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 Abstract  
 
In the present paper, the Adomian decomposition method is employed for solving nonlinear 
fractional Sturm-Liouville equation. The numerical results for the eigenfunctions and the 
eigenvalues are obtained. Also, the present results are demonstrated by the tables and the 
graphs for different values of considered problem. 
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1. Introduction  

The Adomian Decomposition Method (ADM) was presented by G. Adomian in [1]. Differential and integral 
equations of linear and nonlinear problems have been solved by this method [2-6]. By the ADM, the 
representation of the solution has been synchronized to the series. Each term of the series is calculated from a 
polynomial produced by a power series expansion of an analytic function. This method provides effective 
algorithms for the analytic approximate solution. In the last years, many researchers have studied the 
applications of ADM to solve various problems in [1, 7, 8, 19, 22]. This method can be employed for any kind 
of differential and integral equations, homogeneous or inhomogeneous linear or nonlinear, with constant 
coefficients or with variable coefficients. Also, the calculation of this method is easy and gives highly accurate 
numerical results. 

The linear and nonlinear Sturm-Liouville (S-L) problems have of great importance. Theory and algorithms of 
these problems are presented in [9-18]. The fractional specific problems are studied in [20], [21].  

The purpose of this paper is to understand the structure of eigenvalues and eigenfunctions for nonlinear S-L 
problem with fractional Riemann-Liouville derivative. To this end, we establish the values of    , 

numerically for different order of  . We also analyzed the eigenfunctions corresponding to different 
eigenvalues and illustrate the results with figures and tables. 
 
 
2. General Requirements 

 
Definition 1. [10] Let 0 1  . The right and left-sided Riemann-Liouville (RL) integrals of order   are 
introduced by 

         1
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Ib,
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s  x1 fsds, x  b     

 
where   denotes the gamma function. 
Definition 2. [10] Let 0 1  . The right and left-sided RL derivatives of order   are introduced by 

       1
, , ,     a aD f x D I f x x a 
    

     1
, ,    .b bD f x D I f x x b 
     

Property 3. [10] If f(t) is continuous for t a then integration arbitrary of real order p and q  RL integral has 
the following important property 

     , , ,
p q p q

a a aI I f x I f x
   . 

Lemma 4. [10] For k ,   if  1 ,g L a b  and 1k k    
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where 0b a   and 0.x   
 
3. Analysis Of The ADM 

 
Consider the nonlinear fractional S-L problem 

       0 , 0,1y xd
D y x e y x x

dx
 
     
 

                                               (1) 

having following boundary conditions 

   0 0 1 0y y                                                                             (2) 

where 0 1  ,   0y x   and 0   is a spectral parameter. 

The purpose is the work is to investigate the eigenvalues and the eigenfunctions of    1 , 2  by using the ADM. 

The equation  1  can be expressed as  

     y xLy x e y x                                                                          (3) 

where  0
d
dxL D

  is the differential operator. We can give the inverse of L  by 

 

L1 .   
0

x

I0
 . dt.
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Applying 1L  on the left side of equation  3  and using the initial condition  0 0y  , it can be obtained that 

      

   

   

1
0 0

0

0

0

0

x

x

dy t
L L y x I D dt

dt
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  



  

where  0 0c y  . 

Applying 1L  on the both side of equation  3 , it gives that 

      1 y xy x cx L e y x                                                                          (4) 

By the ADM,  y x  can be symbolized such that 

   
0

n
n

y x y x




                                                                      (5) 

in here N  is given by 

    
0

,y x
n

n

e N y x A




                                                              (6) 

where nA  are the Adomian polynomials of 0 1, ,..., ny y y  given by 

An  1
n!

dn

dn N 
i0



iyix

0

, n  0,1, 2, . . .

 

Substituting  5 ,   6  into  4  gives 

     1 1

0 0 0

.n n n
n n n

y x cx L A x L y x
  

 

  

   
     

   
                                             (7) 

The following recursive relations can be given from equation  7 :  

 
    

0

1
1 , 0.k k k

y x cx

y x L A x y k




  
                                                             (8) 

 kA x  are the Adomian polynomials which are including the nonlinear term    y xN y e  and following 

algorithm will be used for calculating Adomian polynomials 



 

172 

Ercan / Cumhuriyet Sci. J., 41(1) (2020) 169-175 

   
   

     

       

0

0

0 0

0

0 0

0 0

1 1 0 1

2 2
2 2 0 1 0 2 1

3
3 3 0 1 2 0 1 0

3
3 1 2 1

,

,

1 1

2 2
1

3!

3!
.

.

y

y

y y

y
y y

A x N y e

A x y N y e y

A x y N y y N y e y e y

A x y N y y y N y y N y

e
e y e y y y

 

 

    

    

  

                                          (9) 

Combining  8  and  9  yields 
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Calculating more terms in the decomposition series is improved to convergence. According to this idea the 

solution  y x  is approximately equal to  

  0 1 2 3y x y y y y     

On the other hand, the boundary condition  1, 0y    gives nonlinear equation 

 , 0F c                                                                        (10) 

From here we can obtain the branching diagram of the problem (1)-(2).  

We know that  y x satisfies  

   1 , 0 1y z y z z    . 
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It’s clear that 

     , 0 1 0G c y y     .                                                          (11) 

Considering the equations (10) and (11) together and solving this system numerically we obtain the values of 
  and c  for different values of  as follow 
 
Table 1. Approximate eigenvalues under different orders  of    

    c  

 
0.5  

0.99512  837.2  

1 145.78291 10  

1.64427  152.81885 10   

1.71517  94.0068  

10.6761 1.20394  
 

0.6  
0.997324  1465.31  

1 148.84498 10   

1.58721 152.17009 10  

1.64314  146.988  

11.6322  1.10646  
 

0.7  
0.998394  2601.29  

1 155.79212 10  

1.53447  172.74528 10   

1.57757  232.096  

12.707  0.965743  
 

0.8  
0.999052  4679.72  

1 151.3532 10   

1.48583  162.34141 10  

1.51854  369.062  

14.0689  0.794993  
 

0.9  
120.561  0.0440089  

0.998121  2217.96  

1 152.75938 10   

Now we show the representations of the different solutions under different values by via Table 1. All data are 
obtained numerically corresponding to the first two terms of series expansion of exponential function. 
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Figure 1. The representations of the solutions under different values 

          
Figure 2. The representations of the solutions under different values 

 
 
4. Conclusions 

In this paper, nonlinear fractional S-L problem is considered. By employing the ADM, we analyze the 
eigenfunctions and eigenvalues. The results obtained in this paper demonstrate that ADM is a powerful method 
for finding the eigenvalues and eigenfunctions for nonlinear fractional S-L problem. This technique provides a 
convergent series solving the problem. These results new tools deal with the fractional differential and integral 
equations in mathematics, physics, biology etc. 
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