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Abstract  

In this study, a new approach to transmutation theory is developed by using negative 

dependency basement. Once choosing a distribution that has negative dependency with the 

same marginal, a new bivariate distribution is derived. In this study, we examined a new 

transmutation technique in which a negative dependency offers a big success in modeling 

rather than most known and used statistical distributions. This approach clash with classical 

transmutation methods. In this study at the beginning, the classical transmutation is defined. 

Later, we introduce the new technique and obtain lower and upper bounds of distribution to 

show that this approach gives us a distribution. Gaining new bivariate continuous distributions 

with this technique may be more appropriate in theory, and modeling of some data sets in 

terms of this approach may be more efficient. 
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1. Introduction 

In both theory and practice in statistics, univariate distributions are generally inadequate to model 

random phenomena. Besides, bivariate statistical distributions are crucial in modeling in many different 

data sets. For generating new distribution, there needs to construct a joint distribution by using marginal 

distributions with higher or lower correlations. Dolati and Ubeda-Flores [1] studied a method by 

considering pairs of order statistics. Lai and Xie [2] examined continuous bivariate distributions which 

possess the Positive Quadrant Dependency. According to similar works [3], [4] some conditions for 

negative dependency decided.  

Though many different methods in generating new distribution, studies on transmuted distributions have 

become popular. Although Shaw and Buckley [5] offered transmutation as alternative technique for 

copulas in generating new distribution, today transmutation becomes the first approach in generating 

distribution.  

There are also studies for some other methods for generating distribution. In a study, Shaw and Buckley 

[5] joined an inverse of a statistical distribution with another distribution. In that study authors offered 

for generating new distributions by a new formulation. Quadratic rank order transmutation is studied for 

alternating to copulas.  

After these studies, some basic distributions were used in generating distributions [6,7]. Later 

transmutation with many distributions was studied [8-10]. To derive transmuted distributions the 

transformation below is used. 

𝐹𝑄𝑅𝑇 = (1 + 𝜆)𝐺 − 𝜆𝐺
2,   |𝜆| ≤ 1                                                                                                                      (1) 
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In that studies by using the Eq. (1), the new distributions were obtained and probability density 

functions, moments, parameter estimations and hazard rates were examined [11-15].  

Different from these studies in [16], by using a conditional Farlie-Gumbel-Morgenstern copula with 

exponential marginals is studied. In this study, a new method for transmutation is introduced. Inspired 

by these studies, we desire to propose a simpler but useful model.  

Theorem1. Assume 𝐻(𝑥, 𝑦)  is a bivariate distribution function belonging to the distribution family 

ℱ(𝐹, 𝐺), 𝐹(𝑥) and 𝐺(𝑦) are marginal distributions, and 𝐻(𝑥, 𝑦) is differentiable on ℝ2, and ℎ(𝑥, 𝑦) =
𝜕2𝐻(𝑥,𝑦)

𝜕𝑥𝜕𝑦
 denotes the joint probability density function. Then  𝐻1

∗(𝑥, 𝑦) = 𝐻(𝑥, 𝑦)(1 + �̅�(𝑥, 𝑦)) is a 

distribution function if 𝐻(𝑥, 𝑦) ≤ 𝐹(𝑥)𝐺(𝑦), for all (𝑥, 𝑦) ∈ ℝ2, �̅�(𝑥, 𝑦) is survival function of this 

bivariate distribution. 

Proof.  According to Barlow and Proschan [17], any bivariate distribution function holds the following 

properties (see, Chapter 5):  

(P1)  

lim
𝑥→∞

𝐻(𝑥, 𝑦)(1 + �̅�(𝑥, 𝑦)) = 𝐺(𝑦), 

lim
𝑦→∞

𝐻(𝑥, 𝑦)(1 + �̅�(𝑥, 𝑦)) = 𝐹(𝑥), 

lim
𝑥∧𝑦→∞

𝐻(𝑥, 𝑦)(1 + �̅�(𝑥, 𝑦)) = 1. 

(P2)  
𝜕𝐻1

∗(𝑥,𝑦)

𝜕𝑥
≥ 0 and 

𝜕𝐻1
∗(𝑥,𝑦)

𝜕𝑦
≥ 0. Then 

𝜕𝐻1
∗(𝑥, 𝑦)

𝜕𝑥
=
𝜕𝐻(𝑥, 𝑦)

𝜕𝑥
(1 + �̅�(𝑥, 𝑦)) + 𝐻(𝑥, 𝑦)

𝜕�̅�(𝑥, 𝑦)

𝜕𝑥
 

=
𝜕𝐻(𝑥, 𝑦)

𝜕𝑥
(1 + �̅�(𝑥, 𝑦)) + 𝐻(𝑥, 𝑦) (−ℎ(𝑥) +

𝜕𝐻(𝑥, 𝑦)

𝜕𝑥
) 

= 
𝜕𝐻(𝑥, 𝑦)

𝜕𝑥
(1 + �̅�(𝑥, 𝑦) + 𝐻(𝑥, 𝑦)) − ℎ(𝑥)𝐻(𝑥, 𝑦) 

Now, by noting that negative dependence implies 
𝜕𝐻(𝑥,𝑦)

𝜕𝑥
𝐻(𝑥) ≥ ℎ(𝑥)𝐻(𝑥, 𝑦). Using this inequality, 

we have 

𝜕𝐻1
∗(𝑥, 𝑦)

𝜕𝑥
≥  
𝜕𝐻(𝑥, 𝑦)

𝜕𝑥
(1 − 𝐻(𝑥) + �̅�(𝑥, 𝑦) + 𝐻(𝑥, 𝑦)) 

≥ 0. 

Obviously, 
𝜕𝐻1

∗(𝑥,𝑦)

𝜕𝑦
≥ 0. 

(P3)  
𝜕2𝐻1

∗(𝑥,𝑦)

𝜕𝑥𝜕𝑦
≥ 0. Then 

𝜕2𝐻1
∗(𝑥, 𝑦)

𝜕𝑥𝜕𝑦
= ℎ(𝑥, 𝑦)(1 + 𝐻(𝑥, 𝑦) + �̅�(𝑥, 𝑦)) +

𝜕𝐻(𝑥, 𝑦)

𝜕𝑥

𝜕�̅�(𝑥, 𝑦)

𝜕𝑦
+
𝜕𝐻(𝑥, 𝑦)

𝜕𝑦

𝜕�̅�(𝑥, 𝑦)

𝜕𝑥
.               (2) 

According to Domma (2011) [18], and Kimeldorf and Sampson (1989) [3], by noting that negative 

dependence implies 𝑃𝐻(𝐼1, 𝐽1)𝑃𝐻(𝐼2, 𝐽2) ≤ 𝑃𝐻(𝐼2, 𝐽1)𝑃𝐻(𝐼1, 𝐽2) for all 𝐼1 < 𝐼2 and 𝐽1 < 𝐽2. Under the 
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specially chosen numbers, 𝜖 > 0 and 𝛿 > 0, 𝐼1 = (𝑥, 𝑥 + 𝜖], 𝐼2 = (𝑥 + 𝜖,∞) and for 𝐽1 = (−∞,𝑦], 
𝐽2 = (𝑦, 𝑦 + 𝛿], we have  

𝑃𝐻(𝑋 ∈ (𝑥, 𝑥 + 𝜖], 𝑌 ∈ (−∞,𝑦])𝑃𝐻(𝑋 ∈ (𝑥 + 𝜖,∞), 𝑌 ∈ (𝑦, 𝑦 + 𝛿]) 

≤ 𝑃𝐻(𝑋 ∈ (𝑥 + 𝜖,∞), 𝑌 ∈ (−∞, 𝑦])𝑃𝐻(𝑋 ∈ (𝑥, 𝑥 + 𝜖], 𝑌 ∈ (𝑦, 𝑦 + 𝛿]). 

When both sides divided with ϵδ and taking double limiting both sides while 𝜖→0 and δ→0 the 

inequality turns below: 

𝜕𝐻(𝑥, 𝑦)

𝜕𝑥
(
−𝜕�̅�(𝑥, 𝑦)

𝜕𝑦
) ≤ 𝑃𝐻(𝑋 > 𝑥, 𝑌 ≤ 𝑦)ℎ(𝑥, 𝑦).                                                                                     (3) 

Easily seen that if we specially choose of 𝐼1 = (−∞, 𝑥], 𝐼2 = (𝑥, 𝑥 + 𝜖] and 𝐽1 = (𝑦, 𝑦 + 𝜖], 𝐽2 = (𝑦 +

𝜖,∞),  the inequality which is below is also valid. 

𝜕𝐻(𝑥, 𝑦)

𝜕𝑦
(
−𝜕�̅�(𝑥, 𝑦)

𝜕𝑥
) ≤ 𝑃𝐻(𝑋 ≤ 𝑥, 𝑌 > 𝑦)ℎ(𝑥, 𝑦)                                                                                     (4) 

On the other hand, since 𝑃(𝑋 > 𝑥, 𝑌 ≤ 𝑦) +  𝑃(𝑋 ≤ 𝑥, 𝑌 > 𝑦) + 𝐻(𝑥, 𝑦) + �̅�(𝑥, 𝑦) = 1, the inequality 

is obtained as 𝑃(𝑋 > 𝑥, 𝑌 ≤ 𝑦) +  𝑃(𝑋 ≤ 𝑥, 𝑌 > 𝑦) ≤ 1. By using this latter inequality and combining 

with the Eq. (3) and (4), we have    

𝜕𝐻(𝑥, 𝑦)

𝜕𝑥
(
−𝜕�̅�(𝑥, 𝑦)

𝜕𝑦
) +

𝜕𝐻(𝑥, 𝑦)

𝜕𝑦
(
−𝜕�̅�(𝑥, 𝑦)

𝜕𝑥
) ≤ ℎ(𝑥, 𝑦).                                                                      (5) 

By considering the Eq. (5), the lower bound is as follows: 

𝜕2𝐻1
∗(𝑥, 𝑦)

𝜕𝑥𝜕𝑦
≥ ℎ(𝑥, 𝑦)(𝐻(𝑥, 𝑦) + �̅�(𝑥, 𝑦)) 

≥ 0. 

The proof is completed.  

Inspired by Dolati and Úbeda-Flores [1], an alternative distribution where we can write the convex 

combination with 𝐻1
∗ is 𝐻1 = 𝐻(𝑥, 𝑦)(1 − �̅�(𝑥, 𝑦)). In this way, two different distributions belonging 

to the distribution family ℱ(𝐹, 𝐺) are obtained. Then we may obtain a new distribution under their 

convex combinations for 𝛿 ∈ [0,1] as follows: 

𝐻2(𝑥, 𝑦) = 𝛿𝐻1
∗(𝑥, 𝑦) + (1 − 𝛿)𝐻1(𝑥, 𝑦)       

= 𝛿𝐻(𝑥, 𝑦)(1 + �̅�(𝑥, 𝑦)) + (1 − 𝛿)𝐻(𝑥, 𝑦)(1 − �̅�(𝑥, 𝑦)) 

= 𝐻(𝑥, 𝑦) + (2𝛿 − 1)𝐻(𝑥, 𝑦)�̅�(𝑥, 𝑦). 

By letting 2𝛿 − 1 = 𝜆, the new distribution proposal is  

𝐻2(𝑥, 𝑦) = 𝐻(𝑥, 𝑦) + 𝜆𝐻(𝑥, 𝑦)�̅�(𝑥, 𝑦),      𝜆 ∈ [−1,1].                                                                                 (6) 

Note that, 𝐻(𝑥, 𝑦) belongs to negatively dependent subclass or independent subclass of the family 

ℱ(𝐹, 𝐺). Respectively, the joint probability density function and the survival function are  

ℎ2(𝑥, 𝑦) = ℎ(𝑥, 𝑦) (1 + 𝜆(𝐻(𝑥, 𝑦) + �̅�(𝑥, 𝑦)))                       
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+𝜆 [
𝜕𝐻(𝑥, 𝑦)

𝜕𝑥

𝜕�̅�(𝑥, 𝑦)

𝜕𝑦
+
𝜕𝐻(𝑥, 𝑦)

𝜕𝑦

𝜕�̅�(𝑥, 𝑦)

𝜕𝑥
],                                                                                              (7) 

𝐻2(𝑥, 𝑦) = �̅�(𝑥, 𝑦) + 𝜆 𝐻(𝑥, 𝑦)�̅�(𝑥, 𝑦),      𝜆 ∈ [−1,1].                                                                               (8) 

Therefore, we finally propose distribution family with simple structures like Farlie-Gumbel-

Morgenstern (FGM) distribution family (see, Farlie [19] and Gumbel [20]).   

2. Hazard Rate and Reversed Hazard Rate Functions of 𝑯𝟐 

The bivariate reversed hazard rate function is defined as  𝑟𝑣(𝑥, 𝑦) = 𝑓( 𝑥, 𝑦)/𝐹(𝑥, 𝑦) [21]. Furthermore, 

Basu [22] defines the bivariate hazard rate as 𝑟(𝑥, 𝑦) = 𝑓( 𝑥, 𝑦)/�̅�(𝑥, 𝑦). By using Eq. (6-8) we may 

gain a close form for both 𝑟𝐻2 and 𝑟𝑣𝐻2. 

𝑟𝐻2(𝑥, 𝑦) =
ℎ(𝑥, 𝑦) (1 + 𝜆(𝐻(𝑥, 𝑦) + �̅�(𝑥, 𝑦))) + 𝜆 [

𝜕𝐻(𝑥, 𝑦)
𝜕𝑥

𝜕�̅�(𝑥, 𝑦)
𝜕𝑦

+
𝜕𝐻(𝑥, 𝑦)
𝜕𝑦

𝜕�̅�(𝑥, 𝑦)
𝜕𝑥

]

�̅�(𝑥, 𝑦) + 𝜆 𝐻(𝑥, 𝑦)�̅�(𝑥, 𝑦)
 

= 𝑟𝐻(𝑥, 𝑦) (1 +
𝜆�̅�(𝑥, 𝑦)

1 + 𝜆𝐻(𝑥, 𝑦)
) − (1 −

1

1 + 𝜆𝐻(𝑥, 𝑦)
) (𝑟𝐻(𝑥|𝑦)𝑟𝑣𝐻(𝑦|𝑥) + 𝑟𝐻(𝑦|𝑥)𝑟𝑣𝐻(𝑥|𝑦)), 

where 𝑟𝐻(𝑦|𝑥) =
−𝜕�̅�(𝑥,𝑦)

𝜕𝑥

�̅�(𝑥,𝑦)
 and 𝑟𝑣𝐻(𝑦|𝑥) =

𝜕𝐻(𝑥,𝑦)

𝜕𝑥

𝐻(𝑥,𝑦)
 are respectively conditional hazard rate and 

conditional reversed hazard rate functions of 𝐻 with given 𝑋 = 𝑥. 

𝑟𝑣𝐻2(𝑥, 𝑦) =
ℎ(𝑥, 𝑦) (1 + 𝜆(𝐻(𝑥, 𝑦) + �̅�(𝑥, 𝑦))) + 𝜆 [

𝜕𝐻(𝑥, 𝑦)
𝜕𝑥

𝜕�̅�(𝑥, 𝑦)
𝜕𝑦

+
𝜕𝐻(𝑥, 𝑦)
𝜕𝑦

𝜕�̅�(𝑥, 𝑦)
𝜕𝑥 ]

𝐻(𝑥, 𝑦) + 𝜆𝐻(𝑥, 𝑦)�̅�(𝑥, 𝑦)
 

= 𝑟𝑣𝐻(𝑥, 𝑦) (1 +
𝜆𝐻(𝑥, 𝑦)

1 + 𝜆�̅�(𝑥, 𝑦)
) − (1 −

1

1 + 𝜆�̅�(𝑥, 𝑦)
) (𝑟𝐻(𝑥|𝑦)𝑟𝑣𝐻(𝑦|𝑥) + 𝑟𝐻(𝑦|𝑥)𝑟𝑣𝐻(𝑥|𝑦)). 

3. Spearman’s Rho Measure Bounds for 𝑯𝟐 

In this section, we consider obtaining lower and upper bounds of dependence measure for 𝐻2  given by 

the Eq. (6). According to Hoeffding [23] and Fréchet [24], any bivariate distribution 𝐹(𝑥, 𝑦) belonging 

to ℱ(𝐹, 𝐺) must contain Fréchet lower and upper bounds. These bounds are respectively defined as  

𝐹−(𝑥, 𝑦) = max{𝐹(𝑥) + 𝐺(𝑦) − 1,0}                                                                                                               (9) 

𝐹+(𝑥, 𝑦) = min{𝐹(𝑥), 𝐺(𝑦)}.                                                                                                                            (10) 

For 𝐹 ∈ ℱ(𝐹, 𝐺),  Spearman’s rho measure can be expressed as 

𝜌𝑠(𝑋, 𝑌) = 12 ∫ ∫{𝐹(𝑥, 𝑦) − 𝐹(𝑥)𝐺(𝑦)}𝑑𝐺(𝑦)𝑑𝐹(𝑥)

ℝℝ

                                                                           (11) 

(Schweizer and Wolff  [25]). The Spearman’s rho correlation coefficient for 𝐻2 can be obtained by 
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𝜌𝑠 = 12 ∫ ∫(𝐻(𝑥, 𝑦) + 𝜆𝐻(𝑥, 𝑦)�̅�(𝑥, 𝑦) − 𝐹(𝑥)𝐺(𝑦))𝑑𝐺(𝑦)𝑑𝐹(𝑥)

ℝℝ

. 

Hence, by using the fact that 𝐻(𝑥, 𝑦) ≤ 𝐹(𝑥)𝐺(𝑦), for 𝜆 > 0,  the upper bound can be obtained as 𝜌𝑠 ≤
𝜆

3
. For 𝜆 > 0, by using the Eq. (9), to obtain the lower bound, then the lower bound is 𝜌𝑠 ≥ 0. For 𝜆 <

 0, by similar algebraic manipulations, 𝜌𝑠 lies in the interval [–
𝜆

3
, 0 ]. Thus,  according to sign of 𝜆,  

bounds can be written as below: 

𝜌𝑠 ∈

{
 
 

 
 [−

𝜆

3
, 0 ] , 𝜆 < 0

0             , 𝜆 = 0

[0,
𝜆

3
 ]   , 𝜆 > 0.

 

We have an illustrative example to see the success of dependence modeling for this family. 

Example1. The FGM distribution is defined by 𝐻(𝑥, 𝑦) = 𝐹(𝑥)𝐺(𝑦)[1 + 𝜃 �̅�(𝑥)�̅�(𝑦)], for 𝜃 ∈
 [−1,1], (see, Farlie [19] and Gumbel [20]).  Because of the assumption of negative dependency, taking 

𝜃 ∈ [−1,0], the distribution 𝐻2 is given by 

𝐻2(𝑥, 𝑦) = 𝐹(𝑥)𝐺(𝑦)[1 + 𝜃 �̅�(𝑥)�̅�(𝑦)][1 + 𝜆�̅�(𝑥)�̅�(𝑦)[1 + 𝜃 𝐹(𝑥)𝐺(𝑦)]] 

where 𝜆 ∈ [−1, 1] and 𝜃 ∈ [−1,0]. Hence, 𝜌𝑠 =
𝜃

3
+ 𝜆 (

1

3
+
𝜃

6
+
𝜃2

75
). Since 𝜃 ∈ [−1,0], 𝜌𝑠 attains a 

minimum value as 
−77

150
≅ −0.513 at (𝜃, 𝜆) = (−1,1), and 𝜌𝑠 attains maximum value as  

1

3
 at (𝜃, 𝜆) =

(0,1).  

We conclude that this family can detect a weakly positive dependence as much as FGM can. However, 

even if the base distribution is negative dependent, 𝐻2 can detect both positive dependence and negative 

dependence. It has a wider correlation coefficient in the negative values of 𝜆 than FGM has. 

4. Conclusion 

In this study, by using transmutation method in bivariate case, we offered a new approach in generating 

a bivariate continuous distribution using a baseline distribution from the subclass consisting of 

negatively dependent distributions of ℱ(𝐹, 𝐺). This transmutation restricts to negative dependency and 

other situations than negative dependence, in theory transmutation does not provide distribution species 

totally in new generations.  

With derivating this new distribution via orders statistics and examining coefficient of Spearman’s rho 

for dependency, we conclude that this new distribution may be more capable than most known and most 

used bivariate distributions in modeling negative dependency. The new distribution which is suggested 

in this study gives the same coefficient value of Spearman’s rho in positive dependency. Thereby 

distributions generated with negative dependency conditions are more reliable.  

Under negative dependency condition of this study indicates that better modeling than FGM in the same 

class which is in ℱ(𝐹, 𝐺) is possible.  
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