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 Abstract  
The energy-momentum localization problem, which was attemted by Einstein himself for the 

first time, has been continued to the present day. Recently, new prescription obtained by 

modifying the torsion theory and these results shed light on the solution of the energy 

momentum localisation problem. Focusing this purpose, we consider a Locally Rotationally 

Symmetric Bianchi Type-II model in the teleparallel framework and calculate the modified 

energy and momentum density for the general case. We also obtain the energy and 

momentum density for some special cases of the modified theory and compare our results 

with previous work in the literature.  
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1. Introduction  

The problem of energy and momentum localization has been studied for almost a century. While it has not yet 

been solved, there have been many efforts to understand it. The first attempt was made by Einstein himself in 

seeking to unify electromagnetism and gravitation [1]. After this important work, many additional prescriptions 

have been proposed to solve the energy-momentum localization problem [2-10]. Except for Møller's approach 

[5] which is defined for any coordinate system, they produce meaningful results only when we transform the 

line-element coordinate system into quasi-local Cartesian coordinates. Using those prescriptions, many authors 

have calculated the energy and momentum densities for various space-time models [11-19]. Vargas [20] used a 

Friedman-Robertson-Walker space-time model to demonstrate the equivalence of the teleparallel energy and 

momentum densities with those obtained from general relativity. Studies of this type have shown the 

equivalence between general relativity and teleparallel gravity theories [21-28]. 

On the other hand, recent observations of supernovae of Type Ia, the Cosmic Microwave Background 

Radiation, Baryon Acoustic Oscillations, etc., have demonstrated that our universe is undergoing accelerated 

expansion [29-33]. There are three candidates to explain this accelerating expansion: (i) a time-independent 

cosmological constant (Λ), (ii) dark energy, and (iii) modified gravity. The latter is based on a generalization of 

the Einstein-Hilbert action, as done-for example-in the so-called "𝑓(𝑇) gravity," where 𝑇 is the torsion scalar. 

Note that 𝑓(𝑇) theory reduces to teleparallel gravity if we choose 𝑓(𝑇) = 𝑇. Various 𝑓(𝑇) models have been 

proposed to explain the late-time cosmic expansion without the need for exotic dark energy [34, 35]. Last five 

year there have been a lot of studies about 𝑓(𝑇) gravity in the literature. For example Myrzakulov analyzed 

relation between 𝑓(𝑇) models and purely kinetic k-essence [36]. 

The problem of localizing the energy-momentum distribution can brought to a new level by taking into account 

the dark-energy/matter distributions obtained in recent observations. The problem has therefore become once 

again a real and important puzzle. In the present study, we address the problem of localizing the energy-matter 

distribution taking into account the dark-energy/matter contributions. This paper is organized as follows: In 

Section 2 we summarize the problem of energy and momentum localization in 𝑓(𝑇) gravity for a Bianchi Type-

II model. Next, in Section 3, we calculate the energy and momentum density for four well-known 𝑓(𝑇) models. 

The final section is devoted to a discussion of our results. 
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2. Preliminaries: Modified Energy And Momentum Scenario 

 The tetrad fields {ℎ𝜇
𝑎} are defined at each point of a manifold and constitute the basis of teleparallel gravitation 

theory. The orthonormal tetrad fields satisfy the following relation: 

 

ℎ𝜇
𝑎ℎ𝑏
𝜇
= 𝛿𝑏

𝑎 ,        ℎ𝜇
𝑎ℎ𝑎
𝜈 = 𝛿𝜈

𝜇
.                 (1) 

 

The metric tensor 𝑔𝜇𝜈 is reconstructed from these tetrad fields:  

 

𝑔𝜇𝜈 = 𝜂𝑎𝑏ℎ𝜇
𝑎ℎ𝜈
𝑏                  (2) 

 

where 𝜂𝑎𝑏 is the standard Minkowski metric defined by 𝜂𝑎𝑏 = 𝑑𝑖𝑎𝑔(1,−1,−1,−1). The Weitzenböck 

connection, which contains only the torsion not the curvature [37], can be written as:  

 

Γ𝛼𝛽
𝜆 = ℎ𝑎

𝜆 ∂𝛽ℎ𝛼
𝑎 .                   (3) 

 

The torsion tensor, which is the teleparallel version of the gravitational "force", is  

 

𝑇𝛼𝛽
𝜆 = Γ𝛽𝛼

𝜆 − Γ𝛼𝛽
𝜆                   (4) 

 

and the torsion scalar is obtained from the torsion as follows:  

 

𝑇 =
1

4
𝑇𝜎𝜇𝜈T𝜎𝜇𝜈 +

1

4
𝑇𝜎𝜇𝜈𝑇𝜈𝜇𝜎 − 𝑇𝜎𝜇

𝜎 𝑇𝜈
𝜈𝜇
.              (5) 

 

If we consider a tensor that is antisymmetric in the last two indices, such as  

 

𝑆𝜎𝜇𝜈 =
1

4
(𝑇𝜎𝜇𝜈 + 𝑇𝜇𝜎𝜈 − 𝑇𝜈𝜎𝜇) −

1

2
(𝑔𝜎𝜈𝑇𝛾

𝛾𝜇
− 𝑔𝜎𝜇𝑇𝛾

𝛾𝜈
)             (6) 

 

it is possible to rewrite the torsion scalar in the form  

 

𝑇 =
1

2
𝑆𝜎𝜇𝜈𝑇𝜎𝜇𝜈.                  (7) 

 

The teleparallel Lagrangian for 𝑓(𝑇) gravity can be rewritten in the following form inspired by 𝑓(𝑅) gravity:  

  

ℒ𝑓 =
ℎ

16𝜋𝐺
𝑓(𝑇).                  (8) 

 

The action for this modified gravity therefore becomes  

 

𝒮 = ∫ 𝑑4𝑥ℎ[ℒ𝑓 + ℒ𝑚]                  (9) 

 

where ℒ𝑚 is the matter Lagrangian. Variation of the action (9) with respect to the tetrad fields yields the field 

equation  

 

𝑓𝑇(𝑇)[∂𝜎(ℎℎ𝑎
𝜈𝑆𝜈
𝜆𝜎) − ℎℎ𝑎

𝜎𝑆𝜇𝜈𝜆𝑇𝜇𝜈𝜎] + 𝑓𝑇𝑇(𝑇)ℎℎ𝑎
𝜈𝑆𝜈

𝜆𝜎 ∂𝜎𝑇 +
ℎ

2
ℎ𝑎
𝜆𝑓(𝑇) = ℎΞ𝑎

𝜆         (10) 

 

where we use the definitions 𝑓𝑇(𝑇) ≡
𝑑𝑓(𝑇)

𝑑𝑇
, 𝑓𝑇𝑇(𝑇) ≡

𝑑2𝑓(𝑇)

𝑑𝑇
 for convenience and Ξ𝑎

𝜆 is the energy-momentum 

tensor. Of course, if we choose 𝑓(𝑇) to be equal to the torsion (𝑇), 𝑓(𝑇) gravity reduces to teleparallel gravity. 

 

After applying Noether's theorem and using the new Lagrangian, Abedi and Salti [38] obtained a new energy 

momentum prescription: 
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ℎ𝑡𝜆
𝜎 = 𝑓𝑇(𝑇)ℎ𝑡𝜆(𝑇𝐺)

𝜎 −
ℎ

16𝜋𝐺
𝛿𝜆
𝜎[𝑓(𝑇) − 𝑓𝑇(𝑇)𝑇],            (11) 

 

and the field equation becomes  

 

𝒯𝜈
𝜆 =

1

8𝜋ℎ𝐺
∂𝜎[ℎ𝑓𝑇(𝑇)𝑆𝜈

𝜆𝜎].               (12) 

 

Here 𝒯𝜈
𝜆 is being the total energy-momentum of gravitation and matter. Note that 𝒯𝜈

𝜆 satisfies the energy-

momentum conservation law ∂𝜆(ℎ𝒯𝜈
𝜆) = 0. Finally the momentum four-vector definition in modified 

teleparallel gravity is given by  

 

𝑃𝜇 = ∫ 𝒯𝜇
0𝑑𝑥𝑑𝑦𝑑𝑧.                (13) 

 

3.   Energy and Momentum Density in Modified Teleparallel Gravity 

Recently, theoretical interest in anisotropic space-time models has increased because the homogenous isotropic 

Friedman-Robertson-Walker may (or may not) exactly represent our universe. Bianchi-type cosmological 

models may therefore play an important role in describing our universe. Here, we consider an Locally 

Rotationally Symmetric (LRS) Bianchi Type-II model, which is given by the following line element [39]  

𝑑𝑠2 = 𝑑𝑡2 − 𝐴2𝑑𝑥2 −𝐵2𝑑𝑦2 − [𝐴2 + 𝑥2𝐵2]𝑑𝑧2 − 2𝑥𝐵2𝑑𝑦𝑑𝑧.          (14) 

where the function 𝐴 and 𝐵 are depend only time. Using line element (14) the metric tensor can be written as  

𝑔𝜇𝜈 =

(

 
 

1 0 0 0
0 −𝐴2 0 0
0 0 −𝐵2 −𝑥𝐵2

0 0 −𝑥𝐵2 −(𝐴2 + 𝑥2𝐵2)

)

 
 

             (15) 

and its inverse is 𝑔𝜇𝜈  

𝑔𝜇𝜈 =

(

  
 

1 0 0 0
0 −𝐴−2 0 0

0 0 −
𝐴2+𝑥2𝐵2

𝐴2𝐵2
𝑥𝐴2

0 0 𝑥𝐴2 −𝐴−2

)

  
 

             (16) 

Using the definition (2) we find the tetrad and its inverse to be, respectively:  

ℎ𝜇
𝑎 =

(

 
 

1 0 0 0
0 𝐴 0 0
0 0 𝐵 𝑥𝐵
0 0 0 𝐴

)

 
 
,        ℎ𝑎

𝜇
=

(

 
 

1 0 0 0
0 𝐴−1 0 0
0 0 𝐵−2 0

0 0 −
𝑥

𝐴
𝐴−1

)

 
 
.          (17) 

Equation (3) giv 
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es the following Weitzenböck connection:  

Γ10
1 = Γ30

3 =
�̇�

𝐴
,        Γ20

2 =
�̇�

𝐵
,       Γ30

2 =
𝑥�̇�

𝐴
+
𝑥�̇�

𝐵
,        Γ31

2 = 1.           (18) 

where the dot means the first derivative with respect to time. The components of the torsion tensor obtained 

from the Weitzenböck connections become  

𝑇01
1 = −𝑇10

1 = 𝑇30
3 = −𝑇30

3 =
�̇�

𝐴
,        𝑇02

2 = −𝑇20
2 =

�̇�

𝐵
, 

𝑇13
2 = −𝑇31

2 =
𝑥�̇�

𝐴
+
𝑥�̇�

𝐵
        𝑇13

2 = −𝑇31
2 = 1.             (19) 

From the components of the torsion tensor, we find the following components of the antisymmetric tensor used 

in the energy-momentum prescription:  

𝑆023 = −𝑆032 = −
𝑥�̇�

𝐴3
, 

𝑆101 = −𝑆110 = 𝑆303 = −𝑆330 =
1

𝐴3
(�̇� +

𝐴�̇�

𝐵
), 

𝑆123 = −𝑆132 = 𝑆213 = −𝑆231 = 𝑆312 = −𝑆321 =
1

2𝐴4
, 

𝑆202 = −𝑆220 =
1

𝐴3𝐵2
(2𝐴2�̇� + 3𝑥2𝐵2�̇� + 𝑥2𝐴𝐵�̇�), 

𝑆203 = −𝑆230 = 𝑆302 = −𝑆320 = −
𝑥

𝐴3𝐵
(2𝐵�̇� + 𝐴�̇�), 

𝑆212 = −𝑆221 = −
𝑥

𝐴4
.                (20) 

𝒇(𝑻) Models 

Now we can calculate the energy and momentum densities for several well-known 𝑓(𝑇) models. We consider 

𝑓(𝑇) models which are contain linear, logarithmic and exponential term to determine modified torsion gravity.      

• Model I: 𝑓(𝑇) = 𝛼(−𝑇)𝑏  

In this model the quantities 𝛼 and 𝑏 are free parameters [40]. From equation (12) we obtain the following 

components of the energy and momentum densities:  

 1𝑠𝑡𝒯0
0 = 0,                 (21) 

 1𝑠𝑡𝒯1
0 =

4(𝑏−1)𝑏𝑥𝐵2�̇�2

2𝑏𝐺𝜋𝐴5
(�̇� +

𝐴�̇�

𝐵
) × [

4𝐴2𝐵�̇�2+𝐵3(1−4𝑥2�̇�2)+8𝐴3�̇��̇�

𝐴4𝐵
]
𝑏−2

.          (22) 
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• Model II: 𝑓(𝑇) = 𝑇𝑒𝛽𝑇  

In this model, 𝛽 is an arbitrary constant [35] and the momentum and energy densities are given by  

 2𝑛𝑑𝒯0
0 = 0,                 (23) 

 2𝑛𝑑𝒯1
0 =

𝛽𝑥�̇�2(𝐵�̇� + 𝐴�̇�)

4𝐺𝜋𝐴9
[4𝛽𝐴2𝐵�̇�2 − 4𝐴4𝐵 

 +𝛽𝐵3(1 − 4𝑥2�̇�2) + 8𝛽𝐴3�̇��̇�]𝑒
−𝛽(4𝐴2𝐵�̇�2+𝐵3(1−4𝑥2�̇�2)+8𝐴3�̇��̇�)

2𝐴4𝐵 .          (24) 

 • Model III: 𝑓(𝑇) = 𝑇 + 𝑎𝑇1/2ln𝑇  

Here 𝑎 is a constant [41] and the energy and momentum densities become  

 3𝑟𝑑𝒯0
0 = 0,                 (25) 

  3𝑟𝑑𝒯1
0 =

𝑎𝑥𝐴�̇�(𝐵�̇�+𝐴�̇�)ln[𝐵3(4𝑥2�̇�2)−4𝐴2𝐵�̇�2−8𝐴3�̇��̇�]

√2𝐺𝜋𝐵1/2[𝐵3(4𝑥2�̇�2)−4𝐴2𝐵�̇�2−8𝐴3�̇��̇�]3/2
            (26) 

• Model IV: 𝑓(𝑇) = 𝑇 − 𝜇𝑇(1 − 𝑒−𝑏𝑇0/𝑇)  

Here 𝜇 is a parameter obtained by solving modified the Friedmann equation [42]. For this model we obtain  

 4𝑡ℎ𝒯0
0 = 0,                 (27) 

 4𝑡ℎ𝒯1
0 =

8𝑏𝑇0𝑥𝜇𝐴
7�̇�2(𝐵�̇� + 𝐴�̇�)

𝐺𝜋(4𝐴2𝐵�̇�2 + 𝐵3(1 − 4𝑥2�̇�2) + 8𝐴3�̇��̇�)4
[4𝐴2𝐵�̇�2 − 𝑏𝑇0𝐴

4𝐵 

 −𝐵3(4𝑥�̇�2 − 1) + 8𝐴3�̇��̇�]𝑒
−2𝑏𝑇02𝐴

4𝐵

(4𝐴2𝐵�̇�2+𝐵3(1−4𝑥2�̇�2)+8𝐴3�̇��̇�) .           (28) 

4. Discussions  

The four-momentum localization problem contains many important issues and non-specific solutions [43]. For 

example, the study of energy-momentum localization may help to clarify our understanding of space-time, 

including phenomena such as gravitational lensing [11, 13, 15]. 

In the present work we have focused on the energy-momentum localization problem for a Bianchi Type-II 

universe in modified teleparallel gravity. We calculated the energy and momentum densities for four different 

well-known functions 𝑓(𝑇). The energy density vanishes for each 𝑓(𝑇) definition, but we may have a non-zero 

momentum density, depending upon the particular space-time and the parameters of the chosen model. One can 

easily see that if we choose the parameters of the model specifically to reduce to teleparallel gravity, the 

momentum density vanishes. In the first model, taking 𝑏 = 1 and 𝛼 = −1 yields teleparallel gravity, and the 

momentum density vanishes. Likewise, if we take 𝛽 = 0 in the second model, 𝑎 = 0 in the third model, and 

𝜇 = 0 in the last model, they also reduce to teleparallel gravity, and we obtain:  
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𝐸𝑇𝑃 =  𝑇𝑃𝑃𝑖 = 0.        (29) 

These findings agree with previous results obtained by Aydogdu [22]. It is found that the total energy of all 

closed type of universes are zero because of the energy momentum contributions from the matter and field 

inside two arbitrary surfaces cancel each other [21,23,44]. If explicit forms of expansion coefficients 

(𝐴(𝑡), 𝐵(𝑡)) are known, the contribution of free parameters to energy density can be more clearly 

apprehensible. As mentioned in the first section of this paper, one must take into account the modified energy-

momentum localization puzzle in discussing the dark-energy/matter contributions. This demonstrates the 

importance of the new calculations we have performed and the new results obtaind in this work. 
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