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Abstract − The determination of leverage observations have been frequently investigated through ordinary least
squares and some biased estimators proposed under the multicollinearity problem in the linear regression models.
Recently, the identification of leverage and influential observations have been also popular on the general linear
regression models with correlated error structure. This paper proposes a new projection matrix and a new quasi-
projection matrix to determination of leverage observations for principal component regression and r-k class esti-
mators, respectively, in general linear regression model with first-order autoregressive error structure. Some useful
properties of these matrices are presented. Leverage observations obtained by generalized least squares and ridge
regression estimators available in the literature have been compared with proposed principal component regression
and r-k class estimators over a simulation study and a numerical example. In the literature, the first leverage is
considered separately due to the first-order autoregressive error structure. Therefore, the behaviours of first lever-
ages obtained by principal component regression and r-k class estimators has been also investigated according to
the autocorrelation coefficient and biasing parameter through applications. The results showed that the leverage of
the first observation obtained by principal component regression and r-k estimators is smaller than that obtained by
generalized least squares and ridge regression estimators. In addition, as the autocorrelation coefficient goes to -1,
the leverage of the first transformed observation decreases for PCR and r-k class estimators, while its increases while
the autocorrelation coefficient goes to 1.

Keywords − Autocorrelation, first-order autoregressive error, leverages, multicollinearity, biased estimators

1. Introduction

Regression analysis is used to model the effect of one or more regressor on the response. Multicollinearity,
defined as the correlation between the regressors, is a major problem to overcome in regression analysis. Ap-
plied data collection method, variable requirement at the model, or over fitted model may lead to multicollinear-
ity problem. It may not be the correct approach to omit one of the regressors that cause the correlations. For
example, there is a high correlation between the number of individuals in the family and family expenditures
when the socio-economic level is determined, and it is expected that the contribution of these variables to the
model will be high. In this instance omitting one of the regressors may reduce the explanatory percentage of
the model. The ordinary least squares (OLS) estimation procedure leads to unreliable and unstable estimates
of regression coefficients under this problem because the variance of the estimators are inflated. Some bias es-
timators that overcome to multicollinearity problem have been proposed in the statistics literature and are still
a popular topic that is being proposed (Hoerl & Kennard, 1970; Liu, 1993; Marquardt, 1970). Most popular
biased estimations are based on ridge and principal component procedures.

Another problem in the data set is that some observations may be located at different points in the regressor
space. The concept of leverage is being used in regression diagnostics as a measure of differently located ob-
servations in the regressor space (Steece, 1986). The leverage points are determined by the diagonal entries
of projection matrix which depend on only the regressor matrix. Myers (1990, p. 253) noted that which data
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points are high leverage may change if the model formulation is changed. However some authors have reviewed
leverage points for different estimators and have indicated that the position of the leverage point has shrinked
according to the used estimator procedure. For instance, Steece (1986) showed that the leverage values of rel-
evant observation reduce with increasing biasing parameter in ridge regression (RR) under the E(εε ′) = σ2In

assumption. It means that RR estimator with homoscedastic errors yield smaller leverage values than least
squares estimator does (Walker & Birch, 1988). Steece (1986) also noted that RR estimator can copes with the
outliers by down weighting of relevant influential observations. But it should be noted that even if the lever-
age’s are reduced as value, the important thing is the success in determining the leverage observations in same
spaces. Leverages should be carefully investigated to see if a reason for their unusual behaviours can be found.
Once the leverage has been determined, it can either be deleted from the dataset or be corrected (if possible).
But, the leverage points may contain useful information or may be systematically leverage point as described
in the following paragraph. In this case observation deletion may cause useful information loss.

The assumption of uncorrelated errors must be valid for the application of the OLS procedure to the linear
regression model. However, violation of this assumption which is called autocorrelation can be encountered in
practice. Working with time series data, the presence of some regressors which is not included in the model but
should be in the model or non-random measurement errors at the response may cause autocorrelation problem.
For example, if the change in one person’s income affects the other’s savings, autocorrelation exists. In time
series data, if the observations show inter-correlation, especially in cases where the time intervals are little,
the concept of autocorrelation occurs. Leverages in general linear regression model (GLRM) with autocorre-
lation problem has been considered by several authors (Özkale & Açar, 2015; Puterman, 1988; Roy & Guria,
2004; Stemann & Trenkler, 1993). Especially there are more studies under the autocorrelation problem from
the first-order autoregressive errors, AR(1). Because of the AR(1) structure, first observation can be leverage
based on the autocorrelation coefficient. For instance, Stemann & Trenkler (1993) noted that the leverages of
first observation obtained by generalized least squares (GLS) increase with increasing autocorrelation coeffi-
cient. Açar & Özkale (2016) report that the leverages of first observation obtained by RR increase to 1 while
the autocorrelation coefficient goes to 1. In this case, deleting technique will not be effective solution on the
first observation leverage’s. The first observation in the new data set will show the same behaviour versus the
autocorrelation coefficient. In such a case, could different estimators can be a solution? In this paper, leverage
concept which has been examined in general linear regression model with multicollinearity problem over the
RR estimator will be investigated for the other biased estimators such as principle component regression (PCR)
and r− k class estimators. The contribution of this paper to the statistics literature as follows: The projec-
tion and quasi-projection matrix for PCR and r− k class estimators, respectively, with AR(1) structure were
obtained. Some useful properties of the this matrices were investigated. Another contribution of this paper is
the examination of the behaviour of the first leverages obtained by PCR and r-k class estimators versus to the
different autocorrelation coefficients and biasing parameters.

The continuation of the study is structured as follows. The model and the estimators used throughout the
paper are presented as Materials and Methods. Also the proposed projection matrices for PCR and r− k class
estimators are given in this section. The applications are given as results and discussion. Finally, the results of
this paper are presented.

2. Materials and Methods
2.1. The Model and Estimators

The GLRM can be written as

y = Xβ + ε, E (ε) = 0, E
(
εε
′)= σ

2
Ψ (2.1)

where y is the response vector consisting of n lines, X = [1 x1 x2....xk] is an n× p, p = k+ 1 non stochastic
regressor matrix with x j=(x1 j x2 j...xn j)

′, β is the p-vector containing the regression parameters to be estimated.
Random errors from the normal distribution denoted by ε have zero mean and σ2Ψ variance.
The matrix of covariance for the errors can be given as
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• E(εε ′) =


σ2 0 0 · · · 0
0 σ2 0 · · · 0
0 0 σ2 · · · 0
...

...
...

. . .
...

0 0 0 · · · σ2

= σ2In

• E(εε ′) =


σ2

1 0 0 · · · 0
0 σ2

2 0 · · · 0
0 0 σ2

3 · · · 0
...

...
...

. . .
...

0 0 0 · · · σ2
n

= diag(σ2
1 ,σ

2
2 , ...,σ

2
n )

• E(εε ′) =


σ2 ρ1 ρ2 · · · ρn−1
ρ1 σ2 ρ1 · · · ρn−2
ρ2 ρ1 σ2 · · · ρn−3
...

...
...

. . .
...

ρn−1 ρn−2 ρn−3 · · · σ2

= Ω = σ2Ψ.

As it can be seen, there are 3 cases: In the first case, the errors have a constant variance and are not correlated
to each other. The model which has the first case error covariance matrix is called as linear regression model.
This state is optimal situation for applying the OLS procedure. The matrix with the second state shows a diag-
onal matrix whose elements on the diagonal are different, that is non constant variance. This state is known as
heteroscedasticity. When the constant variance assumption is violated, the weighted least squares estimator is
used. Final state shows the fundamental structure of this paper called as autocorrelation. That is, autocorrela-
tion problem refers to the situation where the errors are correlated, cov(εi,ε j) 6= 0 for i 6= j. There are several
structures under this problem such as autoregressive (AR) processes and moving average (MA) processes, as
well as a combination of both types, the so-called ARMA processes. A further assumption of this paper based
on the errors are modelled by AR(1) process.

Durbin Watson (DW) statistics proposed by Durbin & Watson (1950) tests whether the errors are in the AR(1)

structure in a model with a constant term (dw = ∑
n
t=2(vt−vt−1)

2

∑
n
t=1 v2

t
, where vt is the tth OLS residual).

The errors with AR(1) process are modelled as

εi = ρεi−1 +ui, |ρ|< 1, ui ∼WN(0,σ2
u ) (2.2)

where ρ denotes the autocorrelation coefficient and WN denotes the white noise. If ρ is not known, the estima-
tion procedure given by Judge et al. (1985) is used (ρ̂ = ∑

n
t=2 vt vt−1

∑
n
t=1 ν2

t
).

The variance-covariance matrix for AR(1) error structure is reported by Judge et al. (1985) as

E
(
εε
′)= σ

2
Ψ =

σ2
u

1−ρ2


1 ρ · · · ρn−1

ρ 1 · · · ρn−2

...
...

. . .
...

ρn−1 ρn−2 · · · 1

 . (2.3)

Ψ is a positive defined and symmetric matrix, so there is always a non-singular n×n matrix P with Ψ = PP′.
The matrix P−1 provides P−1Ψ

(
P−1

)′
= In which is as follows

P−1 =



√
1−ρ2 0 0 · · · 0 0
−ρ 1 0 · · · 0 0
0 −ρ 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · −ρ 1


.
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(2.3)
By multiplying the model 2.1 by P−1, the transformed model can be written as

y∗ = X∗β + ε
∗ (2.4)

where y∗ = P−1y =
(√

1−ρ2y1,y2−ρy1, ...,yn−ρyn−1

)′
,

X∗ = P−1X =


√

1−ρ2
√

1−ρ2x11 · · ·
√

1−ρ2x1k
1−ρ x21−ρx11 · · · x2k−ρx1k

...
...

. . .
...

1−ρ xn1−ρx(n−1)1 · · · xnk−ρx(n−1)k

 and

ε∗ = P−1ε =
(√

1−ρ2ε1,ε2−ρε1, ...,εn−ρεn−1

)′
are the transformed response vector, regressor matrix and the error vector, respectively. It can be easily seen
that the first row of y∗, X∗ and ε∗ exhibit different structures due to the AR(1). From this point of view, the first
observation makes important differences in the examination against autocorrelation coefficient. In the equation
2.4, the expected value of the error is E(ε∗) = 0 and the variance-covariance matrix is E(ε∗) = σ2

ε In.

Since the transformed model has homoscedastic and uncorrelated errors, the least squares method can be ap-
plied. As a result, the application of least squares to the transformed observations yield

β̂
GLS =

(
X∗′X∗

)−1 X∗′y∗ (2.5)

which is known as the GLS estimator (Aitken, 1935). Under the multicollinearity problem, X∗′X∗ matrix is
ill-conditioned. Although the GLS estimator is the best linear unbiased estimator (BLUE) in the GLRM, it
causes a large total variance when multicollinearity exists and in this case yields estimates should not be trusted
Trenkler (1984).

In GLRM model, the detection of multicollinearity techniques are similar to linear regression model. The most
famous technique is condition number (CN) which depends on a ratio of maximum to minimum eigenvalues
of X∗′X∗. Montgomery et al. (2001) noted that there is no serious multicollinearity problem when CN is
less then 100. Also, they noted that if 100 < CN < 1000 then there is a moderate multicollinearity problem
and if CN > 1000 then there is severe multicollinearity problem among the regressors. Trenkler (1984) has
addressed Hoerl & Kennard (1970)’s RR estimator which is well-known technique for reducing the variance
under multicollinearity and autocorrelation problems as follows

β̂
RR =

(
X∗′X∗+ kIp

)−1 X∗′y∗,k > 0 (2.6)

with bias(β̂ RR) =−k (X∗′X∗+ kIp)
−1

β . Here k represents the biasing parameter. Under the model 2.1, k can be
estimated by k = pσ̂2

β̂ GLS′ β̂ GLS where σ̂2 is the unbiased estimator of σ2 which is the most widely used estimation
method of k based on Hoerl et al. (1975)’s procedure. However, a major problem in RR is based on choosing
of k since the MSE(β̂ RR) and bias(β̂ RR) are also depends on the k (Kibria, 2003). Recommended estimated
procedures for the selection of k in the literature are quite a lot.

PCR is the another popular biased estimator used in the presence of multicollinearity. In PCR, the matrix X∗

is expressed in terms of its principal components. The singular value decomposition of X∗′X∗ is expressed

as X∗′X∗ = ΦΛΦ′ where Λ =

[
Λ1 0
0 Λ2

]
is a diagonal matrix with the entries are the eigenvalues of X∗′X∗,

Λ1 and Λ2 are the r× r and p− r× p− r diagonal matrices respectively such that the main diagonal entries
of Λ1 are the r ≤ p largest eigenvalues of X∗′X∗, while the main diagonal entries of Λ2 are the remaining
p− r eigenvalues. Φ = (Φ1 Φ2) is a orthogonal matrix corresponding to the kth column is the kth eigenvector
of X∗′X∗. Φ1 = (φ1, ...,φr) is an p× r matrix formed by eigenvectors which is corresponding to the largest
eigenvalues than 1. Φ2 = (φr+1, ...,φp) is the remaining eigenvectors, so that Φ′1Φ1 = Ir, Φ′2Φ2 = Ip−r, Φ′1Φ2 =
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0, X∗′X∗ = Φ1Λ1Φ′1 +Φ2Λ2Φ′2. By following Marquardt (1970), Trenkler (1984) gives the PCR estimator for
model (2.1) as

β̂
PCR = Φ1

(
Φ
′
1X∗′X∗Φ1

)−1
Φ
′
1X∗′y∗. (2.7)

β̂ PCR is biased estimator with bias(β̂ PCR) = [Φ1Φ′1− Ip]β .
Şiray et al. (2014) proposed the r−k class estimator as a combination of ridge and PCR estimators under model
(2.1) as below

β̂
r−k = Φ1

(
Φ
′
1X∗′X∗Φ1 + kIr

)−1
Φ
′
1X∗′y∗,k > 0. (2.8)

β̂ r−k is a biased estimator with bias(β̂ r−k) =
(

kΦ1 (Λ1 + kIr)
−1

Φ′1 +Φ2Φ′2

)
β .

Şiray et al. (2014) proposed the selection of k, which makes the r−k class estimator better than GLS according
to the mean of error squares as k = σ̂2

max
∣∣∣α̂2

i −
σ̂2
λi

∣∣∣ .
2.2. Proposed Projection Matrices for PCR and r− k Class Estimators

Several authors noted that one of the popular diagnostics methods to measure the impact of a particular
observation is based on the projection matrix (Puterman, 1988; Steece, 1986). Dodge & Hadi (2010) state that
this matrix is called as projection or called more commonly as hat matrix. The diagonal entries of the projection
matrix give the leverage of the relevant observation. The projection matrix maps y into the fitted y. Therefore,
the leverage points in the regressor space will differ according to the estimation procedure used by fitted y. For
example, Puterman (1988) stated that the diagonal entries of the projection matrix in OLS are dependent solely
on independent variables or regressor matrices as well as autocorrelation coefficient is effective on the diagonal
entries of the projection matrix when GLS is used. In addition, Steece (1986) noted that the biasing parameter
k is effective on leverage values when the RR estimator is used. The diagonal entries of projection matrix for
GLS estimator are given by Puterman (1988) as

hGLS
i,i = x∗i

(
X∗
′
X∗
)−1

x∗′i (2.9)

where x∗i is the ith row of X∗. For RR estimator the diagonal entries of projection matrix which is called as
quasi-projection matrix is given by Açar & Özkale (2016) as

hRR
i,i = x∗i

(
X∗
′
X∗+ kI∗p

)−1
x∗′i . (2.10)

To determine the leverages with the PCR and r− k class estimators for the model (2.1) is aimed in this paper.
Let us investigate the projection matrix for PCR and r− k class estimators. The response vector fitted by PCR
estimator is

ŷPCR = X∗β̂ PCR (2.11)

= HPCRy∗

where HPCR = X∗Φ1 (Φ
′
1X∗′X∗Φ1)

−1
Φ′1X∗′ is the projection matrix for PCR estimator. hPCR

i,i denotes the ith
diagonal entries of HPCR and hPCR

i, j denotes the off-diagonal entries of HPCR. The diagnostics entries of the
projection matrix for the PCR estimator is then

hPCR
i,i = x∗i Φ1Λ

−1
1 Φ

′
1x∗′i . (2.12)

The projection matrix HPCR has some important properties like the projection matrix of OLS (Cook& Weisberg,
1982) and GLS (Puterman, 1988; Stemann & Trenkler, 1993) estimators. We introduced this properties as
follow

(i) HPCR and (In−HPCR) are symmetric matrices

(ii) HPCR is an idempotent matrix, (In−HPCR) is also idempotent
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(iii)
n
∑

i=1
hPCR

i,i = trace(HPCR) = rank(HPCR) = r

(iv) trace(In−HPCR) = n− r

where r is the number of eigenvalues equal to or higher than 1.

When the r− k class estimator is used, the fitted values can be written as

ŷr−k = X∗β̂ r−k (2.13)

= Hr−ky∗

where Hr−k = X∗Φ1 (Φ
′
1X∗′X∗Φ1 + kIr)

−1
Φ′1X∗′. Hr−k is symmetric but is not idempotent matrix so it is called

quasi-projection matrix.

hr−k
i,i = x∗i Φ1 (Λ1 + kIr)

−1
Φ
′
1x∗′i (2.14)

is the diagonal entries of Hr−k.

3. Results and Discussion

All computations were performed using MATLAB R2013a.

3.1. Monte Carlo simulation

To determine the effect of ρ and k on the first leverages obtained by GLS, RR, PCR and r−k class estimators
a Monte Carlo simulation study was conducted. The following steps were followed;
Step 1: The sample size was taken as n = 100 and regressors number was fixed to p = 4.
Step 2: Following McDonald & Galarneau (1975), the correlated regressor variables are generated from

xi j =
(
1− γ

2)1/2
wi j + γwip, j = 1, ..., p, i = 1, ...,n (3.1)

where wi j are independent standard normal pseudo-random numbers and γ2 is the correlation between any two
regressor variables. γ2 were fixed to be as 0.99. The regressor matrix are centralized and standardized after xi j

was produced, so that the X ′X becomes the correlation form.
Step 3: The responses were generated from yi = β0 +∑

r
j=1 β jxi j +εi . ε ′i ’s are generated by Eq.(2.2) where ρ is

taken as |ρ|= 0.99, 0.90, 0.70, 0.50 and ui ∼ IN(0,1) .
Step 4: Following Kibria (2003), β was determined as the normalized eigenvector corresponding to the largest
eigenvalue of the X∗′X∗ matrix.
Step 5: P−1 matrix was created for each different value of ρ and the corresponding transformed response vector
and the regressor matrix were constructed.
Step 6: Three different values of the biasing parameter were used as k = 0.1, 0.5, 1.
Step 7: The experiment was replicated 1000 times. For each of them, the first leverages were obtained then,
averages and standard errors of leverage values were calculated for 1000 replications.
The average and standard error values of each state are given in Table 1.
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Table 1
Leverage values of first transformed observation according to different ρ and k

hGLS
1,1 hRR

1,1 hPCR
1,1 hr−k

1,1
ρ k Mean Std Er. Mean Std Er. Mean Std Er. Mean Std Er.
-0.99 0.1 0.0008 0.0005 0.0007 0.0003 0.0008 0.0006 0.0007 0.0000

0.5 0.0008 0.0005 0.0006 0.0008 0.0008 0.0006 0.0006 0.0004
1 0.0008 0.0005 0.0004 0.0007 0.0008 0.0006 0.0004 0.0002

-0.90 0.1 0.0081 0.0087 0.0058 0.0048 0.0006 0.0011 0.0006 0.0002
0.5 0.0081 0.0087 0.0030 0.0021 0.0006 0.0011 0.0006 0.0009
1 0.0081 0.0087 0.0020 0.0036 0.0006 0.0011 0.0006 0.0002

-0.70 0.1 0.0263 0.0625 0.0178 0.0222 0.0020 0.0047 0.0020 0.0031
0.5 0.0263 0.0625 0.0087 0.0151 0.0020 0.0047 0.0019 0.0012
1 0.0263 0.0625 0.0059 0.0038 0.0020 0.0047 0.0019 0.0041

-0.50 0.1 0.0457 0.0569 0.0295 0.0378 0.0037 0.0079 0.0037 0.0039
0.5 0.0457 0.0569 0.0140 0.0205 0.0037 0.0079 0.0036 0.0046
1 0.0457 0.0569 0.0095 0.0137 0.0037 0.0079 0.0036 0.0041

0.50 0.1 0.0691 0.0625 0.0539 0.0236 0.0297 0.0191 0.0296 0.0430
0.5 0.0691 0.0625 0.0390 0.0521 0.0297 0.0191 0.0291 0.0774
1 0.0691 0.0625 0.0342 0.0750 0.0297 0.0191 0.0286 0.0156

0.70 0.1 0.0764 0.1083 0.0682 0.0819 0.0543 0.1000 0.0537 0.1208
0.5 0.0764 0.1083 0.0578 0.0548 0.0543 0.1000 0.0516 0.0771
1 0.0764 0.1083 0.0528 0.1083 0.0573 0.1000 0.0491 0.0590

0.90 0.1 0.1673 0.3888 0.1529 0.0417 0.1612 0.1361 0.1468 0.0305
0.5 0.1673 0.3888 0.1152 0.1333 0.1612 0.1361 0.1133 0.1722
1 0.1673 0.3888 0.0885 0.1555 0.1612 0.1361 0.0873 0.0264

0.99 0.1 0.6682 0.5998 0.1539 0.1611 0.0007 0.0016 0.0006 0.0008
0.5 0.6682 0.5998 0.0380 0.0062 0.0007 0.0016 0.0005 0.0009
1 0.6682 0.5998 0.0197 0.0197 0.0007 0.0016 0.0004 0.0004

The comments obtained from Table 1 are as follows: The reason of the decrease in the leverage values of first
transformed observation when PCR and r− k estimators are used is the change in r. As also observed in the
numerical example, if r does not change and the autocorrelation coefficient positively increases the leverage
value of first transformed observation increases. The attitude towards autocorrelation coefficient of the first
transformed observation obtained with GLS and RR was in parallel with the literature so that the first leverages
increased when ρ→ 1. And also the leverage values of first transformed observation decreased with increasing
k. This decrease was more evident on the RR estimator. In all cases, the first leverages obtained by PCR is
smaller than GLS. Moreover, the first leverages obtained by r− k class is smaller than RR.

3.2. An Example: Macroeconomics Data

To demonstrate the leverage points in PCR and r− k class estimators, Macroeconomics Data given by
Gujarati (2004, p. 794) was used. And the data was used to compare the results of PCR and r− k class
estimators with the outputs of GLS and RR estimators. The variables as follows: y is the quarterly US data
on gross domestic product (GDP) growth, x1 is personal disposable income (PDI), x2 is personal consumption
expenditure (PCE), x3 is corporate profits after tax (Profits) and x4 is net corporate dividend payments. All
data are in billions of 1987 dollars and are for the quarterly periods of 1970–1991, for a total of 88 quarterly
observations. The main model was constructed as follows:

y = 1β0 + x1β1 + x2β2 + x3β3 + x4β4 + ε = Xβ + ε. (3.2)

The regressor matrix X was centralized and standardized; that is, ∑
n
i=1 xi j = 0, ∑

n
i=1 x2

i j = 1, j = 1,2,3,4 as the
X ′X is in correlation form. The relations between the regressors were obtained as follows,
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X ′X =

x1
x2
x3
x4


1

0.9970 1
0.8469 0.8521 1
0.9823 0.9842 0.7894 1

 .

Durbin-Watson test as dw =0.4784 which indicated that the positive autocorrelation existed in data. The au-
tocorrelation coefficient was obtained as ρ̂ = 0.7596. Figure 1 shows the graphs of autocorrelation function
(ACF) and partial autocorrelation function (PACF). It is observed that the first lag is statistically significant and
all the others are not significant. This indicates a possible AR(1) model for this data set.
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Figure 1. ACF and PACF for the Macroeconomics data

The strong relations between regressors drew attention to multicollinearity problem. The CN was obtained as
CN = 32592.5 (λ1 = 88, λ2 = 3.7516, λ3 = 0.2514, λ4 = 0.0142, λ5 = 0.0027) which indicated that there was
a serious collinearity problem in the data set.
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Figure 2. Condition number versus ρ for the Macroeconomics data

It can be seen from the Figure 2 that the CN decreased when the autocorrelation coefficient increased in positive
direction. In the negative autocorrelation zone, the CN increased when ρ →−1. It can be inferred from the
graphs that the eigenvalues are significantly affected by the autocorrelation coefficient. Leverage values of all
observation over the different estimators are given in Figure 3. Note that these results were only taken into the
estimated ρ̂ = 0.7596 and k = pσ̂2

β̂ GLS′ β̂ GLS = 7.5806e05 for RR estimator and k = σ̂2

max
∣∣∣α̂2

i −
σ̂2
λi

∣∣∣ = 6.1112e05 for
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r− k class estimator.
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Figure 3. Leverage values at estimated ρ and k for the Macroeconomics data

In Figure 3, krr represent the biasing parameter for RR estimator and kr−k represent the biasing parameter
for r− k class estimator. As it can be seen in Figure 3, the first transformed observation was leverage point
according to all the estimators for model 2.1. In addition, when the GLS and RR estimator were used 22, 65
and 70th observations were leverage points according to other observations at estimated ρ and k. Whereas,
when PCR and r−k estimators were used, there were no leverage points except 1 in the regressor spaces. That
is, PCR and r− k estimators shrank the leverages of 22, 65 and 70th observations on the regression spaces.
The focus of this paper is the first transformed observation and to observe the behaviour of this observation
against the autocorrelation coefficient and the biasing parameter. Many authors have studied the behaviour of
first observation on the model with AR(1) error structure. For instance, Puterman (1988) showed that the first
observation in a constant mean model ( y = β01+ ε) and a regression through the origin model (y = β0x1 + ε)
with AR(1) errors could have a large influence on regressor space. When the GLS is used, the first leverage
goes to 1 at ρ → 1 for a constant mean model while it goes to 0 at ρ →−1 for a regression through the origin
model. Stemann & Trenkler (1993) expanded Puterman (1988)’s investigation to the model which contained
multiple regressors and they noted that if the model had constant term, then the first leverages close to 1 at
|ρ| → 1. Let’s examine the behaviours of first leverages for different ρ and k.
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Figure 4. Leverage values of first transformed observation versus ρ according to different estimators for the
Macroeconomics data
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It can be realized in Figure 4 that the first transformed observation has a large leverage value as |ρ| → 1. The
first leverages decreases to 0 as ρ →−1. That is, the first observation is not leverage on regressor space no
matter which estimators are used while ρ goes to -1. GLS and RR estimators gave close leverage values in
all cases and PCR and r− k estimators too produced close values in all cases. But as we can see, GLS and
RR estimator pairs offer higher leverage values than the pairs of PCR and r− k estimators. The reason for
the rapid decline of the first leverages obtained by PCR and r− k estimators at ρ ∼= 0.4992 is that r = 2 at
the −1 < ρ < 0.4992 while r = 1 at the 0.4992 < ρ < 1. Let’s examine the first leverages against the biasing
parameter, k. Because the GLS and PCR estimators do not contain k, these estimators were not included in the
graphical representation.
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Figure 5. Leverage values of first transformed observation versus k according to RR and r− k estimators for
the Macroeconomics data

It is evident in Figure 5 that the first leverages decrease with increasing k.

4. Conclusion

In this paper, a new projection matrix and a new quasi-projection matrix obtained by PCR and r− k class
estimators in the linear regression model with first-order autoregressive errors have been proposed. It has been
emphasized that the projection matrix obtained by PCR have some important features like the projection matri-
ces obtained with GLS and OLS. That is, the projection matrix of PCR estimator is symmetric and idempotent.
Since the first transformed observation has required special investigation due to the structure of AR (1), the first
leverages obtained by PCR and r− k class estimators have been compared with GLS and RR estimators over
a Monte Carlo simulation and numerical example. The first leverages obtained by PCR and r− k class estima-
tors were smaller than those obtained by GLS and RR. This paper revealed that the first leverages obtained by
PCR and r− k class estimators increased by the autocorrelation coefficient in AR(1) structure. Also, the first
leverages obtained by r− k class estimators decrease with increasing k.
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Şıray, G.Ü., Kaçıranlar, S., & Sakallıoğlu, S. (2014). r− k class estimator in linear regression model with
correlated errors. Statistical Papers, 55(2), 393–407. https://doi.org/10.1007/s00362-012-0484
-8

Trenkler, G. (1984). On the performance of biased estimators in the linear regression model with correlated
or heteroscedastic errors. Journal of Econometrics, 25(1/2), 179-190. https://doi.org/10.1016/
0304-4076(84)90045-9

Tripp, R.E. (1983). Nonstochastic ridge regression and effective rank of the regressors matrix, unpublished
Ph.D. dissertation, Virginia Polytechnic Institute and State University, Dept. of Statistics.

Walker, E. & Birch, J.B. (1988). Influence measures in ridge regression. Technometrics, 30(2), 221-227.
https://doi.org/10.2307/1270168

363

https://doi.org/10.1007/s00180-015-0615-5
https://doi.org/10.1017/S0370164600014346
https://doi.org/10.1080/02664769922052
https://doi.org/10.2307/2332391
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1080/03610927508827232
https://doi.org/10.1081/SAC-120017499
https://doi.org/10.1080/03610929308831027
https://doi.org/10.2307/1267205
https://doi.org/10.2307/2285832
https://doi.org/10.1080/03610926.2013.781646
https://doi.org/10.1080/03610926.2013.781646
https://doi.org/10.2307/2347495
https://doi.org/10.1080/03610928608829333
https://doi.org/10.1080/03610929308831088
https://doi.org/10.1080/03610929308831088
https://doi.org/10.1007/s00362-012-0484-8
https://doi.org/10.1007/s00362-012-0484-8
https://doi.org/10.1016/0304-4076(84)90045-9
https://doi.org/10.1016/0304-4076(84)90045-9
https://doi.org/10.2307/1270168

	Introduction
	Materials and Methods 
	The Model and Estimators
	Proposed Projection Matrices for PCR and r-k Class Estimators

	Results and Discussion
	Monte Carlo simulation
	An Example: Macroeconomics Data

	Conclusion

