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Abstract
In this paper, the equation of the ones that provide the Mannheim curve feature in slant helices have been
obtained and the intrinsic equation of Mannheim curves have been given for the first time.
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1. Introduction
In classical differential geometry, a general helix in the Euclidean 3-space, is a curve whose tangent vector

makes a constant angle with a fixed direction in every point. A slant helix is defined by the property that its
principal normal vector makes a constant angle with a fixed direction in a similar way. A regular smooth curve C
in Euclidean 3-space E3 is a Mannheim curve if there exist another regular smooth curve Ĉ, apart from C and a
bijection Φ : C → Ĉ such that the principal normal line at each point of C coincides with the binormal line of Ĉ at
the corresponding point under a Φ bijection. Then, Ĉ is called a Mannheim mate curve of C.

In the recent times, there has been remarkable interest in the slant helix among geometers. For instance, Men-
ninger [1] gave for the first time a comprehensive characterization of the slant helix in three-dimensional Euclidean
space from the point of its curvature and torsion, and obtained an explicit arc-length parametrisation of its tangent
vector.

The paper mentioned has guided us in studying on the slant helices that satisfy the definition of Mannheim
curve.

2. Preliminaries
A curve is called a slant helix if its principal normal vector field makes a constant angle with a fixed line in

space. The tuple F = (T,N,B, κ, τ) is defined as a Frenet apparatus or Frenet system and the pair (κ, τ ) a Frenet
development associated with the curve [1].

Theorem 2.1. [1](Frenet Apparatus of Slant Helix) A regular C2 space curve is a slant helix if it has a Frenet development

satisfying κSH =
1

m
ϕ′ cosϕ, τSH =

1

m
ϕ′ sinϕ with a differentiable function ϕ(s) and m = cot θ 6= 0.

Given such a Frenet development let Ω(s) :=
ϕ(s)

n
, λ1 := 1− n, λ2 := 1 + n with n = cos θ. Then the tangent

vector of the slant helix thus characterized can be parametrized as follows:

TSH =
1

2

 λ1 cosλ2Ω(s) + λ2 cosλ1Ω(s),
λ1 sinλ2Ω(s) + λ2 sinλ1Ω(s),

2
n

m
sin Ω(s)

 .
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Definition 2.1. Let E3 be the 3-dimensional Euclidean space with the standard inner product. If there exits matching
relationship between space curve C and Ĉ such that at the matching point of the curves, the principal normal
vector of C coincides with the binormal vector of Ĉ, then C is defined as a Mannheim curve, and Ĉ is defined as a
Mannheim mate curve of C. The pair {C, Ĉ} is called a Mannheim pair [2].

It is well known that a regular, smooth curve C in E3 is a Mannheim curve if and only if its curvature function κ
and its torsion function τ satisfy the equality

κ = c(κ2 + τ2),

on each point of C, where c is a positive constant.

According to the recent studies, the detailed discussions concerned with the Mannheim curves can be found
in literature (see [2–7]). But, the intrinsic equation of Mannheim curves does not seem to have been given in the
literature. In the following theorem, we give the intrinsic equation of Mannheim curves for the first time.

Theorem 2.2. The intrinsic equation of a Mannheim curve α(u) can be given

κ = λ(sin Φ + 1), τ = λ cos Φ,

where Φ is a parameter and λ =
κ2 + τ2

2κ
is a constant. The curvature and torsion functions can also be parametrized

by the rational functions,

κ =
λ(1 + t)2

(1 + t2)
, τ = λ

(
1− t2

1 + t2

)
,

where t = tan
Φ

2
.

Proof. If τ 6= 0 then the relation λ =
κ2 + τ2

2κ
can be rearranged to give

τ2 + (κ− λ)2 = λ2.

In a plane with κ and τ as coordinates this relation represent a circle of radius λ along κ axis. The trigonometric
parameterisation of this circle gives the result.

The alternative, rational parameterisation is obtained using the tangent-half angle substitution with parameter

t = tan(
Φ

2
).

As it can be clearly seen in the statement above, if Φ is constant then the curvature κ and torsion τ will also be
constant and the curve α(u) will be a helix.
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Figure 1. Mannheim curve.

Example 2.1. Let s be curve parameter of the curve α. If we choose Φ = s and κ = sin s+ 1, τ = cos s the Mannheim
curve can be seen in Figure 1.

We can give parametric equation of Mannheim curve in E3 from Eisenhart’s book [8] as follows:

Theorem 2.3. [8, p. 51] Let C be a curve defined by

X(u) =


λ

∫
h(u) sinu du,

λ

∫
h(u) cosu du,

λ

∫
h(u)g(u) du

 . u ∈ U ⊂ R.

Here R denotes the set of all real numbers, λ is a positive constant number, g : U → R is any smooth function
and h(u) : U → R is given by

h(u) =

{
1 + ((g(u))2 + (ġ(u))2

}3
+
{

1 + (g(u))2
}3 {g̈(u) + g(u)}2

{1 + (g(u))2}3/2 {1 + (g(u))2 + (ġ(u))2}5/2
,

Here the dot (·) denotes the derivative with respect to u. Then the curvature function κ and the torsion function
τ of C satisfy

κ(u) = λ
{

(κ(u))2 + (τ(u))2
}
,

on each point X(u) of C.

A parametric representation of generalized Mannheim curves in E4 is given in [5].

3. Slant helices and Mannheim curves
In this section we investigate the curves that satisfy both of the properties of Mannheim curve and slant

helix. To do this, we use the slant helix characterization given by Menninger in Theorem 2.1 and we also find the
characterization of the differentiable function ϕ(s) given in Theorem 2.1.

Theorem 3.1. Let a regular space curve C be a slant helix in Euclidean 3-space E3. Then the curve C is a Mannheim curve if
differentiable function ϕ(s) satisfies the following equation
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ϕ(s) = 2 arctanu(s),

where u(s) is a differentiable function and

κSH =
1

m
ϕ′ cosϕ, τSH =

1

m
ϕ′ sinϕ.

Proof. Let C be a slant helix in E3, then Theorem 2.1 gives the following equations

κSH =
1

m
ϕ′ cosϕ, τSH =

1

m
ϕ′ sinϕ,

with a differentiable function ϕ(s) and m = cot θ 6= 0.

We know that C is a Mannheim curve if and only if κ and τ satisfy the equality

κ = c(κ2 + τ2),

on each point of C; where c is a positive constant number. If we use κ = κSH and τ = τSH in the equality we obtain
the following differential equation

1

m2
ϕ′2(s) = c

1

m
ϕ′(s) cosϕ(s),

cosϕ(s) = λϕ′(s),

where λ = cm. By solving this equation we find

ϕ(s) = 2 arctan
(

tanh(λc1 +
s

2λ
)
)

= 2 arctan

(
−1 + ec+s/λ

1 + ec+s/λ

)
,

ϕ(s) = 2 arctanu(s),

where u =
−1 + ec+s/λ

1 + ec+s/λ
and c1 is a constant number.

Corollary 3.1. LetC be a space curve. If κ =
1

m
ϕ′ cosϕ, τ =

1

m
ϕ′ sinϕ,m = cot θ 6= 0 andϕ(s) = 2 arctan

(
−1 + ec+s/λ

1 + ec+s/λ

)
then parametric equation of a Slant-Mannheim curve can be given by

X(s) =
1

2


∫

(λ1 cosλ2Ω(s) + λ2 cosλ1Ω(s))ds,∫
(λ1 sinλ2Ω(s) + λ2 sinλ1Ω(s))ds,∫

2
n

m
sin Ω(s)ds

 .

Example 3.1. Let C be a slant helix. If we choose θ = π/3 and u =
−1 + es

1 + es
then we have

m = cotπ/3 =
1√
3
, λ1 =

1

2
, λ2 =

3

2
, n = cosπ/3 =

1

2

and

Ω(s) =
ϕ(s)

n
=

2 arctan

(
−1 + es

1 + es

)
1/2

= 4 arctan

(
−1 + es

1 + es

)
.

We have the following equation;
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Figure 2. Tangent indicatrix of Slant helix C.

T =
1

2



1

2
cos

(
6 arctan(

−1 + es

1 + es
)) +

3

2
cos(2arc tan(

−1 + es

1 + es
)

)
,

1

2
sin

(
6 arctan(

−1 + es

1 + es
)) +

3

2
sin(2 arctan(

−1 + es

1 + es
)

)
,

√
3 sin

(
2 arctan(

−1 + es

1 + es
)

)


.

It can be seen in Figure 2 that spherical image the tangent indicatrix of Slant helix C is a spherical helix.

By integrating of T we obtain

C(u) =



es(e2s − 1)

(e2s + 1)2
+ arctan es,

2e2s(s− 4) + e4ss+ s

4(e2s + 1)2
+

2 log(e2s + 1)− 3s

4
,

√
3

4

(
log(e2s + 1)− s

)


.

In Figure 3 it can be seen the Slant-Mannheim curve C(u).

Figure 3. The Slant-Mannheim curve.
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4. Conclusion
In this paper, we see that Mannheim curves can be plotted with intrinsic equations. Besides, we offer a general

equation of curves that satisfy the properties of both slant and Mannheim curves.
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