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Abstract: In this research article, a numerical approach to the solutions of different forms of Lane-Emden 

type of singular initial value problems is presented, The Taylor Series Method has been applied. 

Application was on singular initial value problems. Comparison with exact solution shows considerable 

acceleration in convergence. The method is effective and easy to implement. 
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1. Introduction 

Singular initial value problems (IVPs) are very useful in various ranges of mathematical 

problems which are challenging in nature because of the singularity. They are applicable in 

pure science, modeling and other aspect of human existence. The numerical solution is 

however challenging because of the singularity at the origin. Researchers have applied 

different types of methods to solve the Lane-Emden type equations formulated as: 

  ,0
2

 yfy
x

y    10  x  

 

    ByAy  0,0          (1) 

 

Also, studies have also been carried out on other classes of singular initial value problems 

(IVPs) of the form. 
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Where A and B are said to be constants  yxf ,  is a continuous real value function while 

 xg
 

]1.0[  Yahya and Liu (2007). Mathematicians, Ramos 2008 and Olayiwola 2019  

respectively obtained a series approach to the Lane-Emden equations and comparisons with 

He’s Homotopy perturbation method and variational Iteration method for solution of Emden-

Fowler type of singular initial value problems (IVPs). 

In other research, Tsirivas (2012) it was investigated what can be said of the sequence 

  0,ZfSnn when theorem of Seleznev concerning the case where the radius of 

convergence of the power series is zero.  A new explicit formula proposed by Jos´e Juan and 

Enrique (2012) for the remainder that generalizes classic ones, namely, Scholomilch, 

Lebesgue, Cauchy, and Euler’s remainders. Inspired by the explicit expression for an arbitrary 

polynomial x −→ px, ∀x ∈ R. 

In view of the great importance of Taylor series in analysis, it may be regarded as extremely 

surprising that so few attempts at generalization have been made. Widde (1890) researched on 

the problem of the representation of an arbitrary function by means of linear combinations of 

prescribed functions has received no small amount of attention. It is well known that one 

phase of this problem leads directly to Taylor series, the prescribed functions in this case 

being polynomials. 

Approximate solutions of the Lane-Emden equations were obtained by Homotopy 

Perturbation method by Chen and Chen (2004) and El-Mistikawy (2009). The method was 

proposed by He (1999) and has been successfully applied to solve many types of linear and 

nonlinear functional equation. He (2000) apply Homotopy Perturbation method with Laplace 

Transform, method for obtaining solutions of linear and nonlinear Lane-Emden type 

differential equation, which gives more accurate solutions when compared with exact 

solutions. 

In this study, Taylor series method is applied to solve the general Lane-Emden type of 

differential equations used in modeling and application to physical and astrophysics problems 

He (2003). Many benefits are derived from this type of equation mostly in the area of science 

and engineering. Momoniat and Harley (2006) obtained an approximate implicit solution by 

reducing the Lane-Emden equation of first order differential equation using the Lie group 

analysis and determining a power series solution of the reduced equation. 

The Taylor Series Method is spell out. Some examples and result analysis and conclusion 

were also presented. 



 

 
CUJSE 17, No. 1 (2020) 3  

2. The Method 

Illustrating the basic idea of this method [], also [] we considered the following general 

nonlinear differential equation: 

   xgyxfy
x

u
y  ,             (3)

 n  

  ,0 Ay      By  0        

Multiply (3) through by x and making y the subject, we obtained the following. 

   xxgyxfy
x

n
yx 








 ,

       (4)

 

   xxgyxxfynyx  ,
        (5)
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n

yxf
n
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n
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        (6) 

Similarly, for higher derivatives of y , such as; 
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We finally obtained 
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Where ,...3,2,1k  

For 0x ,    ,0 Ay     By  0  then 

 ,0y    ,0y    ,0ivy …,
  0ky  

The series; 
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  (14) 

 

3. Numerical Examples 

Example 1: We consider the following: 

  61221
2 234  xxxxyy
x

y
      (15) 

  ,00 y    00 y  

From Taylor Series Algorithm we have; 

      yxyxxfxxgy 
2

1
,

2

1

2

1

       (16)
 

      yxxxyxxxxy 
2

1

2

1
61221

2

1 342

     (17)
 

    yxxxxyxxxy 
2

1

2

1
61221

2

1 4523

     (18)
 

At 0x , 0y  
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    yxxxyyxxxy 
3

1
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3

1
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3
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    (19)
 

At   0x , 2y  

    ivxyxxyyxxy
4

1
12202

4

1
24126

4

1 23 
    (20) 

At  0x , 6y  

    iviv xyxxyyyxy
5

1
24602

5

1
126

5

1 2 
    (21) 

At  0x , 24ivy  

By Taylor Series we obtained; 

           0
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0
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0
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x

y
x

y
x

yxyxy 
     (22)

 

       24
!4

6
!3

2
!21

0
0

432 xxx
xy 

      (23)
 

  432 xxxxy            (24) 

Eqn. (24) is the exact solution of Eqn. (15) 

 

Example 2 we consider the following: 

  0)0(',0)0(,332'
2

'' 2  yyxxeyy
x

y x
    (25) 

Expanding the R.H.S. and implementing the algorithm, we have: 

765432
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30
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4

9
611126'

2
'' xxxxxxxyy

x
y     (26) 

Using the Algorithm we have, 
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2

1
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


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Let 0x it implies 0'y  
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Let 0x it implies
 

2'' y  

Similarly, 
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Let x=0,   Then, 56''' y         (41) 
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Let x=0,  Then, 08.87' xy         (43) 
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0)0('),0(,0  yyx  

By Taylor series method, x=0 we have 
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Example 3 we consider the following: 

  0
2

 yyy
x

y
        (47) 

1)0(',1)0(  yy  

 

From Taylor series we have: 

         yxyxxfxgxxy 
2

1
,

2

1

2

1

      (48) 

This implies that: 

   yxyxy 
2

1
2

2

1

        (49)
 

 

Let x = 0 

Then 1y           (50) 

Also, 
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     yxyyxy 
3

1
12

3

1

       (51)
 

When x  = 0,  
 

1y            (52)
 

     ivxyyyyxy
4

1
12

4
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

      (53) 

When 0x , 

1y           (54) 
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      (55) 

When 0x , 

1ivy           (56) 

 

Therefore, 
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 (57) 

 
   


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1
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xxy

    (58) 

As 
,n
       

  xexy 
        (59) 

 

4. Conclusions 

In this article, we applied the Taylor series method in solving some examples of 

singular Initial value problems, homogeneous and inhomogeneous. Analytical 

solutions were obtained. The peculiarity of this method is on the type of equations, 

due to the existence of the singularity at the origin i.e. at which is clearly eliminated. 
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The method was applied to generate results for higher derivatives of and it shows 

rapid convergence to series of solution when compared with the exact solutions. 
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