note: Above theorem does not hold if T is not a self-adjoint operator as we cannot write  

                            2(〈𝑇𝑥, 𝛾, 𝑧〉 + 〈𝑇𝑧, 𝛾, 𝑥〉)= 4 𝑅𝑒 〈𝑇𝑥, 𝛾, 𝑧〉. 

 

2.2 Normal operator:- A bounded operator T of a Г-Hilbert space 𝐻Г is called a Normal  operator 

                                    if It commutes with its adjoint that is T𝑇∗ = 𝑇∗𝑇 . 

 

Theorem 2.2.1: A bounded operator T is Normal if and only if  ‖𝑇𝑥‖𝛾 = ‖𝑇∗𝑥‖𝛾 for all 𝑥 ∈ 𝐻Г and  

                                          𝛾 ∈ Г. 
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Proof: For all 𝑥 ∈ 𝐻Г 𝑎𝑛𝑑 𝛾 ∈ Г , we have- 

〈𝑇∗𝑇𝑥, 𝛾, 𝑥〉 = 〈𝑇𝑥, 𝛾, 𝑇∗𝑥〉 

 

                                                                                         =‖𝑇𝑥‖𝛾
2
 

 

If T is normal, then we have- 

〈𝑇∗𝑇𝑥, 𝛾, 𝑥〉 = 〈𝑇𝑇∗𝑥, 𝛾, 𝑥〉 

                                                                                        = 〈𝑇∗𝑥, 𝛾, 𝑇∗𝑥〉 

                                                                                        = ‖𝑇∗𝑥‖𝛾
2
 

And thus ‖𝑇𝑥‖𝛾 = ‖𝑇∗𝑥‖𝛾 . 

 

Now assume that  ‖𝑇𝑥‖𝛾 = ‖𝑇∗𝑥‖𝛾 for all 𝑥 ∈ 𝐻Г 𝑎𝑛𝑑 𝛾 ∈ Г .Then By preceding argument we   have- 

                                              〈𝑇𝑇∗𝑥, 𝛾, 𝑥〉 =  〈𝑇∗𝑇𝑥, 𝛾, 𝑥〉 for all 𝑥 ∈ 𝐻Г 𝑎𝑛𝑑 𝛾 ∈ Г . 

 

So we can write - 

                                                                                𝑇𝑇∗ = 𝑇∗𝑇. 

 

Note: The condition ‖𝑇𝑥‖𝛾 = ‖𝑇∗𝑥‖𝛾 for all 𝑥 ∈ 𝐻Г 𝑎𝑛𝑑 𝛾 ∈ Г is much stronger than  

                                 ‖𝑇‖𝛾=‖𝑇∗‖𝛾 . 

 

Theorem 2.2.2 : If T is a Normal operator on 𝐻Г, then ‖𝑇𝑛‖𝛾=‖𝑇‖𝛾
𝑛

 for all n ∈ 𝑁 𝑎𝑛𝑑 𝛾 ∈ Г. 

 

Proof:From previous discussion  we have-  ‖𝑇𝑛‖𝛾 ≤ ‖𝑇‖𝛾
𝑛

 for any bounded operator T. 

 

To show that ‖𝑇𝑛‖𝛾 ≥ ‖𝑇‖𝛾
𝑛

 we fix 𝑥 such that ‖𝑥‖𝛾=1 and use induction to show that 

 

                                           ‖𝑇𝑛𝑥‖𝛾 ≥ ‖𝑇𝑥‖𝛾
𝑛

 ……………..(i)    for all 𝑛 ∈ 𝑁   . 

 

Clearly (i) holds for n=1. If 𝑇𝑥 = 0 ,then the inequality is trivially satisfied for all 𝑛 ∈ 𝑁   . 

 

Assuming that 𝑇𝑥 ≠ 0 and that holds for 𝑛=1,2…,𝑚. First we see that- 

 

‖𝑇2𝑥‖𝛾 = ‖𝑇∗𝑇𝑥‖𝛾 

                     ≥  〈𝑇∗𝑇𝑥, 𝛾, 𝑥〉 

                                                                                      = ‖𝑇𝑥‖𝛾
2
 [by theorem 2.1.3 and theorem 2.2.1] 

                                                                                   ‖𝑇2𝑥‖𝛾 ≥  ‖𝑇𝑥‖𝛾
2
…………..(ii) 

 

Now from (ii) and the inductive assumption , we have- 

       ‖𝑇𝑚+1𝑥‖𝛾 =  ‖𝑇𝑥‖𝛾 ‖𝑇𝑚 𝑇𝑥

‖𝑇𝑥‖𝛾
‖

𝛾
≥  ‖𝑇𝑥‖𝛾 ‖𝑇 

𝑇𝑥

‖𝑇𝑥‖𝛾
‖

𝛾

𝑚

 

                                                                                                       = ‖𝑇𝑥‖𝛾
1−𝑚‖𝑇2𝑥‖𝛾

𝑚
 

≥  ‖𝑇𝑥‖𝛾
1−𝑚‖𝑇𝑥‖𝛾

2𝑚
 

                                                                        =   ‖𝑇𝑥‖𝛾
𝑚+1
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                                                      So,‖𝑇𝑚+1𝑥‖𝛾 ≥ ‖𝑇𝑥‖𝛾
𝑚+1

 

This concludes the theorem . 

Theorem 2.2.3: Let 𝐻Г be a Г-Hilbert space and A ∈ 𝐵𝐿(𝐻Г) where A be a bounded  linear operator on 
𝐻Г .Then 

A is unitary if and only if  ‖𝐴(𝑥)‖𝛾 =  ‖𝐴𝑥‖𝛾  for all 𝑥 ∈ 𝐻Г , 𝛾 ∈ Г and A is Surjective. In that Case,   

  ‖𝐴−1(𝑥)‖𝛾= ‖𝑥‖𝛾  for all  𝑥 ∈ 𝐻Г, 𝛾 ∈ Г and also  ‖𝐴‖𝛾 = 1 = ‖𝐴−1‖𝛾 . 

 

2.3. Positive operators: This is an important sub-class of self-adjoint  operators to which we now turn. 

Definition 2.3.1 :  A self-adjoint operator A on a Г-Hilbert space  𝐻Г over K is said to be positive if  

〈𝐴(𝑥), 𝛾, 𝑥〉 ≥ 0 ∀ 𝑥 ∈ 𝐻Г and 𝛾 ∈ Г. 

 

Then we write  𝐴 ≥ 0. If  A and B  are self-adjoint operators and 𝐴 − 𝐵 ≥ 0, then we write  𝐴 ≥ 𝐵    or     𝐵 ≤ 𝐴 . 

The relation  ≥  on the set of all self-adjoint operators 𝑜𝑛 𝐻Г is a partial order. 

 

Example 2.3.2:Let K be a positive continuous function defined on [𝑎, 𝑏] × Г × [𝑎, 𝑏].The integral  operator T  
of  𝐻Г on 𝐿2([𝑎, 𝑏]) defined by    (𝑇𝑥)(𝑠) = ∫ 𝐾(𝑠, 𝑡)𝑥(𝑡)𝑑𝑡

𝑏

𝑎
     is positive. 

Indeed we have,    〈𝑇𝑥, 𝛾, 𝑥〉 = ∫ ∫ 𝐾(𝑥, 𝑡) 𝑥(𝑡) 𝛾  𝑥(𝑡)̅̅ ̅̅ ̅̅𝑏

𝑎

𝑏

𝑎
  𝑑𝑡 𝑑𝑠 

= ∫ ∫ 𝐾(𝑥, 𝑡)
𝑏

𝑎

𝑏

𝑎

|𝑥(𝑡)|2 𝛾 𝑑𝑡 𝑑𝑠 

 Hence   〈𝑇𝑥, 𝛾, 𝑥〉 ≥ 0 for all 𝑥 ∈ 𝐿2([𝑎, 𝑏]) and 𝛾 ∈ Г . 

 

Properties 2.3.3: Let A and B be two operators on 𝐻Г . Then- 

(i) 𝐴 + 𝐵 is a positive operator on 𝐻Г . 
 

(ii) The composition operator AB may not be a positive operator. 
 

 

We will prove property (ii)  by an example 

 Example 2.3.4: Let 𝐻Г = 𝐾2 where 𝐾2 is scalar field of real number or complex number of two Dimension and  

                                                  𝐴(𝑥(1), 𝛾, 𝑥(2)) = (𝑥(1) + 𝑥(2), 𝛾, 𝑥(1) + 2𝑥(2)), 

𝐵(𝑥(1), 𝛾, 𝑥(2)) = (𝑥(1) + 𝑥(2), 𝛾, 𝑥(1) + 𝑥(2)) 

                                                                                     Where  𝛾 ∈ Г . 

 Then 

𝐴𝐵(𝑥(1), 𝛾, 𝑥(2)) = (2𝑥(1) + 2𝑥(2), 𝛾, 3𝑥(1) + 3𝑥(2)  for all (𝑥(1), 𝛾, 𝑥(2)) ∈ 𝐾2 

Here note that A and B are positive operators. But AB is not a positive operator since it is not 

Self-adjoint operator if 𝑥 = (−4,3) then 〈𝐴𝐵(𝑥), 𝛾, 𝑥〉 = −1. So we can conclude that is A and B are Positive 
operators  and AB=BA then AB is a Positive Operator. 

 

(iii) Each orthogonal Projection is a positive operator. 
Proof:   Let Y be a closed subspace of 𝐻Г and let P denote the orthogonal projection    
onto Y . For 𝑖=1,2, consider 𝑥𝑖  ∈ 𝐻Г , 𝑥𝑖 = 𝑦𝑖 + 𝑧𝑖 with 𝑦𝑖 ∈ 𝑌 and 𝑧𝑖 ∈ 𝑌 ⊥, so that                      
P(𝑥𝑖) =  𝑦𝑖. Then 
          〈𝑃(𝑥1), 𝛾, 𝑥2〉 = 〈𝑦1, 𝛾, 𝑦2 +  𝑧2〉     Where  𝛾 ∈ Г . 
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                                 =  〈𝑦1, 𝛾, 𝑦2〉 

                                                                            =  〈𝑦1 + 𝑧1, 𝛾, 𝑦2〉      

                                                                            =  〈𝑥1, 𝛾, 𝑃(𝑥2)〉  , 𝑆𝑜 𝑡ℎ𝑎𝑡  P is self-adjoint. 

Since 〈𝑃(𝑥1), 𝛾, 𝑥1〉 = 〈𝑦1, 𝛾, 𝑦1〉 ≥ 0 for all 𝑥1 ∈ 𝐻Г and  𝛾 ∈ Г . Clearly 

                                                               P is a positive operator. 

2.4. 2 -Self adjoint operator  on Г-Hilbert space 

Definition 2.4.1:Let 𝑇𝛾 ∈ 𝐵𝐿(𝐻Г). We say that 𝑇𝛾  is a  2-self adjoint operator defined on 𝐻Г if and  

Only if  𝑇𝛾
2= 𝑇𝛾

∗2. The class of a 2-self adjoint operator defined on 𝐻Г is denoted by 2-𝑆𝑒(𝐻Г). 

 

      Example2.4.2: Let 𝑇𝛾: 𝐻Г → 𝐻Г and 𝐻Г is any complex Г-Hilbert space, which is defined as follows  

                                                   𝑇𝛾𝑥 = 5𝑖𝑥 for all 𝑥 ∈ 𝐻Г. Then 𝑇𝛾 ∈ 2 − 𝑆𝑒(𝐻Г). 

 

              It is clear that  if 𝑇𝛾 is self adjoint operator then  𝑇𝛾 ∈ 2 − 𝑆𝑒(𝐻Г). However 𝑇𝛾 in this example is not 

              Self-adjoint operator. 

 

        Note: From definition we have 𝑇𝛾  ∈ 2 − 𝑆𝑒(𝐻) if and only if 𝑇𝛾
∗  ∈ 2 − 𝑆𝑒(𝐻). 

 

    Proposition2.4.3: Let 𝑇𝛾  , 𝑆𝛾 ∈ BL(HГ), if  𝑇𝛾  , 𝑆𝛾 ∈ 2-𝑆𝑒(HГ) then the following statements are true: 

                       (i)  If  𝑇𝛾𝑆𝛾=𝑆𝛾𝑇𝛾  𝑡ℎ𝑒𝑛 𝑇𝛾𝑆𝛾  as well as 𝑆𝛾𝑇𝛾 ∈ 2-𝑆𝑒(𝐻Г). 

                                    (ii) If   (𝑇𝛾 + 𝑆𝛾) ∈ 2-𝑆𝑒(𝐻Г) if and only if  𝐼𝑚(𝑆𝛾𝑇𝛾) = −𝐼𝑚(𝑇𝛾 𝑆𝛾) 

    Proof: (i)  We have (𝑇𝛾𝑆𝛾)2 =   Tγ
2Sγ

2 

                                                               =   Tγ
∗2Sγ

∗2 

                                                               =   Tγ
2∗Sγ

2∗ 

                                                               =  (Sγ
2Tγ

2)∗ 

                                                               =   (SγTγ)2∗ 

                                                               =  (TγSγ)∗2 

 

  Which implies that 𝑇γ𝑆𝛾 and  𝑆𝛾𝑇γ are in 2-𝑆𝑒(𝐻Г). 

 

         (ii)     Suppose that  Tγ + Sγ ∈ 2-Se(HГ) then  

               (Tγ + Sγ )
2 =  (Tγ

∗ + Sγ
∗)2 and  (Tγ + Sγ )

2 = Tγ
2 + TγSγ + SγTγ+  Sγ

2 

 Also,  (Tγ
∗ + Sγ

∗)2 = Tγ
∗2 + Tγ

∗ Sγ
∗ + Sγ

∗Tγ
∗ + Sγ

∗2 

                                               =Tγ
∗2 + (Tγ Sγ)∗ + (SγTγ)∗ + Sγ

∗2 

 

Which implies that 𝑇𝛾𝑆𝛾 + 𝑆𝛾𝑇𝛾 = (𝑆𝛾𝑇𝛾)∗ + (𝑇𝛾𝑆𝛾)∗. 

Hence  Im(SγTγ) = −Im(TγSγ). 

Now if  𝐼𝑚(𝑆𝛾𝑇𝛾) = −𝐼𝑚(𝑇𝛾𝑆𝛾) then (𝑆𝛾𝑇𝛾) − (𝑆𝛾𝑇𝛾)∗ =−(𝑇𝛾 𝑆𝛾) + (𝑇𝛾 𝑆𝛾)∗. 

 

So,        (𝑇𝛾 + 𝑆𝛾)2 = 𝑇𝛾
2 + 𝑇𝛾𝑆𝛾 + 𝑆𝛾𝑇𝛾 + 𝑆𝛾

2 

                                                     = 𝑇𝛾
∗2 + (𝑆𝛾𝑇𝛾)∗ + (𝑇𝛾 𝑆𝛾)∗ + 𝑆𝛾

∗2 

                                                     = (𝑇𝛾 + 𝑆𝛾)∗2 
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 And                 𝑇𝛾 + 𝑆𝛾 ∈ 2-𝑆𝑒(𝐻Г) 

 

Corollary2.4.4:   Let𝑇𝛾 ∈ 𝐵𝐿(𝐻Г) be a self-adjoint operator on 𝐻Г , if 𝜆 is real or pure imaginary number then 
𝜆𝑇𝛾 ∈ 2-𝑆𝑒(𝐻Г). 

 

2.5. Spectrum of 2-self adjoint operator: 

 In this section, we study the spectrum of 2-self-adjoint operator defined on Г-Hilbert space. 

We denote the spectrum of 2-self adjoint operator of a Г-Hilbert space by   σ (𝑇𝛾) which is a subset  of ℝ. 

Theorem 2.5.1: Let 𝑇𝛾 ∈ 2-𝑆𝑒(𝐻Г) then σ(𝑇𝛾) ⊆ ℝ or  σ(𝑇𝛾) ⊆ 𝑖 ℝ,where  𝑖 ℝ= {𝑖𝑥 ∶ 𝑥 ∈ ℝ}. 

 Proof: Suppose λ ∈ 𝜎(𝑇𝛾) and λ= 𝑎 + 𝑖𝑏 where 𝑎  and  𝑏 are real numbers. 

Then by Spectrul mapping  theorem we have- 

                                                                   𝜆2 ∈  𝜎(𝑇𝛾
2). 

Therefore  𝜆2 =  𝑎2 + 2𝑖𝑎𝑏 − 𝑏2 is real number which implies that 

2𝑖𝑎𝑏 = 0  

                                                                              So,  𝑎𝑏 = 0 

Hence λ ∈ ℝ or   λ ∈ 𝑖ℝ 

Which leads  σ(𝑇𝛾) ⊆ ℝ or σ(𝑇𝛾) ⊆ 𝑖 ℝ. 

 

Proposition 2.5.2: Let 𝑇𝛾 ∈ 2-𝑆𝑒(𝐻Г). If λ ∈ σ(𝑇𝛾
2) then  λ is a real number. 

 

Proof: Let  λ ∈ σ(𝑇𝛾
2) then there exist 𝑥(≠ 0) ∈ 𝐻Г Such that 𝑇2𝑥 = 𝜆𝑥, therefore 

〈𝜆𝑥, 𝛾, 𝑥〉 = 〈𝑇2𝑥, 𝛾, 𝑥〉 

                                                                            = 〈𝑥, 𝛾, 𝑇∗2𝑥〉 

                                                                            = 〈𝑥, 𝛾, 𝑇2𝑥〉 

                                                                            = 〈𝑥, 𝛾, 𝜆𝑥〉 

                                                                            = �̅�〈𝑥, 𝛾, 𝑥〉 

 

Which implies 

                                                    (𝜆 − �̅�)〈𝑥, 𝛾, 𝑥〉 = 0 and λ=�̅�. 

 

Theorem 2.5.3: Let𝑇𝛾 ∈ 2-𝑆𝑒(𝐻Г) , if 𝑇𝛾 is invertable  operator then 𝑇𝛾
−1 ∈ 2-𝑆𝑒(𝐻Г). 

 

Proof:                          (𝑇𝛾
−1)𝟐 = (𝑇𝛾

2)−1 

                                                                  = (𝑇𝛾
∗2)−1 

                                                                  = ((𝑇𝛾
∗)−1)2 

                                                                  = ((𝑇𝛾
−1)∗)2 

 

Then 𝑇𝛾
−1 ∈ 2-𝑆𝑒(𝐻Г ). 

 

Corollary 2.5.4: If  𝑇𝛾 − 𝜆 ∈ 2-𝑆𝑒(𝐻Г) for all λ≠ 𝜎(𝑇𝛾)𝑎𝑛𝑑  𝛾 ∈ Г, then (𝑇𝛾 − 𝜆)−1 ∈ 2-𝑆𝑒(𝐻Г). 

 

Proposition 2.5.5: If𝑇𝛾 ∈ 2-𝑆𝑒(𝐻Г), 𝛾 ∈ Г and 𝑇𝛾
2 𝑜𝑟 𝑇𝛾

∗2 is onto then  

(𝑖)𝑅𝑎𝑛𝑔𝑒(𝑇𝛾 ) = 𝑅𝑎𝑛𝑔𝑒 (𝑇𝛾
∗)                
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                (𝑖𝑖)     𝑇𝛾 and  𝑇𝛾
∗ are invertible operators.                                                                

 
3. Conclusion          

Here  we work with two linear spaces. As a result of this study any one can introduce a new linear finite 
dimensional operator and their characterizations  in Г-Hilbert space .Further we will experiment on more new 
operators and  inequalities of Г-Hilbert space and extend our work on this topic. 
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