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 Abstract  
The Bose-Einstein condensate, which has very low particle density and a highly complex 

quantum structure, has been proven experimentally for rubidium, sodium, lithium, hydrogen, 

metastable helium, cesium and chromium atoms to date. Because of the differences between 

the properties of these atoms and their binary interactions, many impressive results have been 

found in experimental work on condensation. The structure of a vortex in the uniform 

environment and the influencing factors are examined in this study. 
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1. Introduction  

Bose-Einstein condensation, which was theoretically first proposed by Einstein for the first time in 1925, was 

experimentally observed in rubidium, sodium and lithium alkali atoms in 1995. The Bose Einstein condensate 

predicts that under certain temperature, for particles that do not interact with each other, a phase transition will 

occur through condensation of the macroscopic distribution of the gas. 

At the center of the atomic cloud of the Bose-Einstein condensate, the particle density is in the order of 1013-1015 

cm-3. This can be interpreted as the dilution of the Bose-Einstein condensation when compared to the density of 

air molecules at room temperature and atmospheric pressure, 1019 cm-3. In systems with such low density, the 

temperature must be in the order of 10-5 K for the quantum phenomenon to be examined. 

Bose-Einstein condensate has been experimentally obtained for rubidium, sodium, lithium, hydrogen, metastable 

helium, cesium and chromium atoms to this day. Due to the differences between the properties of these atoms 

and their binary interactions, many impressive results have been obtained from experimental work on 

condensation. When the nuclear and electronic spin ratings are included in the system, the system content is much 

richer [1]. 

 

2. Formalism 

The Bose distribution function is given by 

                                                          (1) 

for the thermal balanced uninterrupted bosons, where the average number of settlements of the single-particle 

state  is the single-particle state energy  for a given trapped potential. The momentum space region, which 

is less than the p momentum, has a cubic volume ( ) with a p radius, since it is the energy of the particle 

with momentum  is given by , the total number of states  with lower energies than the 

energy is given by 
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               (2) 

where V is the volume in this system.  

 

The number of states between  and energetic levels is usually given by  the state density: 

                   (3) 

The  transition temperature can also be defined as the maximum temperature at which the macroscopic 

settlement occurs in the lowest-energy state. The number of particles in excited levels is given by 

                  (4) 

When , it takes its maximum value. The transition temperature is when examined for the case where the 

total number of particles is in the evoked levels:  

                           (5) 

The number density ( ) defined as the number of particles per unit volume for uniform Bose gas in the 

V volume three-dimensional box can be expressed by the Equation (6). 

                (6) 

the number of particles in the excited levels below the transition temperature, as in Equation (4) (

): 

                (7) 

For particles ( ) in the three-dimensional box, the number of excited particles  in the unit volume is 

given by Equation (7): 

                 (8) 

Utilizing the thermodynamic properties of the ideal Bose gas, energy, entropy and other properties of condensed 

phase, can be determined. Since the number of basal augmentations and the interactions between particles are 

low in the temperatures below, the chemical potential is lifted off and the internal energy is given by 

             (9) 

The specific heat  is therefore given by; 

                 (10) 
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The intrinsic heat is also found Equation (11), because it can be expressed by using the term entropy S by 

: 

                (11) 

It should be noted here that under  temperature, energy, entropy and specific heat are not dependent on the 

total number of particles. 

When these results are examined in the classical limit, the result that the Bose-Einstein distribution transforms 

into the Boltzmann distribution at high temperatures is reached. The total number of particles and energy is 

Equation (12) and Equation (13) in this case: 

               (12) 

               (13) 

In the case of full condensation, all bosons are at the same  single-particle level, and for this reason the wave 

function is given by  

               (14) 

for the system consisting of N particles. If the single-particle wave function is normalized and written energy, 

then  

            (15) 

is found. By equating the  variation to zero according to , the time-independent Gross-Pitaevski 

equation in the form of  

             (16) 

is reached [2]. 

3.   Dynamics of Condensation 

The continuity equation is derived to understand the nature of the velocity of the condensate. When the time-

dependent Gross-Pitaevski equilibrium is multiplied by , the complex conjugate of the equation 

obtained is subtracted and 

                 (17) 

result is reached. This is the same as that obtained from the linear Schrödinger equation because the nonlinear 

potential in the Gross-Pitaevski equation is the reel. 
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4. Rotating Condensation  

One of the properties of superfluidity is the response to rotation. In addition, for charged superfluids, the response 

to the magnetic field is also a evidence. One of the important properties of superfluids is the result of the forced 

movements that occur due to the rate of coagulation being proportional to the gradient of the phase of the wave 

function. The speed of a condensate is the gradient of the  scalar: 

                 (18) 

This equation is one of the consequences of the condensation's possible actions, affecting many features of the 

condensation. 

In general, the condensate wave function is monovalent. The change in  in the wave function phase around a 

closed contour must be a multiple of . Or it must have  

                (19) 

 conditions, an integer l. Thus,  circulation around a closed contour: 

                (20) 

Equation 20 shows that the circulation is quantized with h/m. The value of the quantum circulation is about 

 
m2 s-1, which A is the mass number. As a simple example of such a flow, a completely azimuthal 

flow in the invariant trap under rotation around the axis can be considered. In order to provide a single valued 

condition, the condensation wave function  must be changed to  with the azimuthal angle. In order to 

satisfy the condition of being a mono-valued condition, the condensate wave function must be changed by . 

Here  is azimuth angle. 

 is the distance from the axis of the trap, velocity equation; 

                 (21) 

is reached. The angular momentum per particle is not quantized, but the circulation of the other levels is 

quantized. The generalized state is  

                (22) 

where  is for the level having the vortex extending along the z-axis. Where  is the two-dimensional 

Dirac delta function in the 
 
plane, and  and  are the unit vector in the z direction. When there are 

a large number of vortices, the right side of the above equation is the sum of the two-dimensional delta functions 

on the perpendicular surfaces in the direction of the vortex line. The intensity of the delta function is a vector 

oriented along the vortex line, and the value is equal to the value of the circulation associated with the vortex [3]. 

If the wave function for the trap with axial symmetry is , the wave function of the condensation is  

                (23) 

in the spherical polar coordinates.  is a real number. Equation (15) uses for the energy value: 
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          (24) 

The difference between the energy obtained from Equation 23 and the energy obtained when the phase is not 

dependent on the position of the condensation is the addition of the term . This leads to a 

 increase in the kinetic energy density and is a result of the azimuthal movement 

of the condensate. The value of the amplitude of the vortex wave function can be obtained from the Gross-

Pitaevski equation in Equation (16): 

          (25) 

 

5- Rotating Condensation  

When the infinite mean of the uniform potential  is taken into account, the wave function in the base 

state is not dependent on z, and therefore the derivatives related to z are off. For distances farther distally, the 

radial derivative and the centrifugal barrier in the form of  lose their significance and therefore the value 

of the choke wave function becomes . The derivative and centrifugal superposition 

dominates near the axis and the appropriate solution on the axis behaves like  in a free particle with unit angular 

momentum in two dimensions. The terms in the Gross-Pitaevski equation in Equation 25 show that, in the course 

of the distance from the axis to a certain distance, the transition between the two states occurs. For this reason, it 

is possible to scale the lengths taking advantage of a certain length of  [3]: 

                (26) 

Where  is the intensity in the distant regions of the vortex.  is the amplitude of the vortex wave function 

in distant regions from the vortices, and .  is the energy density when 
 
is transformed: 

              (27) 

Gross-Pitaevski's expression in Equation 25 

              (28) 

 is found [4].  

Another magnitude that must be taken into account for calculating the energies of the annulus is the extra energy 

that represents the energy of the particle and the enthalpy of the same number in uniform level. The   energy 

in the unit length of the vortex is: 

             (29) 
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The number of particles per unit length is 

   

b b
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Thus, the uniform system has a unit-length energy  

             (31) 

The energy  at unit length pertaining to the vortex is the difference between Equations 28 and 30: 

                   (32) 

The above expression is found in  

                (33) 

when it is used in the numerical solution of the Gross-Pitaevski equation. This result was obtained by Ginzburg 

and Pitaevski in the phenomenological theory of liquid 4He around T . The mathematical form of the theory is 

identical to the Gross-Pitaevsky theory for zero temperature coherence; but the physical appearance of constants 

is different. Equation 32 can be used as a basis for the variational solution of the vortex wave function. In general, 

the energy is minimized by using the test form for f , taking into account the parameters of the test function. 

When the trial wave function at source [5] is used, the result  
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is reached. 

The correct results are achieved for both small and large length values, with a  being the optimum value of 2.   

the chemical potential is kept constant. As in Equation 32, the vortex energy is equal to the minimization of 

NE  . Where E is the total energy.     /497,1ln/2 bmn  is a value close to the original result in the form 

of variant 2 . According to the chatter wave function in Equation 23, each particle carries one unit of angular 

momentum and is therefore given by the total angular momentum 

L                   (35) 

in the unit length. 

 

6. Conclusion 

For a vortex in a uniform environment, angular momentum is a result of rotational symmetry. The angle of the 

angular momentum for the cloud, which is not located on the entry trap axis, depends on the position of the inlet. 

In addition, angular momentum is not preserved for a non-invariant trap rotationally about the axis of rotation, 

and therefore there is no particular value. The total angular momentum expression is simply a velocity-dependent 

magnitude. 
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