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 Abstract  
In this paper, we study main headlines of brain development which is a major problem in 

neurobiology in present. Our aim here is to find the analytical solution of the equation that 

belongs to the brain development system. For this solution, the exchange of cerebellum 

granule cells in EGL (External granule layer of the cerebellum) is discussed. For this reason, 

Lie symmetry analysis is used. Obtaining solutions of this system means determining the 

behavior of the granular cell numbers at different stages. Knowing the behavior of these cells 

provides important information about the progression and development of diseases. Examples 

of these diseases are abnormal cerebellum development, cerebellum cancer. In this study, time 

dependent probability function related to division of two granule cells is examined. Then, 

analytical solutions are obtained for three different states of this function. Some tables and 

density graphics of these solutions are given. 
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1. Introduction  

A balance between granule cell precursor proliferation and differentiation is necessary to create the required 

number of granule cells in the ripe cerebellum. To describe this process mathematically, Leffler et al. [1] took 

into consideration the cellular behaviors in the external granule layer of the cerebellum (EGL). 

It is important to understand the changes in the number of proliferations produced from granular cell precursors 

(gcps) in the outer layer of EGL (oEGL) and the number of differentiated granule cells in the inner layer of EGL 

(iEGL).  

The cerebellum plays an important role in many motor, cognitive and emotional processes. At the cellular level, 

the granule cells and gcps in mice have been discussed almost 50 years in [1-3,4-8,9,10]. Recent studies of clonal 

analysis have been reported by Legue et al. [2] and Espinosa et al. [4]. 

In this paper, we have considered the following system of ordinary differential equations given by Leffler et al. 

[1]: 

 

𝑑𝑁𝑜

𝑑𝑡
= 𝛼𝑝(1 − 𝛿)𝑁𝑜 − 𝛼𝑝 𝛿 𝑁𝑜                                                                                                                           (1) 

 

𝑑𝑁𝑖

𝑑𝑡
= 2𝛼𝑝𝛿𝑁𝑜 − 𝛼𝑒  𝑁𝑖                                                                                                                                       (2) 

 

where  

𝑁𝑜(𝑡): Time-dependent function expressing the number of cells in oEGL, 

𝑁𝑖   
(𝑡): Time-dependent function expressing the number of cells in iEGL, 

𝛼𝑝:  Rate constant for the division of gcps, 

𝛼𝑒:  Rate constant for the exit of granule cells from EGL, 

𝛿(𝑡): The time dependent probability function that a gcp divides terminally to generate two granule cells. 

https://orcid.org/0000-0002-7701-6946
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Equations (1) and (2) provide predictions of initial number of gcps and gcp clone size. The model presented in 

[1] provides quantitative predictions about the granule cell properties and behaviors that can be compared to past 

and future data acquired from the developing mouse cerebellum. This mathematical model is very useful for us 

to explain how changes in these cell properties give rise to abnormal developments in mouse models of human 

neurodevelopmental diseases including cancer.  

If the δ is a constant, the solutions of the Equation (1) and Equation (2) are easily found. For different values of 

δ, it is easy to determine the behavior of 𝑁𝑜 as given by Leffler et al. [1]: 

 

i)  For 0 ≤ δ ≤ 1/2, 𝑁𝑜(𝑡): Increasing exponential function of time. 

ii) For δ = ½,  𝑁𝑜(𝑡): A constant. 

iii) For 1/2 ≤ δ ≤ 1, 𝑁𝑜(𝑡): Decreasing exponential function of time. 

 

Leffler et al. [1] conclude that δ must be a time-dependent function and the conditions of listed below must be 

satisfied:  

 

“δ(t) must be less than 1/2 initially, and then greater than 1/2 after some time. Since t = 0 is the time just before 

gcps begin to differentiate into granule cells, it is assumed that δ(t) = 0.” 

 

In this paper, three different δ(t) probability functions (linear, rational and exponential) are studied. Firstly, we 

will search the solutions of Equation (1) using Lie symmetry analysis and then we will find the general solution 

of Equation (2).  

The rest of the paper is organized as follows: We will give some useful basic definitions and theorems about one 

parameter Lie group and the application of Lie symmetries to the ordinary equations in section two.  

In the third section, there will be analytical solutions obtained by Lie symmetry method with different δ(t) 

probability functions which depend on time. In the fourth section, there will be some numerical simulations and 

the last section contains some discussions and conclusions. 

 

2. Some Basic Definitions About Lie Symmetry Method 

In this section, let us briefly sketch some basic elements of Lie group analysis of differential equations. The 

reader can find a more detailed exposition in [11-18,19-23,24-27]. 

 

2.1. One parameter lie group 

   

Let         

                                        

𝑢: ℝ2x  𝜀 →  ℝ ,     𝑣: ℝ2x  𝜀 →  ℝ                                                                                                                        (3) 

 

where  𝜀 ∈  ℝ  is a parameter,  𝑢 and 𝑣 are analytical functions for Lie groups. 

 

𝑢(𝑥, 𝑦, 𝜀) = 𝑥1 ,     𝑣(𝑥, 𝑦, 𝜀) = 𝑦1                                                                                                                         (4) 

 

and using   𝑍𝜀 ∶  ℝ2  →  ℝ2,  

 

(𝑥, 𝑦) →  𝑍𝜀(𝑥, 𝑦) = (𝑢(𝑥, 𝑦, 𝜀), 𝑣(𝑥, 𝑦, 𝜀)).                                                                                                        (5) 

 

Then the set                                           
                

 𝐻 = [𝑍𝜀  | 𝜀 ∈  ℝ]                                                                                                                                                 (6) 



 

58 
 

Kocabıyık, Yakıt Ongun / Cumhuriyet Sci. J., 41(1) (2020) 56-68 
 

will be defined.  It is called one parameter Lie group if the set (6) provides the group axioms. The analytic 

functions 𝑢 and 𝑣 are called global terms of the Lie group. For Equation (3), if we expand Taylor series about 

the point  𝜀 =0, we get 

 

𝑥1 = 𝑥 + 𝜀 𝜉(𝑥, 𝑦) + 𝑂(𝜀2)                                                                                                                              (7) 

 

𝑦1 = 𝑦 + 𝜀  𝜂(𝑥, 𝑦) + 𝑂(𝜀2),                                                                                                                            (8) 

 

where  𝑥1 and  𝑦1 are infinitesimal transformations of the Lie Group transformations. 𝜉 and 𝜂 are tangent 

vectors (infinitesimal of the group) and are defined by Oliver [24], 

 

𝜉(𝑥, 𝑦) = (
𝜕𝑥1

𝜕𝜀
)
𝜀=0

                                                                                                                                            (9) 

 

𝜂(𝑥, 𝑦) = (
𝜕𝑦1

𝜕𝜀
)
𝜀=0

 .                                                                                                                                        (10) 

 

We can use differential operator to observe a smooth function change under the influence of an infinitesimal 

form. The differential operator 

 

𝐺 =  𝜉(𝑥, 𝑦)
𝜕

𝜕𝑥
+ 𝜂(𝑥, 𝑦)

𝜕

𝜕𝑦
                                                                                                                            (11) 

 

is called Lie operator. 

 

2.2 Lie group analysis of ODEs 

 

We consider               

  

𝑦′ = 𝑓(𝑥, 𝑦).                                                                                                                                                    (12) 

 

A first integral of Equation (12) is a non-constant function ϕ(x, y) whose value is constant on any solution 𝑦 =
𝑦(𝑥) of the ordinary differential equation. Symmetry transformations for differential equations move the points 

to new coordinates without changing them. So, 

 

 𝑍𝜀: (𝑥, 𝑦) → (𝑥1, 𝑦1) = (𝑥1(𝑥, 𝑦, 𝜀), 𝑦1(𝑥, 𝑦, 𝜀)),   𝜀 ∈  ℝ                                                                             (13) 

 

a transformation in (13) is symmetry for Equation (12). With the definition of this transformation,   

 

 
𝑑𝑦1

𝑑𝑥1
= 𝑓(𝑥1, 𝑦1)                                                                                                                                                                                               (14) 

 

is called symmetry condition for Equation (12).  

We have the equation 

𝑑𝑦1

𝑑𝑥1
=

𝐷𝑥𝑦1

𝐷𝑥𝑥1
=

𝑦1𝑥+𝑦′ 𝑦1𝑦

𝑥1𝑥+𝑦′ 𝑥1𝑦

  ,   

where Dx   is total derivative operator in the  𝑥-direction.  

That is, symmetry condition for Equation (12) will be   

 
𝑦1𝑥+𝑦′ 𝑦1𝑦

𝑥1𝑥+𝑦′ 𝑥1𝑦

=  𝑓(𝑥1, 𝑦1).                                                                                                                                    (15) 
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Now we consider an orbit that is non-invariant for (𝑥, 𝑦) point. Using the tangent vector with this orbit under 

the influence of Lie groups, we get  

 
𝑑𝑥1

𝑑𝜀
= 𝜉(𝑥1, 𝑦1),       

𝑑𝑦1

𝑑𝜀
= 𝜂(𝑥1, 𝑦1).                                                                                                                 (16) 

Using above conditions, we will obtain Equation (17) as linearized symmetry condition of ordinary differential 

equation:                  

 𝜂𝑥 + (𝜂𝑦 − 𝜉𝑥)𝑓 − 𝜉𝑦𝑓2 = 𝜉𝑓𝑥 + 𝜂𝑓𝑦 .                                                                                                            (17) 

2.3 Canonical coordinates for ODEs 

Let’s assume that we can find non-trivial symmetries of Equation (12) and these symmetries are just including 

translational Lie group in the y-direction. 

 In this case, 

(𝑟, 𝑠) = (𝑟(𝑥, 𝑦), 𝑠(𝑥, 𝑦)),       𝑟𝑥𝑠𝑦 − 𝑟𝑦𝑠𝑥 ≠ 0                                                                                               (18) 

shows with the new coordinates. These new coordinates are named Canonical coordinates. These new 

coordinates are symmetries of one-parameter Lie group. Then the tangent vector ((
𝑑�̂�

𝑑𝜀
)
𝜀=0

= 0, (
𝑑�̂�

𝑑𝜀
)
𝜀=0

= 1) 

is obtained with (�̂�, �̂�) =  (𝑟, 𝑠 + 𝜀) . When the chain rule is used at the tangent vector point, we will find 

𝜉(𝑥, 𝑦) 𝑟𝑥 + 𝜂(𝑥, 𝑦)𝑟𝑦 = 0  

𝜉(𝑥, 𝑦) 𝑠𝑥 + 𝜂(𝑥, 𝑦)𝑠𝑦 = 1 ,                                                                                                                                   (19) 

where the pair of canonical coordinates (𝑟, 𝑠) is found as follows: 

i) if 𝜉 ≠ 0, we see that the 𝑟 is a first integral of  

 

𝑑𝑦

𝑑𝑥
= 

𝜂(𝑥,𝑦)

𝜉(𝑥,𝑦)
 .                                                                                                                                        (20) 

 

Thus, 𝑟 = ϕ(x, y) is found by solving Equation (20).  Here, 𝑟 is an invariant canonical coordinate. So, by taking 

the first integral of Equation (20), there will be  𝑟 = ϕ(x, y) = c  ,   𝜙𝑦 ≠ 0 (where c is an arbitrary constant) and 

𝑟 = ϕ(𝑥, 𝑦),        𝑠 = (∫
𝑑𝑥

𝜉(𝑥,𝑦(𝑥,𝑟))
) |𝑟=𝑟(𝑥,𝑦).  

 

ii) if 𝜉 = 0 (if these symmetries are not trivial symmetries when 𝜂 = 0), with the help of the first few  

Equations of (19), it is seen clearly that 𝑟𝑦 = 0. Therefore, the canonical coordinates are found as 

𝑟 = 𝑥,       𝑠 = (∫
𝑑𝑦

𝜂(𝑟,𝑦)
) |𝑟=𝑥  .  

So, using the instruments of canonical coordinates, the analytical solution of the Equation (12) will be 

𝑠(𝑥, 𝑦) − (∫𝛺(𝑟)𝑑𝑟)|𝑟=𝑟(𝑥,𝑦) + 𝑐 = 0                                                                                                             (21) 

where    
𝑑𝑠

𝑑𝑟
= 𝛺(𝑟, 𝑠). 
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3. Analytical Solutions for Different δ(t) Functions 

 

In this section, we will find the analytical solutions of granule cell generation system with different time-

dependent 𝛿 (𝑡) functions using Lie symmetry analysis. 

 

3.1 Case 1: 𝜹(𝒕) = 𝒂𝒕 

 

In this case, we will deal with 𝛿(𝑡) being linear function. We take initial slope of 𝛿(𝑡) as 𝑎,  that is 𝛿(𝑡) = 𝑎𝑡. By 

using this substitution in Equation (1) and Equation (2), the system becomes, 

 

 
𝑑𝑁𝑜

𝑑𝑡
= 𝛼𝑝(1 − 𝑎𝑡)𝑁𝑜 − 𝛼𝑝 𝑎𝑡 𝑁𝑜                                                                                                                      (22) 

 

 
𝑑𝑁𝑖

𝑑𝑡
= 2𝛼𝑝 𝑎𝑡 𝑁𝑜 − 𝛼𝑒  𝑁𝑖 .                                                                                                                                (23) 

 

Considering Equation (22) and writing this equation under the influence of linearized symmetry conditions given 

by Equation (17) yields we obtain (𝜉, 𝜂) = (0,𝑁𝑜). Since ξ = 0, is obtained, with the help of (ii) in subsection 

(2.3), it is also found that 𝑟 = 𝑡  ,  𝑠 = (∫
𝑑𝑡

𝑁𝑜
)  and by solving (20), 𝑁𝑜 will be 

𝑁𝑜(𝑡) =
𝑒𝛼𝑝 𝑡 𝑐1

𝑒𝑎𝑡2 𝛼𝑝
,                                                                                                                                     (24) 

where 𝑐1 is an arbitrary constant.  

With writing down this solution in (23), we will have the equation for 𝑁𝑖, 

 

𝑑𝑁𝑖

𝑑𝑡
= 2𝛼𝑝 𝑎𝑡

𝑒𝛼𝑝 𝑡 𝑐1

𝑒𝑎𝑡2 𝛼𝑝
  − 𝛼𝑒  𝑁𝑖 .                                                                                                                           (25) 

 

In the same way, with implementing symmetry condition which is the Equation (17), we will have (𝜉, 𝜂) =
(0, 𝑒−𝛼𝑒𝑡) as a tangent vector. Again, using subsection 2.3, we will have the canonical coordinates as 𝑟 = 𝑡  and  

𝑠 = (∫
𝑑𝑡

𝑒−𝛼𝑒𝑡). Using the canonical coordinates, the analytical solution of 𝑁𝑖 will be 

𝑁𝑖  (t) =

[
 
 
 

2  𝑐1 𝑎 𝛼𝑝 (
−1

2
 
𝑒−𝑎𝑡2 𝛼𝑝+(𝛼𝑝+𝛼𝑒)𝑡

𝑎 𝛼𝑝
) +

1

4

(𝛼𝑝+𝛼𝑒)√𝜋𝑒

1
4

(𝛼𝑝+𝛼𝑒)2

𝑎 𝛼𝑝 erf (√𝑎 𝛼𝑝𝑡−1/2
(𝛼𝑝+𝛼𝑒)

√𝑎 𝛼𝑝
)

𝑎 𝛼𝑝√𝑎 𝛼𝑝
+ 𝑐2

]
 
 
 

/𝑒𝛼𝑒𝑡             (26) 

where 𝑐2 is an arbitrary constant. 

 

 3.2 Case 2:  𝜹(𝒕) =
𝒂𝒕

𝟏+𝒂𝒕
  

In this case we will examine the analytical solution if 𝛿(𝑡) will be chosen as rational expression. Therefore, if 

𝛿(𝑡) is chosen as 
𝑎𝑡

1+𝑎𝑡
 , the new version of Equations (1) -(2) will be 

 

𝑑𝑁𝑜

𝑑𝑡
= 𝛼𝑝 (1 − (

𝑎𝑡

1+𝑎𝑡
  ))𝑁𝑜 − 𝛼𝑝 (

𝑎𝑡

1+𝑎𝑡
) 𝑁𝑜                                                                                                      (27) 

 

 
𝑑𝑁𝑖

𝑑𝑡
= 2𝛼𝑝  (

𝑎𝑡

1+𝑎𝑡
  )  𝑁𝑜 − 𝛼𝑒  𝑁𝑖 .                                                                                                                      (28)                         
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As in the previous case, we will have the tangent vectors (𝜉, 𝜂) = (0,𝑁𝑜), with implementing linear symmetry 

condition to Equation (27) and with the help of canonical coordinates the general solution of 𝑁𝑜 will be    
 

𝑁𝑜(𝑡) =
(𝑎𝑡+1)

(
𝛼𝑝
𝑎

)2

𝑒𝛼𝑝𝑡(𝑒
(
𝛼𝑝𝑐3

𝑎
)
)2
,                                                                                                                                       (29) 

 

where 𝑐3  is an arbitrary constant. With writing down this analytical solution in Equation (28), differential 

equation for 𝑁𝑖  will be 

𝑑𝑁𝑖

𝑑𝑡
= 2𝛼𝑝 (

𝑎𝑡

1+𝑎𝑡
  )(

(𝑎𝑡+1)
(
𝛼𝑝
𝑎

)
2

𝑒𝛼𝑝𝑡(𝑒
(
𝛼𝑝𝑐3

𝑎
)
)

2 − 𝛼𝑒  𝑁𝑖 .                                                                                                     (30) 

By writing the expressions under the symmetry condition, we will find (𝜉, 𝜂) = (0, 𝑒−𝛼𝑒𝑡)  and using canonical 

coordinates the general solution of 𝑁𝑖   can be given as: 

  

𝑁𝑖(𝑡) =

∫

(

 
 
 

2𝛼𝑝𝑎𝑡(𝑎𝑡+1)
(
2𝛼𝑝
𝑎

−1)
𝑒𝛼𝑒𝑡

𝑒
𝛼𝑝𝑡

(𝑒
(
𝛼𝑝𝑐3

𝑎
)
)

2

)

 
 
 

𝑑𝑡+𝑐4

𝑒𝛼𝑒𝑡    ,                                                                                       (31) 

where 𝑐4 is an arbitrary constant.  

 

3.3 Case 3: 𝜹(𝒕) = 𝟏 − 𝒆−𝒂𝒕 

In the final case, we will examine the analytical solution of the model when 𝛿 (𝑡) is an exponential expression. 

So, if we take 𝛿(𝑡) = 1 − 𝑒−𝑎𝑡 , Equations (1) -(2) will be 

 

𝑑𝑁𝑜

𝑑𝑡
= 𝛼𝑝(1 − (1 − 𝑒−𝑎𝑡))𝑁𝑜 − 𝛼𝑝 (1 − 𝑒−𝑎𝑡)𝑁𝑜                                                                                             (32)  

𝑑𝑁𝑖

𝑑𝑡
= 2𝛼𝑝(1 − 𝑒−𝑎𝑡) 𝑁𝑜 − 𝛼𝑒  𝑁𝑖 .                                                                                                                    (33) 

 

If we apply the same procedures in the previous cases, we will have the general solutions as: 

𝑁𝑜(𝑡) =
𝑐5

𝑒𝛼𝑝𝑡(𝑒
(
𝛼𝑝𝑒−𝑎𝑡

𝑎
)
)2

                                                                                                                         (34) 

and 

𝑁𝑖(𝑡) = [∫(−2𝑐5 𝛼𝑝 (𝑒
−(

𝑎𝑡2𝛼𝑒 𝑡𝑎+𝑎𝑡𝛼𝑝+2𝛼𝑝𝑒−𝑎𝑡 

𝑎
)
) + 2𝑐5 𝛼𝑝 (𝑒

−(
−𝛼𝑒 𝑡𝑎+𝑎𝑡𝛼𝑝+2𝛼𝑝𝑒−𝑎𝑡 

𝑎
)
))𝑑𝑡 + 𝑐6] /𝑒𝛼𝑒𝑡,                     (35) 

where 𝑐5 and 𝑐6 are arbitrary constants. As in the other cases, the tangent vectors are found as (0, 𝑁𝑜) for  𝑁𝑜 

and (0, 𝑒−𝛼𝑒𝑡) for  𝑁𝑖   . 

 

4. Numerical Simulations 

 

With the help of  𝑁𝑜(𝑡) and  𝑁𝑖(𝑡)  functions, we can use a Equation (4.1) and Equation (4.2) to find changes in 

tissue area. Equation (36) and Equation (37) give us the cell numbers for granule cell generation systems. 𝐴𝑜(𝑡) 

means area of the oEGL and it is defined as, 

 

𝐴𝑜(𝑡) =
𝑣𝑐 𝑁𝑜(𝑡)

𝐿
.                                                                                                                                                 (36) 
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 𝐴𝑖(𝑡) means area of the iEGL and it is defined as,  

                                                                    

𝐴𝑖(𝑡) =
𝑣𝑐 𝑁𝑖(𝑡)

𝐿
                                                                                                                                      (37) 

 

where 𝑣𝑐 is the volume of granule cell, assumed to be 300-µm3 and 𝐿 is the medial-lateral width of the vermis 

(central cerebellum), measured to be 1775-µm (∓%20). Now we will give some graphics to examine the change 

in tissue area with using this formula and measured values.  

The table is constructed for the initial conditions  𝐴𝑜(0) = 0 and  𝐴𝑖(0) = 0. These values are gained in different 

biological observations that are studied in Leffler et al. [1]. 

Table 1. Values of δ(t) probability function. 

 

 

 

 

 

For the linear case, if one considers the expressions in (24) and (26), the constants will be  𝑐1 = 11797, 𝑐2 =

11797. Using Table 1, the constants for rational and exponential case will be 𝑐3 = −0.4594,  𝑐4 = 298.5502, 

𝑐5 = 0.2025723984 x 1014 and  𝑐6 = 0.  

In Figure 1, the simulations which are obtained by taking account the constants for  𝐴𝑜(𝑡) can be seen. In 

Figure 2, the density simulations of  𝐴𝑜(𝑡) are plotted for linear, rational and exponential solutions. 

 
Figure 1. Solutions of Ao(t) for linear, rational and exponential cases. 

𝛿(𝑡)𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 Linear Rational Exponential 

𝛼𝑝 0.0348 0.0558 0.0473 

𝛼𝑒 0.0387 0.0588 0.0474 

𝑎 0.0029 0.0059 0.0041 

 𝐴𝑜(0) 1994 1005 1411 
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Figure 2. Density plot simulations of A0(t) for linear, rational and exponential cases respectively. 

In Figure 3, we show the simulation for general solutions of  𝐴𝑖(𝑡) and in Figure 4, there are density plot graphics 

of the solutions of  𝐴𝑖(𝑡) for all three cases. 

 
Figure 3. Solutions of Ai(t) for linear, rational and exponential cases. 
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Figure 4. Density plot simulations of Ai(t) for linear, rational and exponential cases respectively. 

The density plot simulations are given for different values of αp in Figure 5 and Figure 6.  

 
Figure 5. Solutions of Ai(t) and A0(t) for αp =1.5 × 0.0348. 
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Figure 6. Density Plot simulations of Ai(t) and A0(t) for different αp. 

Finally, Figure 7 and Figure 8 deal with linear case, but this time the different values of 𝛼𝑒 are given for the 

simulation of granule cell change and density plot graphics.  

 
Figure 7. Solutions of Ai(t) a0(t) for αe =0.5 × 0.0387. 
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Figure 8. Density Plot simulations of Ai(t) and A0(t) for different αe. 

In this work all numerical calculations and simulations carried out in Maple 18 package program. 

5. Conclusions 

 

In this study, analytic solutions are obtained by Lie symmetry analysis. Firstly, solutions of  𝑁𝑜(𝑡) and  𝑁𝑖(𝑡) 

are obtained using Equation (1) and Equation (2), respectively. Then,  𝐴𝑜(𝑡) and  𝐴𝑖(𝑡) functions which depend 

on time are found. Simulations about the monthly changes of these functions are given. Three different 

conditions have been investigated for 𝛿(𝑡).  Estimating the number and distribution of granular cells are very 

important for nerve diseases. For this purpose, new and important contributions have been made in the field of 

nerve diseases. 
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