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Abstract

By thinking the magnetic flow connected by the Killing magnetic field, the magnetic field
on the setting out particle orbit is investigated in Q? € E3. Clearly, dealing with the Killing
magnetic field of @ -magnetic curve, the rotational surface generated by & -magnetic is expressed
in Q% c E}, and the variant kinds of axes of rotation in lightlike cone Q% C E is given.
Furthermore, the specific kinetic energy, specific angular momentum and conditions being
geodesic on rotational surface generated by & -magnetic curve are expressed with the help of

Clairaut's theorem.
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Q*cE i'de Ozel Manyetik Egri Tarafindan Olusturulan Manyetik Yiizeyler Uzerine

Farkh Bir Yorum
Oz
Killing manyetik alan ile baglantili manyetik akis diisiiniilerek, parcacik yoriingesindeki
manyetik alan Q% C E3 uzayinda incelendi. Agikgasi, Q? € E; Lightlike cone uzaymnda farkl
tipten donme ekseni verilerek a -manyetik egrinin Killing manyetik alan1 kullanilip @ -manyetik
donel yiizey Q% C E3 uzayinda ifade edildi. Ayrica, elde edilen manyetik yiizey iizerinde

spesifik kinetik enerji, spesifik agisal momentum ve donel yiizey iizerinde @ -manyetik egrilerin

jeodezik olma kosullar1 Clairaut’s teoremi yardimui ile ifade edildi.

Anahtar Kelimeler: Manyetik egri; Null koni; Killing vektor alani; Spesifik kinetik enerji;

Spesifik agisal momentum.
1. Introduction

The geodesics have been commonly studied in Riemannian geometry, metric geometry and
general relativity by a lot of mathematicians. More definitely, a curve on a surface is called to be
geodesic if its geodesic curvature is zero. The geodesic equations are given by constant of motion
due to energy, many approaches that reflect serious use of energy idea are introduced in many
books according to concerned topics. However, it seems attractive to use the relativistic energy
in describing the central force problem. Furthermore, the equation of action including the energy
and angular momentum are a natural topic using by many applications. Though we consider about
the submanifolds of the pseudo-Riemannian space forms, also we can obtain less studying on

submanifolds of the pseudo-Riemannian lightlike cone than we think.

In [1], different magnetic curves were found in the 2 —dimensional lightlike cone using the
Killing magnetic field of magnetic curves by the authors. Also, some characterizations and
definitions and examples of these curves with their shapes were given. Studying on the degenerate
submanifolds of Lorentzian manifolds with degenerate metric was studied by a lot of
mathematicians finding out significant connection between null submanifolds and spacetime [2].
In [3, 4], the authors gave some knowledge about magnetic curves corresponding to a Killing
magnetic fields. The magnetic curves on a Riemannian manifold (M, d) were defined orbits of
charged particles setting out on M under the motion of a magnetic field F. Namely, each trajectory
& is obtained by solving the Lorentz equation Vg6’ = 1(8"), where 9 is the Lorentz force as to

F and V is the Levi Civita connection of d, [4]. A magnetic field F on M is a closed 2 —form on
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(M, d) and it is related to F with a (1,1)-tensor field 1, is said to be the Lorentz force. They are
associated as to d(Y(X),Y) = F(X,Y), for any vector fields X,Y on M, [5]. In [6], the magnetic
flow combination by the Killing magnetic field was examined by Bozkurt et al. in a three-
dimensional orientated Riemannian manifold (M3,d). For the study of the magnetic curves
associated to magnetic fields on arbitrary dimensional spaces, we also refer the reader to
[7-9]. References [10-13] contain detailed information about surfaces and curves. In [14], the
authors expressed a precise classification of the magnetic curves of the resembling magnetic field
for an discretionary 3-dimensional normal paracontact metric structure equipped by a Killing
characteristic vector field. In [15], magnetic curves as to the Killing magnetic field W in the R3
were examined by the authors. In [16, 17], the authors expressed some characterizations about
curves in 3-Dimensional null cone. In [18], the expressions of the cone curvature function and
cone curves were investigated by the author. In [19], the functions of the cone curves that was

defined and the formulas of the curves were also given by the author in Q2 and Q3.

The physical properties as energy and momentum are replaced by the specific quantities
found by partitioning out the mass, and the term of the motion is very considerable in terms of its
specific energy and specific angular momentum. In an evident sense, it is considered that use of

relativistic energy is required and considerable.

Hence, we can say that the specific energy of the particle is constant because of the point
of view of its motion in space as the physical approach according to references [20, 21], it is only
accelerated perpendicular to the surface. If a force is accountable for this acceleration, that is to
say the normal force which supplies the particle on the surface, since it is perpendicular to the
velocity of the particle. Therefore, we can say that its energy and specific energy E must be

constant. Resembling the speed must be constant along a geodesic according to this cause.

In this study, the specific energy and specific angular momentum on rotated surface
generated by @ —magnetic curve are tried to express in Galilean space and that the speed is
constant along a geodesic is shown using Clairaut’s theorem. Furthermore, using some parameters

geodesic formulas are given.
2. Preliminaries
Let E3 be the 3 —dimensional pseudo-Euclidean space as follows

dX,Y) =(X,Y) = x1y1 + X232 — X3Y3,
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for all X = (xq,%2,%3), Y = (¥1,¥2,¥3) € Ef. E} is a smooth pseudo-Riemannian manifold

pointing out by (2,1).

Let M be a submanifold of E3. If the pseudo-Riemannian metric d of E} is reduced a
pseudo-Riemannian metric d (in turn in order, a Riemannian metric, a degenerate quadratic form)

on M, then M is named a timelike ( in turn in order, spacelike, lightlike) submanifold of E.
The lightlike cone is given by
Q% ={6 € E}:d(5,6) = 0}.

Avector X # 0 in E} is called spacelike, timelike, null, if (X, X) > 0, (X, X) < 0, (X, X) =
0, in turn in order. A frame field {8, @, y} on E3 is called an asymptotic orthonormal frame field,

if following equals hold
(6,6) =y, y) =6, @) =(y,@) =0, (6,y) =(a,a) = 1.

Let the curve §:1 - Q% c E} be a regular curve in Q? for £ € I and for &'(§) = a(é),
using an asymptotic orthonormal frame along the curve §(¢) and the cone Frenet formulas of

8(&) are written as follows
§'(5) = a($)
a'(§) =Kk(§)s(6) —y(&) (1)
y'(§) = —k(©a(d),

where cone curvature function of the curve 8(§) is expressed by the function x(€), [18].

Let 5:1 - Q? c E3 be a spacelike curve in Q? with arc length parameter s. Then the curve

6 = 6(s) = (61, 63, 63) can be taken down by
g—l
5(s) = %(g2 -1,2g9,9° + 1),

for some non constant function g(s) and g = g', [19].

The Lorentzian cross-product X: E X E — E3 is expressed with following formula

i j -k
Bxg¢= [31 B2 B3 ],
G1 G2 G3
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where B = (B, B2, B3), ¢ = (S1,62,63) € E3. Here i, j, k indices are used as common meaning.
We can express that this product has resembling algebra properties as the cross product in E3,

Thus, it is antisymetric and § X ¢ is ortogonal on both 8 and ¢.

The Lorentz force 1y of a magnetic field F on Q2 is defined to be a skew-symmetric operator

given by
d(X),Y) = F(X,Y),
forall X,Y € Q2, [5].
The @ —magnetic trajectories of F are § on Q? that satisfy the Lorentzian equation [5]
Vg6 =(6').
In addition, the mixed product of the vector fields X,Y,Z € Q? is defined by
dX xXY,Z)=dvy(X,Y,Z),

where a volume on Q? is denoted by dv, and if W is a Killing vector in Q2 and let F, = 1,,v0l,
be the Killing magnetic field and the inner product is expressed by t. Thus, the equation Lorentz

force of Fyy, is given by
Y(X) =W x X,vX € Q2.
Clearly, the Lorentz equation is expressed as [5]
Vsrd' =9(6') =W x§".

In E13 , to think over the Killing vector field W = ads + bd, + cay, a,b,c € Ry, solutions

of the Lorentz equation given by
8" =W x4§',
are the magnetic trajectories 6:1 —» Q? ¢ E3 determined by W, [5].

Definition 1. Let y be a curve given by

() = (xw(s), v(s)), y(w(s), v(s)), z2(w(s), v(s)))
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which is an arc-length parametrized geodesic on a surface of revolution. We need the differential
equations satisfied by (w(s), v(s)). Denote the differentiation with respect to s by an overdot.

From the Lagrangian
L =w? + pp?, )
we obtain the Euler-Langrange equations
a (oL oL a (oL aL - Lo d
a(%z>=ﬁ:£<3—_”>=a_vor“=ﬁ’ﬂ Vg (Pr*) =0, (3)

so that is a constant of the motion [5, 15].

Theorem 1. (Clairaut’s Theorem) Let y be a geodesic on a surface of revolution S, let p be
the distance function of a point of S from the axis of rotation, and let 6 be the angle between y
and the meridians of S. The psin® is constant along y. On the contrary, if psiné is constant along

some curve Y on the surface, and if no part of y is part of some parallel of S, then y is a geodesic

[5].

Definition 2. A one-parameter group of diffeomorphisms of a manifold M is a smooth

map P: M X R — M, such that ¢, (x) = ¢@(x,t), where
1. @2 M — M is a diffeomorphism,
2. @y =id.
3. Psit = Y500
This group is associated with a vector field W given by %qot(x) = W (x), and the group of

diffeomorphisms is called the flow of W [22].

If a one-parameter group of isometries is generated by a vector field W, then this vector

field is called a Killing vector field [22].
3. The Expression of @ —Magnetic Curves in Q c E3

In this section, a new kind of a magnetic curve called @ —magnetic curves in Q* ¢ E3 and

some theorems are given.
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Definition 3. Let §:1 - Q2 c E3 be a spacelike curve in Q% and F;, be a magnetic field
on Q% c E3, the curve § is called as @ —magnetic curve if its W, vector field satisfies the Lorentz

force equation [1]
Vya =% a) =W, X a.

Theorem 2. Let 5(s) be a spacelike a —magnetic curve in the Q% c E3 with the

asymptotic orthonormal frame {6, , y}. Hence, the Lorentz force is expressed by

w; 1 0
Yy*=1k 0 -1 ] 4
0 -k -w;

where w; is a function defined by wy; = d(@¥*(6),y) [1].

Theorem 3. Let § be a spacelike curve in the Q% c E3. The curve § is an @ —magnetic

trajectory of @ —magnetic field W, if and only if the vector field W, is written by
Wa = $ch_f > (5)
and & is a geodesic curve, where w; = d(Y¥%(6),y), the cone curvature function k(¢) = —1[1].

Theorem 4. Let § be an a —magnetic trajectory generated by the Killing vector field

W, = Fw;@ in Q% c E3. Then the curve § is written by
84(§) = 6(0) +cs, (6)

where ¢ = + Wi € Ry. Remark that, if W, = Fw, & holds, the magnetic curve § is a straight line
1

in the direction of W, [1].
4. The Surface of Rotation Formed by & —magnetic Curve in Q? c E3

In this section, using @ —magnetic trajectory, a new kind of a magnetic surface of rotated
by @ —magnetic curve is defined, and some characterizations are given in Q? c E;.

Theorem 5. Let § be an @ —magnetic trajectory as to the killing vector field W, in Q% c

E3}. Then

i) The rotational surface A% (&, t) formed by the Y% is given by
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2ksinh(w, &) N 2kcosh(w; &)

" " (at + b)
2 2¢5 a )
-1 —%—i—ﬁwlewls‘ +( S'E +...)
Aa(f, t) — 1 , 264 :
(cosh(v2ké) + KV:} +...)(at + b),
w1é _ 2¢5
('“;/1 — 2k?sinh(V2K§) + (% +..))(at + b)

ii) The Gaussian and mean curvatures of the rotated surface AY generated by &, (t) are

given by
2
(K KWy + V2rk?k'\ (2
wy VK w?
K = )
b¢y
k'+rkw, | V2r%K!
( W1 § Vie ) 2K\ 2
4’ | 2k +2kwi -
W21 wq _11 +
] _ 3
H = 2&; 1 +2M/1 +W1
T L 2
K (W1 1+w1) 1_<L>
Wl

! !
k'K (2k-1 | 2k
+—( —+ —)
wy \ w w

1 1
2k—1 2K’
7t —
Wl Wl

K' + kwy 2K
CRLTAY Y

2a wy wy

w2& | V2K%K! k' +rwy\ |
UL+ —
Ve /K[ W
w | V2rik'
+
Vi

where the previous equations are consisted without loss of generality for &,t = 0.

iii) If k =constant, the Gaussian and mean curvatures of the rotated surface A generated

by 6, (t) are given by

$3 g = %

K =5 a7
¢z 20>

where
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p2 <(%+ f) — k2(1 — 2KkV2K)? )( 2t 2)( 1+W1)_:v_21>

_((Z;c/ 1, 2)( 1+w1)—;€/—21(1—2K\/E)b>

1

$r =

)

$3

1

2
21

—8bh%K5 ( " + W2> ,

bzk(ka1 -1+ wf)(l - ZK\/ZK)

1 (2K-1 2
W—( 2 + W1>
+2K2p2| PN

7 —(1 - 2kV2K) (Vi—i+w1—1) <(V2”_i+wl_1)2+1_(wll>z>

1
—kb?w +w?))
+ W2)>
1

Proof. We will research one parameter group of Lorentz of transformation which is

—2 <(2';; 1y wf)(j/—x —1+w) - fv—j (1- z;c\/ﬂ)b) <2bx2\/ﬂ(

1 1

where the curvature of the curve 6 is k and 6,(t) = (0, at + b,0), a # 1, b € R,.

unchangeable all points on the & —axis. It necessitates the Killing vector field to supply W, (§) =
wya(§). Hence, we can use 3 X 3 matrix %, and we can write the one parameter group of
homomorphism ¢¢ (8, @, y) expressed as ¢ (8) = Y% p¢(6). Therefore, we find ¢ = e$¥¢ and

calculating the matrix exponential, we have
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2ksinh(w4 &)
T wiz
w, sinh(vZEE) +2'€C+h(wls‘>
_1 !
+cosh(v2ké) 41255 w1
—wye1é (5, + 2
4Kw, &5 +) *
+( * T +...
+...) w3
62
T
k(cosh(w, &)
M) = | oo o) | "
%\1/\”_15)) cosh(vV2ké) coshws§)
3 2kwiEd .
2ty 4 2wl
2wy Kk2Es *o. !
+(14—!+...) +...
Wit kcosh(vV2ké)
e cos(ws) m et
w1 —2k2sinh(vV2k§) _ §sinh(V2k§)
2K°¢ —4(rew4)?&5 \/32_’{5
4! TR
+... :( 5! O
) +...)

where —oo < & < oo, Here, we deal with the Lorentz force y* rotation for @ —magnetic curve.

Also, we say rotating a curve taking the rotation matrix [1*(), and here the axis of rotation is

written as W, (&) = wya(§). Barely, we can carry any point in Q? to the a —axis using some
expressions, we can suppose that the curve &, lies on @ —axis. Therefore, we can give one of its

parametrizations as follows

8.(t) = (0,at + b,0),a # 1,b € R,.

Namely, the rotated surface Ay, around W, can be parametrized by

0
A%(E, ) = I%(8) X |at + b
0
2ksinh 2 h 2 425
= (( Ksmwi(wlf) + KCOSWl(Wlf) —1- W% - % +wieif 4 ( st +..))(at +b),
2KwWEEr
(cosh(v/2k&) + 2 +...)(at + b),
wié _ 2¢5
(K‘; — 2k2sinh(V2KE) + (% +.)(at+b)); —w<E<ootel
1 H
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Hence, we have researched the rotated surface A* without loss of generality we suppose

that &, t = 0. Then, we get the first and second fundamental forms as follows
o (2k-1 | 2k’ 2 K rewy | 2P\
E=b <(W21 +W—1> - (e ))
_ 2k=1 , 2"\ (26 Kk (K 4rwy | V2K
P (G5 (G- 1) - (S 5E)
2 2
— g2 (%€ _ L
G=a <(W1 1+W1) +1 (W ) ),

k' +rw, V2K (4K’ 2K" + 2kw? s, (2K
+ . —2+——1+W1—K(——1+W1)
L = ab? e Vi Vi " v

K'k(2k—1 2K’ '
+ —+—
w; w? w

1

o2 (K ewy | V2K (2 A
M = ba <( T X )(W2)> N=0;

1

(K’+Kw1 VZKZK’)
—+
Ve )’

wq K
_ K (2=1 | 2"\ (2K k' +rw,y \/EKZK’)
(2;«;1 +2_1c’>
w1 Wi

Hence, these results in the first and second fundamental form are given by

2c—1 2'\* (K +xkw, V2K2K' 2 2K z K\
W2 +W - w + \/E . (W——1+W1) +1- W_
2k—1 2K\ (2K Kk (K +rw; 2Kk

- —+ (— -1+ wl) - +
w? w_/\wy w

wy Vi
VEK? :
_ 2 a4 (K +rewq 212\ [ 2
IIAtll = —b“a <(W—1+T)(W_21)> .

So, by using formulas, we obtain the Gaussian and the mean curvatures as follows

((amem)(@)
N AV
K_

- b¢ '
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K + KWy N V2K K
wq \/E

) " 2
4k 2k -I-ZKW% 3 . —K_l 2K 2 K 2
H:_a —+———1+wi—k|w (——1+W1> +1—-|—
251 w wi +w, wq w,

(e ey (2 ) (e, )

Wf $1 Wy \/E WE W, ) \Wy 1 Wy \/E

If k =constant, we can give the following equations for K and H,

2
E= bz((zfvgl + wf) — k21 — 2kV2K)2),
1
F=liw)E—1+w)—< (1 - 26v20)b
w? 17w 1 wq ’

2
G=(VZ’V—"+W1—1)2+1—(WL),
1 1

L =b%k(2kw —1+w3)(1 - 2kV2k)

1 2k-1 2k
+2K*D* (wT G tw — A= 2V20 G- +w, ~ 1))
—szwl(z":/;ll + Wf))' M = ZbKZV ZK(% + Wf)’ N =0;
k(1 — 2kV2k),
i 2Kk-1 2\ . Z_K _
|
2K-1
( :/2 +w?)

1

And, these results in the first and the second fundamental form are given by

2
b2 <<2';V_2 L, wf) —K2(1— 2;&%)2) . <(2';; LowyEE1hw) - ﬁ)

_ 1 1 W, W1

IA%_ 2 ={2
21wy 1w )= (- 2eZob
G+ WG = 14 w) = (1~ 2920

1

2
I1,g = —8b2KcS (va_;l+ w2> - &

1
1
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LN-M? _ 1LG-2MF+NE

H =
EG-F2’ 2 EG-F2

By using formulas K = , we have the Gaussian and mean

curvatures as follows

&3
K==,
$)
b*k(2kw, — 1+ w3)(1 — 2xv/2k)
1 2k-1 2
- v Cor + WD)
+2K°b 2
-(1- ZK\/ZK)(W—1 +w, —1)
2Kk—-1
—Kb?w, ( ;21 +w?))
-1 2 {4
H==2| (2 o (x S}
20, <(W1+W1 De+1 (Wl) ) 20,
21 2\ (2 _
() =)
KZ
—W—1(1 — 2KkV2K)b
(Zbiczx/ZK(ZK_1 + Wz))
w2 1

1000

-20000 t.

!
E
L

20000
—_
T——

L

Figure 1: The o — magnetic surface formed by the W, trajectory

4.1. The Clairaut’s Theorem on magnetic surface generated by a —magnetic curve in

Q? c E}

In this section, Clairaut’s theorem is given on magnetic surface generated by & —magnetic
curve in Q2 c E3. Also, the general equations of geodesics on surface formed by an @ —magnetic

curve in Q? are expressed.

Theorem 6. Let A% (&, t) be the @ —magnetic surface generated by @ —magnetic curve and

let 5,(t):1 € R — Q? be a regular curve in Q2. Then the following statements are held
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1. For h(§) =constant, the following equation supplies

2= (sinh?(w,§) + cosh? (w; ) - 2(% + f)sinh(w, &)
0= | ~2cosh(wi&) (£ + L) + Zsin(2v2¢) + g'cos(VZE) |
—\/ngin(\/if) + Z(Wi? + M%)sinh(Zwlf) +ff'+g9

Hence, the Lagrange equation on the magnetic surface A% (¢, t) is given by

E(§,0)& + G(§)t2 = L.

2. The curve §(s) = A*(&(s),t(s)) is a geodesic on the surface A% (&, t) if and only if the

following equations satisfy

&= Coseds+08(orf fcose ), 2 [ E(¢,t)dE = css + ¢,

at+b at+b

0=26()i—{J DED eds + 4,

or

t = [ sinfds(ort = [ sinfds + ¢3), t =

26(5) +C2

2E(§,0)E = Ggt? — Eg&?,
where c¢; € R,.

Proof. Let A*(§,t) be the magnetic surface generated by o —magnetic curve and let

8.(t):1 € R - Q? be a regular curve in Q? are parametrized by

2ksinh(wq§) 2Kcosh(wlf)

( w3 + + f(§))(at + b),
A%(&,t) = | (cosh(V2k&) + g(f))(at + b), )
2K
where
FO=-1-F-Srment + 254 ©)
9(6) = Z2E 4 h(p) = ey
Also,
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(V2 + 2 €) sinh(v2K) + g (f))(at+b) = (at + b)N;,

—4xi’ smh(\/ﬁf)
2K’ \/ﬁ + —f cosh(\/ﬁf) +h'(§)

+ 2K smh(wlg‘)
x (at + b),
Cosh(Wlf) +1¢)

) (at + b)
(szinhgwlf) chosh(wlf) +f(f))a

A¢ = | (cosh(v2K§) + g(g’))a = N,.
o " ak?sinh(VZEE) + h(§))a);

Hence, we have

A?sinh?(w &) + 2Asinh(w1€)(Bcosh(wlf) + f’(g))
+BZ%cosh?(w; &) + 2Bcosh(w, &) f' (&) + f'2(&)

E@E,t) = (at + b)? | +(C? - 16K2k")sinh?(V2k¢&) + 2Csinh(V2Ké) g’ (§)
+9"(§) + 8’ sinh(V2k¢) (h'(f) - 2K'Ccosh(\/ﬂg))
—h'2(¢) + 4k’ Ccosh(V2k&) — 4k'2C?cosh?(V2k§)

EE,t) = P(ON(S),

where A = 2 3+2 B—

2\/—5

—smh (W1§) + 25 sinh(wy) (5 cosh(wi &) + £())

GE) =a +W—5005h2(W1€) + 5 f(§)cosh(wy€) + £2() , (10)

+cosh?(V2k&) + 2g(&)cosh(v2ké) + g2(&)
—4ic*sinh? (V2K&) + 4x?sinh(V2k&)h(E) — h2(§)

for the following equation
h(&¢) = constant,

Wii (sinh?(w; &) + cosh?(w,€))

~2 (L + £) sinh(w; ) — 2cosh(w; ) (£ + L)
0= ! e (1)
+%sin(2v2€) + g'cos(VZE) — VZgsin(VZE)

+2 (Wig +27) sinh@wyE) + £ + gg’
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where for the @ —magnetic curve, we have k = —1 il = ¢, we obtain F (&) = 0. Thus, the first

’w

fundamental form is given by

IZ(E(f,t) 0 )

0 716 (12)

Moreover, it is important to note that, the coordinates of parametrization are orthogonal,
since the first fundamental form is diagonal. So, from the first fundamental form, we have the

Lagrangian equation given by
E(E 0d*€ +G(§)d*t = Lor E(, D8 + G = L, (13)

and a geodesic on the surface A* (&, t) is given by the Euler-Lagrangian equations,

ofoL\ oL o foL) oL

as\ 9 | " ag’as\ ot |~ ar

0s ds

1) For the equation

2E(§, )€ = Get? — Egé?, (14)

and from the equation % <2—1;> = % = 0, we obtain % (ZG(E)i) = 0, which means 2G (&)t is
as
constant along the geodesic and we have

c1S

T 26

+ c,. (15)

Let &, be a geodesic on the surface A% (¢, t), so the curve is written as (£(s), t(s)), also let
0 be the angle between Sa and a meridian and N; is the vector pointing along meridians of A% and

N is the vector pointing along meridians of A%. We can say that {N¢, N;} orthonormal basis and

hence a unit vector & tangent to A%(&, t) can be written by
5= fA"g + ioni = Ngcosf + Nysinf = é(at + b)Ng + tN,.
We see that t = sinf, hence we write

2G(&)t = 2G(&)sind (16)
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being a constant along &,. On the contrary, let § be «a —magnetic curve with
2G(&)t = 2G(&)sind is a constant. Hence, the second Euler-Lagrange equation is satisfied,
differentiating L and substituting this into the first equation yields the first Euler-Lagrange

equation. Furthermore, we can also write
t = [ sinfds ort = [ sinfds + cs. (17)

i) For the equation

26()t — {J E2¢ds + ¢,} = 0, (18)

. d [ dL oL . 0L > .
from the equation Py <@> = o= 0, we obtain w = 2E(&,t)¢€ is constant and which means
as as

2 [ E(§ t)dE = css + ¢

which has a constant along the geodesic. We see that (at + b)é = cosf, hence we write

ZE(f t)

2E (¢, t)f = cosé, (19)

2E(.H)
at+

being a constant along §,. On the contrary, 8, is a curve with 2E (¢, t)E = , cos@ thatitis a

constant. Hence, the first Euler-Lagrange equation is satisfied, differentiating L and substituting
this into the second equation yields the second Euler-Lagrange equation. Furthermore, we can

write equation as follows

§=[0dsoré=[ds+c, (20)

Theorem 7. The general equations of geodesics on the surface generated by an
a —magnetic curve in Q2 are given by

cosf
at+b

cosO
at+b

i) For the parameter & = [ ds+cg(or E= ] ds) and the equations

2 [ E(, t)dé = css + ¢, 2G ()t — {f aE(f 2F &ds + 64} = 0, the following equation holds

dt _at+b b E(&,t)cos26

e w/LE(f t) — [ L

g~ G(f w/G(<f)cost9 at+b

ii) For the parameters t = [ sinfds (or t = [ sinfds + ¢3) or t = ZG(E) + ¢, and the

equation 2E(¢, t)é = Gfiz - Egé 2 the following equation holds
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dé c G(&e—cy 1 Je- G(&)sin20
a9 EE e " sme. | EGD

where ¢; € Ry, i € 1.

Proof. In order to obtain the general equation of geodesics, we should use the Euler

Lagrange equations,

cosf cosf

at+b

i) For the parameters & = [ ds+cg (or &= f ds) and the equations

2 [ E(§,t)dE = css + ¢,

26()E—{f 2D eds + ¢y} =0,

we have % <%> = qt 0 and — <6L> 9L % 0. From the solving of the second Lagrangian

as

' 5 : . i _ _c
equation, we get - (ZE (&,t)¢ ) = 0, which means == 2E(§,t)'

If we put the value Off. at E(¢, t)é2 + GO =1,
60 (L) +60(L%2) =1, 1)

we obtain the general equation of geodesics on A* (¢, t) as follow

at _ E(Et\/— at _ __at+b , _ E(§t)cos?6
d& G LE(€ t) €10 OT JG(&)cosh L at+b (22)

ii) For the parameters t = [ sinfds (or t = [ sinfds + ¢;) or t = zc(f) + ¢¢ and the
equation
2E(§,6)€ = Ggt? — Eg€2, (23)

. d (oL JaL . . . . . 0 [dL JaL
since —~ <a_g> =% # 0 and from the solving of the differential equations in P <7> == 0,
9 ot

as

t =sinfort=—1
26G(§)

using equations % <%> = %, we have % (2G6(¢ )i“) = 0, which means
ds
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dt ¢

ds ~ 2G(&) (24)
If we put the value of t at E (¢, t)é2 + 6O =1,

£66.0 (54) + 60 (&) -1 s
we can obtain the general equation of geodesics on A% (&, t) as follow

a _ G GOL=c, . df _ 1 [L=G(sin6 26)

E(EDG(E) dt ~ sin6 E(E0)
5. The Physical Approach on @ —magnetic Surface in Q? c E3

In this section, we try to express as the point of view of a physicist to imagine tracing out
a geodesic by determining the affine parameter s with the time, thinking that the picture is now

of a point particle that is moving on the surface, tracing out a path called the orbit of the particle.

Let A*(£(s), t(s)) be a parametrized curve on surface as

2ksinh(w, &) ZKcosh(W1f)

=t +f(§)(at +b),
A%(&(s), t(s)) = | (cosh(v2k$) + g(f))(at +b),
("e ok 25inh(V2k¢€) + h(§))(at + b))

Also, the Lagrange equation on A% (¢, t) the magnetic surface is given as follows

E(§ D&+ G = L.
Furthermore, the tangent vector to this curve can be obtained using the chain rule as follow

5 = WEEENLE) df(S) A“ dt(s)
ds ds

A% = Ngcos6 + Nisind
= EA% + tA% = E(at + b)Ng + tN,. (27)

Hence, we can write the tangent vector of the geodesic curve as follows

? dAa(f;Z) t(s)) Yan + YtAUl (28)

and we can also write with two component vector notation for components according to the basis

dzidz

vectors A%, A% and its norm ¥ = (V,Y) V2 = |g;;== ——

220 is the speed, which is just the time rate
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of change of the arc length along the curve §. Think that Y& = \/E(&,t)Y¢ = Ycos@ is just the

radial velocity while Y¢ is the horizontal angular velocity and Yt = /G(§)Y* = Ysin® is the
vertical component of the velocity vector. Hence, we can give the velocity in terms of polar
coordinates in the tangent plane to explain its magnitude and slope angle according to the radial

direction on the surface.

The role of the radial variable on this velocity plane is played by the speed, here we can

say that the direction of the velocity according to the direction A"i* on this plane is given by the

angle 6. Also, we can say that the speed is constant along the geodesic. In [20, 21], to find out the
system of two second order geodesic equations it is expressed that a standard physics technique
of partially can be used integrating them by anyone and so lessen them to two first order equations
by taking two constants of the movement that it comes out from the two independent symmetries
of the equations of movement. Those physical properties as energy and momentum are replaced
by the specificquantities found by partitioning out the mass. Therefore, we can write the specific

kinetic energy as follows
1 1 g\ |1 ar\? 1 .
E=1v2=2EE0(5) +360 (5) =3(r?cos?6 + Y?sin?p), (29)

using the right side of the previous equations we can say that both the specific energy and speed

have to be constant along geodesic.

In the point of view of the physics, the specific kinetic energy of the particle is constant
because of its motion in space, and only accelerates perpendicular to the surface. If a force is
accountable for this acceleration, that is to say that the normal force that it supplies the particle
on the surface, because of perpendicular to the velocity of the particle it wouldn’t study on the

particle. Therefore, the specific energy E has to be constant. Resembling, we say that the speed

Y = v2E is constant along a geodesic in respect of this cause.

Theorem 8. Let A%(&,t) be the magnetic surface generated by @ —magnetic curve. Then
the specific kinetic energy of the particle on the &« —magnetic surface A% (¢, t) is constant under
evident conditions and the following statements are held:

c1S

2G6(§)

1. For the parameter ¢t = [ sinfds (ort = + Cz) and the equation 2E (¢, t)é =

Ggi“z - Egé 2, the specific angular momentum #; and specific kinetic energy E! are constants

along a geodesic, and are given as following equations
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2, = JG@)Ysind; E! = %(E(f, £) (%)2 + G“é)). (30)

cosO

2. For the parameter ¢ = f ds and the equations 2 [ E(&,t)d = css + ¢,

2G(&)t — { [ —= aE(E 2F &ds + 64} = 0, the specific angular momentum ¥, and specific kinetic

energy E? are constant along a geodesic, and are given as follows

= —WYCOSG E? = (E(ft)+G(f)( ) ), (31

where c; € Ry, and Y is the tangent vector of the geodesic curve.

Proof. 1) For the equation t = [ sinfds (or t=

pye (E) ) and the equation 2E(, t)E =

Get? — E EZ, we write 2G(E)t = 2G(¥)sin® being a constant along 8 and by using this situation
§ §

we explain in this physics language. Also, we can explain as to circular motion around an axis

with radius ||R—I|| = JG® or R, =/G(¥)e;, namely the velocity Y = /G(E)Y" = Ysin® =
G(%) % in the angular direction multiplied by the radius /G(&) of the circle. Physically, the

specific angular momentum #; can be written as following equation
2, =¢5.(R; X, Y) = /G(©)Ysing, (32)

since Yt = Ysin@ = /G (¢) %, we can write /G(&)Ysinf = G(§) % being a constant along

6(&), and we say that the specific angular momentum #; is constant along a geodesic and we get

1

(33)

This expression can be rewritten the changeable angular velocity dt/ds in the specific energy

formula according to the constant angular momentum, the specific energy E* is given as

B =D (£) + 4 (34)

cos@

2) For the parameter & = f ds and the equations 2 [ E(&,t)d€ = css + g,

2G(&)t — {f aE((’Z 2F &ds + 04} = 0, we write 2E (¢, t)f = 2E(¢,t)cosO being a constant along
6(&) and by using this situation we explain in this physics language. Also, we can express as in

the case of circular movement round an axis with radius ||E|| =E (E ,t) or E = E¢, t)e,,

that is to say the velocity Y& = ./E(&,t)Y¢ = Ycosd = E(E, t) in the angular direction
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multiplied by the radius 1/ E (¢, t) of the circle. The first geodesic equation is told that the specific
angular momentum is constant along a geodesic, and the specific angular momentum £, can be

taken down as following equation

2, =¢;.(Ry x¢, Y) = —JE(E t)Ycosb, (35)

since \E(¢,t) % = Ycos6, we can write —E (§,t) % = —/E(&,t)Ycosh, and we say that the

specific angular momentum is constant along a geodesic. So, we have

= B B _ =
b= -EE 0T =5 = (36)

Hence, this statement can be rewritten the changeable angular velocity dé/ds in the
specific energy formula according to the constant angular momentum specific energy E? is given

by

2 _1(_ % dat\?
E* = 2 (E(f,t) +G() (ds) ) (37)
6. Conclusion

In this study, the @ —magnetic surfaces constituted by using the @ —magnetic curves to be
geodesics on the surface are expressed. The @ —magnetic surfaces generated by the ¢ —magnetic
curves are examined, and some certain results of describing the geodesics are given on the
surfaces. Our results show that the specific energy and specific angular momentum obtained on
the @ —magnetic surfaces can be expressed in Q2. The physical meanings of specific energy and
specific angular momentum are of course related with the physical meaning itself. First of all, the
conditions of being geodesic of the curves selected as magnetic curves are examined, and these
geodesic conditions allows us to express the specific energy. We are working on the properties of
these surfaces with a view to devising suitable metric in Q2. It is hoped that researches will benefit

from this study about the rotated surface.
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