
Maltepe Journal of Mathematics

ISSN:2667-7660, URL:http://dergipark.org.tr/tr/pub/mjm Volume II Issue 1

(2020), Pages 14-26.

CONVERGENCE OF NOOR, AND ABBAS AND NAZIR

ITERATION PROCEDURES FOR A CLASS OF THREE

NONLINEAR QUASI CONTRACTIVE MAPS IN CONVEX

METRIC SPACES

G. V. R. BABU* AND G. SATYANARAYANA**

*DEPARTMENT OF MATHEMATICS, ANDHRA UNIVERSITY, VISAKHAPATNAM,

530 003, INDIA. ORCID: 0000-0002-6272-2645
**DEPARTMENT OF MATHEMATICS, ANDHRA UNIVERSITY, VISAKHAPATNAM,

530 003, INDIA. ORCID: 0000-0002-1814-4091

PERMANENT ADDRESS: DEPARTMENT OF MATHEMATICS, DR. LANKAPALLI
BULLAYYA COLLEGE, VISAKHAPATNAM-530 013, INDIA.

Abstract. We define Noor iteration procedure and, Abbas and Nazir itera-
tion procedure associated with three self maps in the setting of convex metric

spaces. We prove that these iterations converge strongly to a unique common

fixed point of three nonlinear quasi-contractive self maps in convex metric
spaces. One of our results (Theorem 2.2) extend the result of Sastry, Babu

and Srinivasa Rao [10] to three self maps. Examples are provided to illustrate

our results.

1. Introduction

In 1970, Takahashi [11] introduced the concept of convexity in metric spaces as
follows.

Definition 1.1. Let (X, d) be a metric space. A map W : X ×X × [0, 1] → X is
said to be a ‘convex structure’ on X if

d(u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y) (1.1)

for x, y, u ∈ X and λ ∈ [0, 1].

A metric space (X, d) together with a convex structure W is called a convex
metric space and we denote it by (X, d,W ).

A nonempty subset K of X is said to be ‘convex’ if W (x, y, λ) ∈ K for x, y ∈ K
and λ ∈ [0, 1].

Remark 1.1. Every normed linear space (X, ||.||) is a convex metric space with
the convex structure W defined by W (x, y, λ) = λx + (1 − λ)y for x, y ∈ X, and
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λ ∈ [0, 1]. But, there are convex metric spaces which are not normed linear spaces
[2, 7, 11].

In 1974, Ćirić [3] introduced quasi-contraction maps in the setting of metric
spaces and proved that the Picard iterative sequence converges to the fixed point
in complete metric spaces.

Definition 1.2. Let (X, d) be a metric space. A self map T : X → X is said to be
a quasi-contraction map if there exists a real number 0 ≤ k < 1 such that

d(Tx, Ty) ≤ kM(x, y) (1.2)

where
M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} (1.3)

for x, y ∈ X.

In 1974, Ishikawa [6] introduced an iteration procedure in the setting of normed
linear spaces as follows: Let K be a nonempty convex subset of a normed linear
space X and let {αn}∞n=0 and {βn}∞n=0 be sequences in [0, 1].
For x0 ∈ K,

yn = (1− βn)xn + βnTxn
xn+1 = (1− αn)xn + αnTyn, for n = 0, 1, 2, ... .

(1.4)

In 1988, Ding [5] considered Ishikawa iteration procedure in the setting of convex
metric spaces as follows: Let K be a nonempty convex subset of a convex metric
space (X, d,W ), and let {αn}∞n=0 and {βn}∞n=0 be sequences in [0, 1].
For x0 ∈ K,

yn = W (Txn, xn, βn)
xn+1 = W (Tyn, xn, αn) for n = 0, 1, 2, ...,

(1.5)

and proved that the Ishikawa iteration procedure (1.5) converges strongly to a
unique fixed point of a quasi-contraction map in the setting of convex metric spaces,

provided
∞∑

n=0
αn =∞.

In 1999, Ćirić [4] introduced a more general quasi-contraction map and proved
the convergence of the Ishikawa iteration procedure to a unique fixed point in convex
metric spaces and the result is the following.

Theorem 1.1. (Ćirić [4]) Let K be a nonempty closed convex subset of a complete
convex metric space X and let T : K → K be a self map satisfying

d(Tx, Ty) ≤ w(M(x, y)),

where M(x, y) is defined by (1.3) for x, y ∈ K and
w : (0,∞)→ (0,∞) is a map which satisfies

(i) 0 < w(t) < t for each t > 0,
(ii) w increases,

(iii) lim
t→∞

(t− w(t)) =∞, and

(iv) either t− w(t) is monotonically increasing on (0,∞) (1.6)

or

w(t) is strictly increasing and lim
n→∞

wn(t) = 0 for t > 0. (1.7)

Let {αn}∞n=0 and {βn}∞n=0 be sequences in [0, 1] such that
∞∑

n=0
αn =∞.
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For x0 ∈ K, the Ishikawa iteration procedure {xn}∞n=0 defined by (1.5)
converges strongly to the unique fixed point of T .

Sastry, Babu and Srinivasa Rao [9] improved Theorem 1.1 by replacing (1.6) and
(1.7) with a single condition, namely 0 < w(t+) < t for each t > 0 and proved the
following theorem.

Theorem 1.2. [9] Let K be a nonempty closed convex subset of a complete convex
metric space (X, d,W ) and T : K → K be a map that satisfies

d(Tx, Ty) ≤ w(M(x, y)) (1.8)

where M(x, y) is defined in (1.3) for x, y ∈ K and w : (0,∞) → (0,∞) is a map
such that

(i) w increases,
(ii) lim

t→∞
(t− w(t)) =∞, and

(iii) 0 < w(t+) < t for t > 0.

Let {αn}∞n=0 and {βn}∞n=0 be sequences in [0, 1] such that
∞∑

n=0
αn =∞. Then

for any x0 ∈ K, the sequence {xn}∞n=0 generated by the iteration procedure (1.5)
converges strongly to a unique fixed point of T .

Remark 1.2. (i) and (iii) of Theorem 1.2 imply that 0 < w(t) < t for each t > 0.

Remark 1.3. If w(t) = kt for t ∈ (0,∞) and 0 ≤ k < 1 then the map T of
Theorem 1.2 reduces to a quasi-contraction map.

Sastry, Babu, and Srinivasa Rao [10] extended Theorem 1.2 to a pair of self maps
as follows.

Theorem 1.3. [10] Let (X, d) be a complete convex metric space with convex struc-
ture W . Let S, T be self maps of X satisfying the inequality

max{d(Sx, Sy), d(Tx, Ty), d(Sx, Ty)} ≤ w(M ′(x, y)) for all x, y ∈ X
where M ′(x, y) = max{d(x, y), d(x, Sx), d(x, Sy), d(y, Sx), d(x, Tx), d(y, Ty),

d(y, Sy), d(x, Ty), d(y, Tx), d(Sx, Tx), d(Sy, Ty)} and
w : (0,∞)→ (0,∞) is a map such that
(i) w is increasing on (0,∞),
(ii) lim

t→∞
(t− w(t)) =∞, and

(iii) 0 < w(t+) < t for each t > 0.
For x0 ∈ X, define the Ishikawa iteration procedure associated with S and T by

yn = W (Txn, xn, βn)
xn+1 = W (Syn, xn, αn)

(1.9)

where {αn}∞n=0 and {βn}∞n=0 are sequences in (0, 1) with
∑
αn = ∞. Then the

sequence {xn} converges, lim
n→∞

xn = z (say), z ∈ X and z is the unique common

fixed point of S and T .

In 2000, Noor [8] introduced a three step iteration procedure in the setting of
Banach spaces as follows: For x0 ∈ K,

zn = (1− γn)xn + γnTxn
yn = (1− βn)xn + βnTzn
xn+1 = (1− αn)xn + αnTyn

(1.10)
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where {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 are sequences in [0, 1].
Noor iteration procedure (1.10) in convex metric spaces is as follows:

For x0 ∈ K,

zn = W (Txn, xn, γn)
yn = W (Tzn, xn, βn)
xn+1 = W (Tyn, xn, αn)

(1.11)

where {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 are sequences in [0, 1].
We call the iteration {xn} defined by (1.11), a ‘modified Noor iteration

procedure’.
In 2014, Abbas and Nazir [1] introduced the following iteration procedure in

normed linear spaces.
For x0 ∈ K,

zn = (1− γn)xn + γnTxn
yn = (1− βn)Txn + βnTzn
xn+1 = (1− αn)Tyn + αnTzn,

(1.12)

for n = 0, 1, 2, ... .
Abbas and Nazir iteration procedure in the setting of convex metric spaces as

follows: For x0 ∈ K,

zn = W (Txn, xn, γn)
yn = W (Tzn, Txn, βn)
xn+1 = W (Tzn, Tyn, αn)

(1.13)

where {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 are sequences in [0, 1].
We call the iteration {xn} defined by (1.13), a ‘modified Abbas and Nazir iteration

procedure’.
Inspired and motivated by the results of Ćirić [4], and Sastry, Babu and Srinivasa

Rao [9, 10], we define Noor iteration procedure associated with three self maps in
Section 2, and prove the convergence of this iteration procedure to the common
fixed point of three self maps in convex metric spaces under certain hypotheses.
In Section 3, we extend it to Abbas and Nazir iteration procedure. One of our
results (Theorem 2.2) extends the result of [10] to three self maps.

2. Convergence of Noor iteration procedure

We begin this section by defining an iteration procedure in convex metric spaces
as follows.

Let (X, d,W ) be a convex metric space, K a nonempty convex subset of X.
Let T1, T2, T3 : K → K be three self maps. For x0 ∈ K,

zn = W (T1xn, xn, γn)
yn = W (T2zn, xn, βn)
xn+1 = W (T3yn, xn, αn)

(2.1)

where {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 are sequences in [0, 1].
We call the iteration {xn} defined by (2.1), a Noor iteration procedure associated

with T1, T2 and T3 in convex metric spaces.

Lemma 2.1. Let (X, d,W ) be a convex metric space and K be a nonempty convex
subset of X. Let T1, T2, T3 : K → K be three self maps satisfying the inequality

max
i,j=1,2,3

{d(Tix, Tjy)} ≤ w(M1(x, y)) for x, y ∈ Kwith M1(x, y) > 0, (2.2)
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where
M1(x, y) = max

1≤i,j≤3,i6=j
{d(x, y), d(x, Tix), d(y, Tiy), d(x, Tiy),

d(y, Tix), d(Tix, Tjx), d(Tiy, Tjy)}, (2.3)

w : (0,∞)→ (0,∞) is a map such that

w increases, (2.4)

lim
t→∞

(t− w(t)) =∞, (2.5)

and
0 < w(t+) < t for t > 0. (2.6)

For any x0 ∈ K, let {xn}, {yn} and {zn} be the sequences generated by Noor
iteration procedure (2.1) associated with three self maps T1, T2, and T3.

Then the sequences {xn}, {yn}, {zn}, {Tixn}, {Tiyn}, and {Tizn} for i = 1, 2, 3
are bounded.

Proof. For each positive integer n, we define

An = {xk}nk=0 ∪ {yk}nk=0 ∪ {zk}nk=0 ∪
3⋃

i=1

({Tixk}nk=0 ∪ {Tiyk}nk=0 ∪ {Tizk}nk=0) and

we denote the diameter of An by an.
Let bn = max

i=1,2,3
{ sup
0≤k≤n

d(x0, Tixk), sup
0≤k≤n

d(x0, Tiyk), sup
0≤k≤n

d(x0, Tizk)}

for n = 1, 2, 3... .
We now prove that an = bn for n = 1, 2, ... .
Clearly, bn ≤ an for n = 1, 2, ... .
Without loss of generality, we assume that an > 0 for n = 1, 2, ... .
Case (i) : an = d(Tixk, Tjxl) for 0 ≤ k, l ≤ n and i, j = 1, 2, 3.

Since an > 0, we have M1(xk, xl) > 0.
Therefore from the inequality (2.2) and Remark 1.2, we have
an = d(Tixk, Tjxl) ≤ w(M1(xk, xl)) ≤ w(an) < an,
a contradiction.
Therefore an 6= d(Tixk, Tjxl).
Case (ii) : By proceeding as in Case (i), it is easy to see that an 6= d(Tixk, Tjyl),

an 6= d(Tixk, Tjzl), an 6= d(Tiyk, Tjyl), an 6= d(Tiyk, Tjzl), and
an 6= d(Tizk, Tjzl) for 0 ≤ k, l ≤ n and i, j = 1, 2, 3.
Case (iii) : an = d(xk, Tiyl) for 0 ≤ k, l ≤ n and i = 1, 2, 3.

If k > 0 then from the inequality (1.1), we have
an = d(xk, Tiyl) = d(W (T3yk−1, xk−1, αk−1), Tiyl)

≤ αk−1d(T3yk−1, Tiyl) + (1− αk−1)d(xk−1, Tiyl)
≤ max{d(T3yk−1, Tiyl), d(xk−1, Tiyl)} ≤ an so that

an = d(T3yk−1, Tiyl) or an = d(xk−1, Tiyl).
By Case (ii), an 6= d(T3yk−1, Tiyl) and hence we have an = d(xk−1, Tiyl).
On continuing this process, we have an = d(x0, Tiyl) so that an ≤ bn.
Case (iv) : Either an = d(xk, Tixl) or an = d(xk, Tizl) for 0 ≤ k, l ≤ n and
i = 1, 2, 3.
By proceeding as in Case (iii), it follows that an ≤ bn.
Case (v) : an = d(xk, xl) for 0 ≤ k, l ≤ n.
Since an > 0, we have k 6= l. So, without loss of generality, we assume that k < l.
Therefore
an = d(xk,W (T3yl−1, xl−1, αl−1)) ≤ αl−1d(xk, T3yl−1) + (1− αl−1)d(xk, xl−1)
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≤ max{d(xk, T3yl−1), d(xk, xl−1)} ≤ an so that
either an = d(xk, T3yl−1) or an = d(xk, xl−1).
If an = d(xk, xl−m) for every 1 ≤ m ≤ l − k then an = 0,
a contradiction.
Therefore an = d(xk, T3yl−m) for some 1 ≤ m ≤ l − k and hence
an ≤ bn follows from Case (iii).
Case (vi) : an = d(xk, yl) for some 0 ≤ k, l ≤ n.

an = d(xk,W (T2zl, xl, βl)) ≤ βld(xk, T2zl) + (1− βl)d(xk, xl)
≤ max{d(xk, T2zl), d(xk, xl)} ≤ an so that

an = d(xk, T2zl) or an = d(xk, xl).
Now by Case (iv) and Case (v), it follows that an ≤ bn.
Case (vii) : an = d(xk, zl) for some 0 ≤ k, l ≤ n.

an = d(xk,W (T1xl, xl, γl)) ≤ γld(xk, T1xl) + (1− γl)d(xk, xl)
≤ max{d(xk, T1xl), d(xk, xl)} ≤ an so that

either an = d(xk, T1xl) or an = d(xk, xl).
Therefore by Case (iv) and Case (v), we have an ≤ bn.
Case (viii): an = d(yk, Tixl) for 0 ≤ k, l ≤ n and i = 1, 2, 3.

an = d(W (T2zk, xk, βk), Tixl) ≤ βkd(T2zk, Tixl) + (1− βk)d(xk, Tixl)
≤ max{d(T2zk, Tixl), d(xk, Tixl)} ≤ an so that

an = d(T2zk, Tixl) or an = d(xk, Tixl).
Hence by Case (ii) and Case (iv), we have an ≤ bn.
Case (ix) : Either an = d(yk, Tiyl) or an = d(yk, Tizl) for 0 ≤ k, l ≤ n and
i = 1, 2, 3.
By proceeding as in Case (viii), it is easy to see that an ≤ bn.
Case (x) : an = d(yk, yl) for 0 ≤ k, l ≤ n.

an = d(yk, yl) = d(yk,W (T2zl, xl, βl)) ≤ βld(yk, T2zl) + (1− βl)d(yk, xl)
≤ max{d(yk, T2zl), d(yk, xl)} ≤ an so that

either an = d(yk, T2zl) or an = d(xl, yk).
Hence an ≤ bn follows from Case (ix) and Case (vi).
Case (xi) : an = d(yk, zl) for 0 ≤ k, l ≤ n.

an = d(yk,W (T1xl, xl, γl)) ≤ γld(yk, T1xl) + (1− γl)d(yk, xl)
≤ max{d(yk, T1xl), d(yk, xl)} ≤ an so that

either an = d(yk, T1xl) or an = d(xl, yk).
By Case (viii) and Case (vi), we have an ≤ bn.
Case (xii) : an = d(zk, Tixl) for 0 ≤ k, l ≤ n and i = 1, 2, 3.

an = d(zk, Tixl) = d(W (T1xk, xk, γk), Tixl) ≤ γkd(T1xk, Tixl) + (1− γk)d(xk, Tixl)
≤ max{d(T1xk, Tixl), d(xk, Tixl)} ≤ an

so that either an = d(T1xk, Tixl) or d(xk, Tixl).
Therefore by using Case (i) we have an 6= d(T1xk, Tixl) and hence an = d(xk, Tixl).
Now by Case (iv), it follows that an ≤ bn.
Case (xiii) : Either an = d(zk, Tiyl) or an = d(zk, Tizl) for 0 ≤ k, l ≤ n and
i = 1, 2, 3.
By proceeding as in Case (xii), it is easy to see that an ≤ bn.
Case (xiv) : an = d(zk, zl) for 0 ≤ k, l ≤ n.

an = d(zk, zl) = d(zk,W (T1xl, xl, γl)) ≤ γld(zk, T1xl) + (1− γl)d(zk, xl)
≤ max{d(zk, T1xl), d(zk, xl)} ≤ an

so that an = d(zk, T1xl) or an = d(zk, xl).
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By Case (xii) and Case (vii), we have an ≤ bn.
Hence by considering all the above cases, we have an = bn for n = 1, 2, 3... .

We write A = max
i=1,2,3

{d(x0, Tix0)}. Without loss of generality, we assume that

A > 0. Now by using the inequality (2.2), we have
d(x0, Tixk) ≤ d(x0, Tix0) + d(Tix0, Tixk) ≤ A+w(an) for 0 ≤ k ≤ n and i = 1, 2, 3.
Therefore sup

0≤k≤n
{d(x0, Tixk)} ≤ A+ w(an) for i = 1, 2, 3.

Similarly, we have sup
0≤k≤n

{d(x0, Tiyk)} ≤ A+ w(an) and

sup
0≤k≤n

{d(x0, Tizk)} ≤ A+ w(an) for i = 1, 2, 3 so that

bn ≤ A+ w(an).

Since an = bn, we have

an − w(an) ≤ A for n = 1, 2, ... . (2.7)

If the sequence {an} is not bounded then lim
n→∞

an =∞ and hence it follows from

(2.5) that lim
n→∞

(an − w(an)) =∞ which contradicts (2.7).

Therefore the sequence {an} is bounded and hence the conclusion of the lemma
follows. �

Theorem 2.2. Let (X, d,W ) be a complete convex metric space and K be a
nonempty closed convex subset of X. Let T1, T2, T3 : K → K be self maps
satisfying the inequality

max
i,j=1,2,3

{d(Tix, Tjy)} ≤ w(M1(x, y)) for x, y ∈ Kwith M1(x, y) > 0,

where M1(x, y) is defined by (2.3) and let w : (0,∞) → (0,∞) be a map that
satisfies the relations (2.4), (2.5), and (2.6). Let {αn}∞n=0, {βn}∞n=0, and {γn}∞n=0

be sequences in [0, 1] such that
∞∑

n=0
αn = ∞. Then the sequence {xn} generated by

the Noor iteration procedure associated with three self maps (2.1) converges strongly
to a unique common fixed point of T1, T2 and T3.

Proof. Without loss of generality, we assume that xn 6= Tixn for any n = 0, 1, 2, ...
and i = 1, 2, 3.
For every integer n ≥ 0, we define a set Cn by

Cn = {xk}∞k=n∪{yk}∞k=n∪{zk}∞k=n∪
3⋃

i=1

({Tixk}∞k=n∪{Tiyk}∞k=n∪{Tizk}∞k=n), and

we define cn to be the diameter of Cn.
By Lemma 2.1, we have the sequence {cn} is bounded.
Let dn = max

i=1,2,3
{sup
k≥n

d(xn, Tixk), sup
k≥n

d(xn, Tiyk), sup
k≥n

d(xn, Tizk)} for n = 0, 1, 2, ... .

Now, we prove that cn = dn for n = 0, 1, ... .
Without loss of generality, we assume that cn > 0.
By using the same technique discussed in Lemma 2.1, it is easy to see that cn ≤ dn.
Therefore

cn = dn for n = 0, 1, 2, ... .

Since {cn} is a decreasing sequence of nonnegative real numbers, we have
lim
n→∞

cn = c for some c ≥ 0.
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Now we prove that c = 0. On the contrary, we assume that c > 0.
Therefore cn > 0 for n = 0, 1, 2, ... .
Let n be a positive integer and k ≥ n. For i = 1, 2, 3, we have
d(xn, Tixk) = d(W (T3yn−1, xn−1, αn−1), Tixk)

≤ αn−1d(T3yn−1, Tixk) + (1− αn−1)d(xn−1, Tixk)
≤ αn−1w(M1(yn−1, xk)) + (1− αn−1)d(xn−1, Tixk)

(since M1(yn−1, xk) > 0)
≤ αn−1w(cn−1) + (1− αn−1)cn−1 so that

sup
k≥n

d(xn, Tixk) ≤ αn−1w(cn−1) + (1− αn−1)cn−1.

Similarly, we can show that sup
k≥n

d(xn, Tiyk) ≤ αn−1w(cn−1) + (1− αn−1)cn−1 and

sup
k≥n

d(xn, Tizk) ≤ αn−1w(cn−1) + (1− αn−1)cn−1.

Therefore

dn ≤ αn−1w(cn−1) + (1− αn−1)cn−1 for n = 1, 2, ... .

Since cn = dn, we have

αn−1(cn−1 − w(cn−1)) ≤ cn−1 − cn for n = 1, 2, ... . (2.8)

Let s = inf{cn − w(cn) : n ≥ 0}. If s = 0 then there exists a subsequence {cn(k)}
of the sequence {cn} such that lim

k→∞
(cn(k) − w(cn(k))) = 0, i.e., c− w(c+) = 0

which is absurd due to (2.6).
Hence s > 0 and cn − w(cn) ≥ s for n = 0, 1, 2, ... .
It follows from the inequality (2.8) that sαn−1 ≤ cn−1 − cn for n = 1, 2, ... .
Now by applying the comparison test, it follows that the series

∑
αn <∞,

a contradiction.
Therefore c = 0 so that the sequence {xn} is Cauchy and hence by the completeness
of X, there exists x ∈ K such that lim

n→∞
xn = x.

Since c = 0, we have lim
n→∞

d(xn, Tixn) = 0 so that lim
n→∞

Tixn = x for i = 1, 2, 3.

We now prove that x is a common fixed point of T1, T2 and T3. For this purpose,
we let B = max

i=1,2,3
{d(x, Tix)}. Suppose that B > 0 so that M1(xn, x) > 0 for all n.

Now, d(Tixn, Tix) ≤ max
i,j=1,2,3

{d(Tixn, Tjx)} ≤ w(M1(xn, x)) for i = 1, 2, 3.

On letting n→∞, we have d(x, Tix) ≤ w(B+) for i = 1, 2, 3 so that B ≤ w(B+),
a contradiction.
Therefore B = 0 so that x is a common fixed point of T1, T2 and T3.

Clearly, the uniqueness of common fixed point of T1, T2, T3 follows from
Remark 1.2. �

If T1 = T2 = T3 in Theorem 2.2 then we have the following corollary.

Corollary 2.3. Let (X, d,W ) be a complete convex metric space and K be a
nonempty closed convex subset of X. Let T : K → K be a map that satisfies

d(Tx, Ty) ≤ w(M(x, y)) for x, y ∈ K with M(x, y) > 0,

where M(x, y) is defined by (1.3) and w : (0,∞)→ (0,∞) be a map that satisfy the
relations (2.4), (2.5) and (2.6). Let {αn}∞n=0, {βn}∞n=0, and {γn}∞n=0 be sequences

in [0, 1] such that
∞∑

n=0
αn =∞. Then the sequence {xn} generated by the ‘modified

Noor iteration procedure (1.11)’ converges strongly to a unique fixed point of T .



22 G. V. R. BABU AND G. SATYANARAYANA

The following is an easy consequence of Corollary 2.3 and Remark 1.3.

Corollary 2.4. Let (X, ||.||) be a Banach space and K be a nonempty closed convex
subset of X. Let T : K → K be a quasi-contraction map, i.e., T satisfies the
inequality (1.2). Let {αn}∞n=o, {βn}∞n=o and {γn}∞n=o be sequences in [0, 1] such

that
∞∑

n=0
αn = ∞. Then for any x0 ∈ K, the sequence {xn}∞n=0 generated by the

Noor iteration procedure (1.10) converges strongly to a unique fixed point of T .

The following is an example in support of Theorem 2.2.

Example 2.1. Let X = [0, 2] be equipped with the usual norm on the set of all real
numbers. We define W : X × X × [0, 1] → X by W (x, y, λ) = (1 − λ)y + λx for
x, y ∈ X so that (X, d,W ) is a complete convex metric space. Let K = [ 7

12 ,
95
84 ] so

that K is a closed convex subset of X and we define T1, T2, T3 : K → K by

T1x =

{
1
x − x if x ∈ [ 7

12 ,
1√
2
]

1√
2

if x ∈ ( 1√
2
, 9584 ],

T2x =

{
3
5 +

3
5

√
2−1

95
√
2−84 (84x− 95) if x ∈ [ 7

12 ,
1√
2
]

1√
2

if x ∈ ( 1√
2
, 9584 ], and

T3x =

{
7
10 +

7
10

√
2−1

95
√
2−84 (84x− 95) if x ∈ [ 7

12 ,
1√
2
]

1√
2

if x ∈ ( 1√
2
, 9584 ].

Here, we note that T1x ≥ T2x ≥ T3x ≥ 1√
2

for x ∈ [ 7
12 ,

95
84 ],

F =
3⋂

i=1

F (Ti) = { 1√
2
}, and T1, T2 and T3 are decreasing functions on [ 7

12 ,
95
84 ].

We define w : (0,∞) → (0,∞) by w(t) = 9t
10 so that w satisfies the relations

(2.4), (2.5) and (2.6). In the following, we show that the inequality (2.2) holds.
For this purpose, we consider the following three cases.
Case (i) : 7

12 ≤ x < y ≤ 1√
2

.

In this case, M1(x, y) = d(x, T1x) = 1
x − 2x and

max
i,j=1,2,3

{d(Tix, Tjy)} = d(T1x, T3y)

≤ d(T1x,
1√
2
) = 1

x − x−
1√
2
≤ 9

10 ( 1
x − 2x) = w(M1(x, y)).

Case (ii) : 7
12 ≤ x <

1√
2
≤ y ≤ 95

84 .

Here, we have max
i,j=1,2,3

{d(Tix, Tjy)} = d(T1x,
1√
2
) = 1

x − x−
1√
2

and

M1(x, y) =

{
1
x − 2x if T1x ≥ y
y − x if T1x ≤ y.

If T1x ≤ y then max
i,j=1,2,3

{d(Tix, Tjy)} = 1
x − x−

1√
2
≤ 9

10 ( 1
x − 2x)

≤ 9
10 (y − x) = w(M1(x, y)).

Similarly, we show that the inequality (2.2) is true if T1x ≤ y.
Case (iii) : 1√

2
≤ x < y ≤ 95

84 .

In this case, max
i,j=1,2,3

{d(Tix, Tjy)} = 0 and hence the inequality (2.2) trivially holds.

We choose βn = γn = 1
2 and αn = 1

n+2 for n = 0, 1, 2, ... so that
∞∑

n=0
αn =∞.
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Let x0 ∈ [ 7
12 ,

95
84 ] be arbitrary, and let {xn}∞n=0 be the sequence generated by Noor

iteration procedure associated with T1, T2, and T3, i.e, the sequence {xn}∞n=0 is
defined by (2.1) so that zn = W (T1xn, xn, γn) = xn+T1xn

2 , yn = W (T2zn, xn, βn) =
xn+T2zn

2 and xn+1 = W (T3yn, xn, αn) = n+1
n+2xn + 1

n+2T3yn for n = 0, 1, 2, ... .

We now show that the sequence {xn}∞n=0 converges to 1√
2

which is the common

fixed point of T1, T2 and T3.
Case (i) : 7

12 ≤ x0 <
1√
2

.

By induction on n, we show that

xn+1 − 1√
2

= (n+1
n+2 +

42( 7
10

√
2−1)

(n+2)(95
√
2−84) )(xn −

1√
2
) and xn <

1√
2

for all n ≥ 0.

We assume that xn <
1√
2

for some n ≥ 0 so that zn = xn+T1xn

2 = 1
2xn

> 1√
2

,

yn = xn+T2zn
2 = 1

2 (xn + 1√
2
) < 1√

2
and

xn+1 = n+1
n+2xn + 1

n+2T3yn = n+1
n+2xn + 1

n+2 ( 7
10 +

7
10

√
2−1

95
√
2−84 (84yn − 95))

= n+1
n+2xn + 1

n+2 ( 7
10 +

7
10

√
2−1

95
√
2−84 (42(xn + 1√

2
)− 95))

= (n+1
n+2 +

42( 7
10

√
2−1)

(n+2)(95
√
2−84) )xn + 1

n+2 ( 7
10 +

42( 7
10

√
2−1)√

2(95
√
2−84) −

95( 7
10

√
2−1)

95
√
2−84 )

= (n+1
n+2 +

42( 7
10

√
2−1)

(n+2)(95
√
2−84) )(xn −

1√
2
) + 1√

2
+ 1

n+2Bn

where Bn = − 1√
2

+
42( 7

10

√
2−1)√

2(95
√
2−84) + 7

10 +
42( 7

10

√
2−1)√

2(95
√
2−84) −

95( 7
10

√
2−1)

(95
√
2−84) = 0 so that

xn+1 −
1√
2

= An(xn −
1√
2

) (2.9)

where An = (n+1
n+2 +

42( 7
10

√
2−1)

(n+2)(95
√
2−84) ).

Since 0 < An < 1, we have xn+1 <
1√
2

.

Thus, by induction on n, we have xn < 1√
2

and the equation (2.9) is true for

n = 0, 1, 2, ... .
By (2.9), we have

|xn+1 −
1√
2
| = (

n∏
i=0

Ai)|x0 −
1√
2
| for n = 0, 1, 2, ... . (2.10)

Since 1−An = 1
n+2 −

42( 7
10

√
2−1)

(n+2)(95
√
2−84) >

1
n+2 for n = 0, 1, 2, ..., we have the series

∞∑
n=0

(1−An) =∞ so that lim
n→∞

n∏
i=0

Ai = 0 and hence lim
n→∞

xn = 1√
2

.

Case (ii) : 1√
2
< x0 ≤ 95

84 .

In this case, we show that xn+1 − 1√
2

= n+1
n+2 (xn − 1√

2
) and xn >

1√
2

for all n ≥ 0.

We assume that xn >
1√
2

for some n ≥ 0 so that

zn = xn+T1xn

2 = 1
2 (xn + 1√

2
) > 1√

2
, yn = xn+T2yn

2 = 1
2 (xn + 1√

2
) > 1√

2
, and

xn+1 = (1− 1
n+2 )xn + 1

n+2T3yn
= n+1

n+2xn + 1
n+2

1√
2

= n+1
n+2 (xn − 1√

2
) + n+1

n+2
1√
2

+ 1
(n+2)

1√
2

.

= n+1
n+2 (xn − 1√

2
) + 1√

2
so that

xn+1 −
1√
2

=
n+ 1

n+ 2
(xn −

1√
2

) (2.11)

and hence xn+1 >
1√
2

.
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Therefore, by induction on n, we have xn+1− 1√
2

= n+1
n+2 (xn− 1√

2
) and xn >

1√
2

for n = 0, 1, 2, ... so that |xn+1 − 1√
2
| = 1

n+2 |x0 −
1√
2
| for n = 0, 1, 2, ... and hence

the sequence {xn}∞n=0 converges to 1√
2

.

Hence the maps T1, T2 and T3 satisfy all the hypotheses of Theorem 2.2 and
for any x0 ∈ [ 7

12 ,
95
84 ], the Noor iteration procedure associated with T1, T2 and T3,

converges to the unique common fixed point 1√
2

of T1, T2 and T3.

We use MATLAB 13 software to find out the number of iterations at which the
sequence {xn}∞n=0 converges to the common fixed point 1√

2
of T1, T2 and T3.

Table 1. x0 = 0.6, αn = 1
n+2 , βn = 1

2 = γn

No. of iterations (n) xn yn zn

0 0.6 0.65355391 .8333333333
1 0.636001577 0.671554179 0.786161573
50 0.703107130 0.705106956 0.711129184

5000 0.707066766 0.707086774 0.707146798
50000 0.707102855 0.707104818 0.707110708
100000 0.707104829 0.707105805 0.707108733
150000 0.707105484 0.707106133 0.707108078
194105 0.707105781 0.707106281 0.707107781

The 194105th iteration has got the value of xn = 0.707105781 which approximates
the common fixed point 1√

2
of T1, T2 and T3 with an error less than 10−5.

Remark 2.1. If we choose γn ≡ 0, and T1 = T2 in Theorem 2.2 then Theorem
1.3 follows as a corollary to Theorem 2.2. Hence our result (Theorem 2.2) extends
Theorem 1.3 to three self maps.

3. Convergence of Abbas and Nazir iteration

We now define Abbas and Nazir iteration procedure associated with three self
maps T1, T2 and T3 in convex metric spaces as follows: For any x0 ∈ K,

zn = W (T1xn, xn, γn)
yn = W (T2zn, T2xn, βn)
xn+1 = W (T3zn, T3yn, αn)

(3.1)

where {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 are sequences in [0, 1].

Theorem 3.1. Let (X, d,W ) be a complete convex metric space and K, a nonempty
closed convex subset of X. Let T1, T2, T3 : K → K be self maps of K that satisfy

max
i,j=1,2,3

{d(Tix, Tjy)} ≤ w(M1(x, y)) for x, y ∈ K with M1(x, y) > 0,

where M1(x, y) is defined by (2.3) and w : (0,∞)→ (0,∞) is a map that satisfies the
relations (2.4), (2.5), and (2.6). Let {αn}∞n=0, {βn}∞n=0, and {γn}∞n=0 be sequences
in [0, 1]. Then the sequence {xn} generated by Abbas and Nazir iteration procedure
associated with three self maps (3.1) converges strongly to a unique common fixed
point of T1, T2 and T3.
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Proof. By using the same technique discussed in Lemma 2.1 and Theorem 2.2 of
Section 2, it is easy to see that the diameter cn of the set

Cn = {xk}k≥n∪{yk}k≥n∪{zk}k≥n∪
3⋃

i=1

({Tixk}k≥n∪{Tiyk}k≥n∪{Tizk}k≥n) is equal

to dn = max
i=1,2,3

{sup
k≥n

d(xn, Tixk), sup
k≥n

d(xn, Tiyk), sup
k≥n

d(xn, Tizk)} for n = 0, 1, 2, ...

and lim
n→∞

cn = c for some c ≥ 0.

We now prove that c = 0. On the contrary, we suppose that c > 0 so that
cn > 0 for n = 0, 1, 2, ... .
For a positive integer n, let k ≥ n. Then for i = 1, 2, 3 we have
d(xn, Tixk) = d(W (T3zn−1, T3yn−1, αn−1), Tixk)

≤ αn−1d(T3zn−1, Tixk) + (1− αn−1)d(T3yn−1, Tixk) ≤ w(cn−1).
Therefore sup

k≥n
d(xn, Tixk) ≤ w(cn−1) for i = 1, 2, 3 and n = 1, 2, 3, ... .

Similarly, sup
k≥n

d(xn, Tiyk) ≤ w(cn−1) and sup
k≥n

d(xn, Tizk) ≤ w(cn−1) for i = 1, 2, 3

and n = 1, 2, ... so that

cn = dn ≤ w(cn−1).

On letting n→∞, we have c ≤ w(c+),
a contradiction.
Therefore c = 0 and hence the conclusion of the theorem follows from the lines of
the proof of Theorem 2.2. �

Corollary 3.2. Let (X, d,W ) be a complete convex metric space and K be a
nonempty closed convex subset of X. Let T : K → K be a map such that

d(Tx, Ty) ≤ w(M(x, y)) for x, y ∈ K with M(x, y) > 0,

where M(x, y) is defined by (1.3) and w : (0,∞) → (0,∞) is a map that satis-
fies the relations (2.4), (2.5), and (2.6). Let {αn}∞n=0, {βn}∞n=0, and {γn}∞n=0 be
sequences in [0, 1]. Then the sequence {xn} generated by the modified Abbas and
Nazir iteration procedure (1.13) converges strongly to a unique fixed point of T .

Corollary 3.3. Let (X, ||.||) be a Banach space and K be a nonempty closed convex
subset of X. Let T : K → K be a quasi-contraction map, i.e., T satisfies the
inequality (1.2). Let {αn}∞n=o, {βn}∞n=o and {γn}∞n=o be sequences in [0, 1]. Then
for any x0 ∈ K, the sequence {xn}∞n=0 generated by Abbas and Nazir iteration
procedure (1.12) converges strongly to a unique fixed point of T .

The following example is in support of Theorem 3.1.

Example 3.1. Let X,K, T1, T2 and T3 be as in Example 2.1. Let {αn}∞n=0, {βn}∞n=0

and {γn}∞n=0 be arbitrary sequences in [0, 1]. Let x0 ∈ K and {xn}∞n=0 be the
sequence generated by (3.1) so that zn = (1− γn)xn + γnT1xn,
yn = (1−βn)T2xn +βnT2zn and xn+1 = (1−αn)T3yn +αnT3zn for n = 0, 1, 2, ... .
Here we note that T1, T2 and T3 satisfy all the hypotheses of Theorem 3.1. Further,
it is easy to see that x1 ≥ 1√

2
and xn = 1√

2
for n = 2, 3, ... so that the sequence

{xn}∞n=0 converges to the common fixed point 1√
2

of T1, T2 and T3.
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