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1. Introduction

Real quaternions firstly observed by Sir William Rowan Hamilton in 1843, see [1]. The set of all real
quaternions H is defined in the following way:

H= {q =0, + 0,6, + 0,6, +05€;:0,,0;,0,,0; € R}
where e’ =e,* =¢,” =ee,e, =—1. The conjugate of a quaternion is defined as
q =q,-09, —d,8, — 0,8, - Quaternions have many applications in various research areas such as computer

sciences, differential geometry, quantum physics, kinematic and analysis. Further information about
guaternions see [2-8].

Horadam [9] introduced the Jacobsthal and Jacobsthal-Lucas numbers J, and j, which is given by the
following recurrence relations

J,=J,,+2),, n=2,J,=0 and J =1 (1)
and
jn:jn—l+2jn—2’n22’ jo:2 and jl:]" (2)

respectively. Recurrences (1) and (2) lead to the characteristic equation t*—t—2=0 with roots o=2 and
B=-1sothat a+B=1, a—f=3 and ap=-2. It is well-known from [9] that Binet formulas for the Jacobsthal
and Jacobsthal-Lucas numbers are

2 (-1

J =2 3

n 3 ( )
and
o =2" (-0’ (4)
respectively. Using the equations (3)and (4), we can deduce the extension of Jacobsthal and Jacobsthal-Lucas

) (_1)n+l ) (_1)n -

numbers to negative values of n suchthat J , = on J, and j = o
In [10], Horadam gave many identities for Jacobsthal and Jacobsthal-Lucas numbers as follows:
2‘]m-l = ‘]n + jn (5)
jn =Jat+23,, (6)
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3‘]n +jn = 2n+1 jn‘]n :‘]Zn
jm+n = jn‘]m+l + 2jn—l‘]m

2‘]m+n = ‘]mjn + jm‘]n

Joada —ir” =9(-1)"" 2" =-9(J, .3, -J,%) (Simson formulas)
I|m ‘]n+l _ ||m Jn+1 — 2

n—w J n—w Jn

limd —3

n—w J

3

i‘]i — ‘Jn+2 —
ZJ Jn+2

There are several researches on quaternions whose coefficients consist of Fibonacci-like numbers, see [11-19].

As seen in literature, many authors contributed the theories of the Jacobsthal numbers, polynomials and
Jacobsthal quaternions, see [9-12], [19], [20-25].
In [25], some identities for Jacobsthal numbers were given as follows:

‘]n‘]n+l+2‘]n—l‘]n =‘]2n =‘]njn (7)
‘]n‘]m+1 + 2‘]n—l‘]m = ‘]m+n

‘]2n+1 = ‘]n+12 +2‘]n2 (8)
‘]n‘]m 1 ‘]n—l‘]m =(_1)m 2m_:L‘]n—m '

In [19], Szynal-Liana and Wloch introduced Jacobsthal quaternion QJ, and Jacobsthal-Lucas quaternion Qj, in
the following way:

Q‘]n =‘]n +‘]n+le1+‘]n+2e2 +‘]n+3e3 (9)
and
an = jn + jn+lel + jn+262 + jn+3eS (10)

respectively. They showed that these quaternions satisfy a second-order linear recurrence relation and obtained
their norms and some relations between them.
In [11], Aydin Torunbalc1 and Yiice explicitly determined Binet formulas of QJ, and Qj, as follows:

QJ, =L(Aa" -BB") and Qj, =3Aa" +3Bp" (11)
a_
respectively, where a—f=3, A=1+2e +4e,+8,, B=1-¢ +e,—¢,.
They obtained the Cassini identities for QJ, and Qj, by using Binet formulas given in the equation (11).

In [26], Jordan defined the Gaussian Fibonacci and Gaussian Lucas numbers. Pethe and Horadam [27] defined
Generalized Gaussian Fibonacci Numbers. In [20], Asc1 and Giirel introduced the Gaussian Jacobsthal and
Gaussian Jacobsthal-Lucas sequences with numbers which satisfy the recurrence relations

GJ, =Gl _,+2GJ_,, n=2, GJ, :% and GJ, =1 (12)
and
Gj, =Gj, , +2Gj, ,,n>2, Gj, = 2—l2 and Gj, =1+2i, (13)

respectively. Here it can be easily seen that the relations GJ, =J, +iJ, ;,, n>1 and Gj, =j, +ij, ,, n >1exist. Also
they gave some results relating Gaussian Jacobsthal and Jacobsthal-Lucas numbers as follows:
G‘]n — Gjn+1 + 2Gjn—l
9
GJ, ,Gl, ., —GJ," =(3-i)(-1)" 2"



Arslan/Cumbhuriyet Sci. J., 41(1) (2020) 1-10

Gjn—lGjn+11 _GJ 2 = 9(3_i)(—1)n_1 2n72

n

363, =[G, , 1]
e

N 1. )
kZ:(;Gjn = E[Gjmz —(1+ 2|)]

2 (2+0)—(-1)" " (i-2)
3

From (3)and (4), one can find Binet Formulas of GJ, and Gj, as GJ, = and

n-1,.

Gj, =2""(2+i)+(-1)" (i-1).

In this paper, we firstly introduce the quaternions whose coefficients Gaussian Jacobsthal and Gaussian
Jacobsthal-Lucas numbers and then we give Binet formulas, Cassini identities, generating functions and some
summation formulas for them.

2. Complex Gaussian Jacobsthal And Jacobsthal-LucasQuaternions

Any complex quaternion 2 is defined in the following form

A=Ay +A € +A,8, +A,8,

where each coefficient ; is a complex number and e, ,e, e, are quaternionic units.

The set of all complex quaternions is denoted by H.. The complex quaternion 2 can be written as

A=q+iq’

where g and g' are real quaternions. For further information see [28]. Complex quaternions, that is
biquaternions are used in various research area such as the theory of special relativity, quantum mechanics,
electromagnetism and particle physics, see [2-8]. Halic1 introduced the complex Fibonacci quaternions and
examined their structures in [16] and Aydin Torunbalci introduced the generalized complex Jacobsthal
sequence in [12].

Now, we define complex Gaussian Jacobsthal quaternion QGJ, as follows:

QGJ, =GJ, +GJ, &, +GJ, ,e, +GJ, &, =QJ, +iQJ, ,

where

e’ =6’ =6’ =eee, =-1, e, =68 = €y, €8 =66, =€, 66 =68 =6,.

Similarly, we define complex Gaussian Jacobsthal-Lucas quaternion QGj, as

QGj, =Gj, +Gj,..&, +GCj, ., + CJ,.48; = Qj, +1QJ,,; -

Taking into account the equations GJ, =J, +iJ,,, n>1 and Gj, =j, +ij, ,, n>1, the quaternions QGJ, and
QG;j, are expressible as QGJ, =QJ, +iQJ, , and QGj, =Qj, +iQj, ,, where QJ, and Qj, are n" real Jacobsthal
and Jacobsthal-Lucas quaternions as in (9) and (10), respectively. The addition, substraction and

multiplication of the Gaussian Jacobsthal quaternions are defined as in real quaternions.
We state the quaternion conjugate of QGJ, as

QGJ, =GJ, -GJ, e, —GJ, e, —GJ, .e,,

and the complex conjugate of QGJ, as

QGJ, =GJ, +GJ_ e, +GJ_ e, +GJ__e,,

where GJ..,r=0,1,23 stands for complex conjugate of the Gaussian Jacobsthal number GJ. . Thus, we

conclude that QGJ, =QJ, —iQJ, , .

Proposition 2.1. Let GJ, be the n" Gaussian Jacobsthal number. Then we have
GJ,2+2GJ, 2 =Gl,, ,+iGJ
Proof. Since GJ, =J, +iJ, , and the equations (7) and (8), we get

2n-1 2n-2 "
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G2 +2GJ, 2 =(3, +13, ) +2(J,, +13,,)
=(3,7+2,7) (3,4 +23, 7 )+2i(3,]

n n“n-1 +2‘]n—l‘]n—2)
=Jon ~dons + 20,

J2n -1 JZn 2 iJ

=GJ,, , +iGJ,, ,.

In the following proposition, we establish a few basic properties of the QGJ,, some of which we will use to

investigate the structure of QGJ, in the rest of this section.

2n-2 ‘]Zn—3

Proposition 2.2. Let n be a positive integer. Then we have

1. QGJ_ =QGJ, +2QGJ, , (14)
QGj,., = QGj, +2QGj, , (15)
QGJ, +QGJ, =2GJ, (16)
QGJ, +QGJ, =2QJ, (17)
QGJ,” +QGJ, (QGJ,") =2(QGJ,)GI, (18)

a > e

_27"-85(2+1)-4(-1)""(i-1)
. :

6. QGJ,-QGJ,..e —QGJ, e, —QGJ, .e,
Proof.

1. Using the equation (12) and the definition of Gaussian Jacobsthal quaternion, we get
QGJ, +2QGJ, , =(GJ, +GJ,,.e, +GJ, e, +GJ, ;8,)+2(GJ, , +GJ e, +GJ, .8, +GJ,.€;)
=(GJ, +2GJ, ,)+(GJ,,, +2GJ, )e, +(GJ,,, +2GJ,,, )e, +(GJ, , +2GJ, , )e,
=GJ,,, +GJ, e +GJ

=QG‘]n+l
2. When used the equation (13) and the definition of QGj, , the proof immediately follows.

3. From the definition of Gaussian Jacobsthal quaternion and its quaternion conjugate, we obtain
QGJ, +QGJ," =(GJ, +GJ,,.e, +GJ, e, +GJ, &, )+(GJ, —~GJ, .6, ~GJ, ,e, —GJ, .e,)=2GJ, .

n+l
4. If we use the definition of Gaussian Jacobsthal quaternion and its complex conjugate, then we get
QGJ, +QGJ, =(QJn +iQJH)+(QJn —iQJH) =2QJ, .
5. The equation (18) is obtained from the equation (16).
6. From the Binet Formula of GJ, , we get the desired relation.

n+l

e, +GJ, .6

n+2 n+3

In the following theorem we will give the identities for QGJ, and QGj, analogous to (5) and (6).

Theorem 2.3. Let QGJ, be the Gaussian Jacobsthal quaternion and QGj, be Gaussian Jacobsthal-Lucas
quaternion. Then we have the following relations:

1. QGJ,,+2QGJ, , =QGj,,
2. 2QGJ,,-QGJ, =QGj, .

Proof.
1. From the relations QGJ, =QJ, +iQJ, , and QGj, =Qj, +iQj, , and the identity QJ,,+2QJ, , =Qj, given
in Theorem 2.2 of [11], it follows that
QGJ, ., +2QG], , = (QJn+1 + iQJn)+ 2(QJH +iQJH)
= (QJn+1 + 2QJH) +i(QJ, + 2QJH)
=Qj, +iQj, ; = QGj,.
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2. From the relations QGJ, =QJ, +iQJ,, and QGj, =Qj, +iQj,, and the identity given in Theorem 3 of
[19], we get the following identity analogous to (5)
2QGJ,,, —QGJ, =(2QJ,, +2iQJ,)—(QJ, +iQJ, ,)
= (2QJn+1 -QJ, )+i(2QJn —QJn_l)
=Qj, +iQj,, =QGj,.

Proposition 2.4. The identities listed below hold for the Gaussian Jacobsthal quaternion QGJ, and Gaussian
Jacobsthal-Lucas quaternion QGj, .
1. QGJ,+QGJ,, =2""(2+i)(1+2e, +4e, +8e;),
QGJ,., —QGJ, =%[2”‘1(2+i)(1+2e1+4e2 +80;)+2(-1)" " (i-1)(1-e, +e, -e,)
QGj, +QGj,,, =3-2""(2+i)(1+2e, +4e, +8e, ),
QGj,, —QGj, =2""(2+i)(1+2e, +4e, +8¢,)+2(-1)" (i-1)(1-e, +e, —&,),
3QGJ, +QGj, =2" (2+1i)(1+2e, +4e, +8e;).

o > N

Proof.
1. From the relation QGJ, =QJ, +iQJ, , , it follows that

QGJ, +QGJ,,; = (QJn +iQ\]H)+(QJn+1 +iQJn)
= (Q.]n +Q.]n+1)+i(QJnfl +Q.]n)
=2"(1+2e, +4e, +8e;)+i2" " (1+2e, +4de, +8e,)
=2"1(2+1)(1+2e, +4e, +8e;).
2. From the relation QGJ, =QJ, +iQJ, , , we get
QGJ, ., —QGJ, = (QJM +iQJ, )—(QJn + iQJn_l)
=(Q),.2 =QJ,)+i(QJ, ~QJ,)

_ %[2 (L+2e, +4e, +8e;) +2(-1) (1, +e, —e;) ]+
é[z”*l (L+2e, +4e, +86,)+2(-1)" " (1-e, +e, —e)

= %[2“(2+ i)(1+ 2¢, +4e, +80)+2(-1)" (i-1)(1-e, +e, -¢;) |
3. Using the relation QGj, =Qj, +iQj, ,, then we obtain
QGj, +QGj,; =(Qi, +iQj, ;) +(Qiy,, +iQi, )
= (Qiy +Qlna) +(Ql-1 +Qir)
=3-2"(1+2e, +4e, +8e,)+i3-2"" (1+2e, + 4de, +8e,)
=3-2""(2+1)(1+2e, +4e, +8e,).
4. If we take into account the relation QGj, = Qj, +iQj, ,, then we have

QGjn+1 _QGjn = (Qjm-l + IQJn )_(an + inn—l)
= (an+1 _an )+ I (an - an,l)
=[2" (1+ 20, + 4e, +8e,) +2(-1)" " (1€, +e, —e;) |+

i| 20 (1426, + de, +8e,)+2(-1)" (1-¢, +e, -, ) |
=2""(2+1)(1+2e, +4e, +8e,)+2(-1)" (i-1)(1-e, +e, —&,).
5. When used similar arguments as above, we conclude

5
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3QGJ, +QGj, = (3QJn +3iQJn71)+(an +inn—l)
=(3QJ, +Qj, ) +i(3QJ,_, +Qij,,)
=2""(1+2e, +4e, +8e;)+i2" (1+2e, +4e, +8e;)
=2"(2+1)(1+2e, +4e, +8e,).

The next corollary follows from the relation QGJ, =QJ, +iQJ, , and Theorem 2.4 of [11].

Corollary 2.5. Let QGJ, be the n" Gaussian Jacobsthal quaternion. Then we have the following summation
formulas:

1. Zn:QGJS :%[QGJM -QGJ, ],

2. 3°QGl, , =§QGJ2n +%[(n(1—i)+i)(2QJ2 ~QJ,)+(3i-2)QJ, +2iQJ, |

3. Zn:QGJZS :§QGJZn+1—%[n(1—i)(2QJ2 -QJ,)-2QJ, +2iQJ, |.

Theorem 2.6. (Binet Formulas). Let QGJ, be the Gaussian Jacobsthal quaternion and QG;j, be the Gaussian
Jacobsthal-Lucas gquaternion. The Binet formulas for these quaternions are

QGJ, = LB[A(W (a+i)=BB™ (B+i)]

o
and
QGj, =3Aa"" (a+i)+3Bp" " (B+i)

respectively, where ¢ =2, f=-1, A=1+2¢ +4e,+8e, andB=1-¢ +e, —¢,.

Proof. The characteristic equation of recurrence relations QGJ,,, =QGJ, +2QGJ, , and QGj, , = QGj, +2QG;j, ,

proved in Proposition 2.2 is t?—t—2=0. If we solve this quadratic equation, then we obtain the roots
a=2and S =-1.When we use the relation QGJ, =QJ, +iQJ,, and the Binet Formula of real Jacobsthal

quaternion QJ, given in (11), then we get

QGJ, =QJ, +iQJ, ,
1 ; oy 1 0 n-
:a—_B(AOL —BB )+|a—_l3<AOL 1—BB 1)
:OLL_B A" (o) —BB™ (B+i) ],
We can similarly derive the Binet Formula of QGj, by means of the relation QG;j, =Qj, +iQj, , and the Binet

Formula of real Jacobsthal-Lucas quaternion Qj, given in (11) as follows:
QGj, =Qj, +iQj,

=(3Aa" +3Bp")+i(3Aa"* +3BB"*)

=3Aa" " (a+1)+3BR" (B+i).



Arslan/Cumbhuriyet Sci. J., 41(1) (2020) 1-10

Theorem 2.7. (Cassini ldentity). Let QGJ, and QGj, be n" Gaussian Jacobsthal quaternion and Gaussian
Jacobsthal-Lucas quaternion, respectively. For n>1, the Cassini identities of QGJ, and QGj, are given in the
following form:

QGJ, ,QGJ, ., —QGJ,2 =(-1)"" 2"2(7+5e, +7e, +5¢, ) (i +2)(i-1)

QGj, ,QGj,., —QGj,? =(-1)" " 2"23* (7 +5e, + 7e, +5e, )(i +2)(i—1).

Proof. In order to derive Cassini identity for Gaussian Jacobsthal quaternionQGJ,, we will use its Binet
Formula. Thus,

2 1 n-2 . n-2 H 1 n . n .
QGJ, ,QGJ,., —QGJ, :G—_B[Aa (o +i)-Bp (B+|)]-a—_[3[Aa (a+i)-BB" (B+i)]

1 e |
—(G—_B[Aa (o+i)-BB ([3+|)]j
;[AZ 2 (i+2)" ~ABa" B (i-1)(i+2) - BAG'B"? (i-1)(i+2)+ BB (i-1) |
—%[Aza“-z (i+2)" ~ABa ™ (i-1)(i+2) ~ BAG" ™ (i-1) i +2) + BB (i-1)" |
:%[AB((QB)H—(OLB)H)JrBA((aB)n_l—(aB)n)J(i—l)(i+2)
(-1 "2

= [AB+2BA](i-1)(i+2)
=(-1)"" 2" (7+5¢, +7e, +5e,)(i+2)(i-1)
where AB = 7—11e, —e, +13e,, BA=7+13¢, +11e, +e, and AB+2BA=21+15e, +2le, +15e,.

As for proving the Cassini identity of QG;j,, we use its Binet Formula. Therefore,

QGj, ,QGj,.; ~QGj,” =[3Aa"* (a+i)+3BB"* (B+i) ][ 3Aa" (o +i)+3BB" (B+i)]
~[3ma" (i) +3Bp" (B+i) ]
=9 A% (i+2)" + ABa " (i-1)(i+2)+ BAG'B" (i-1)(i+2)+ BB (i-1)’ |
~9[ A% (i+2)" + AB" B (i1 (i+2) + BA B (i-1)(i+2) + B (i-1)’ |
:9[AB((0LB)H ~(aB)" )+ BA((aB) ~ (o)) ](-1)(i+2)
=9(-1)"" 2" [3AB+6BA](i-1)(i +2)

= (=1)"* 223" (7 +5e, + 7e, +5¢, ) (i +2) (i-1).
Proposition 2.8. Let n be a positive integer. Then we have the following summation formulas:

93] 1 e oo,
s=0

2 3206l -G,
s=0

Proof. 1) From the Binet Formula of QGJ, , we get
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: n n-s _ C n n-s 1 s-1 P\ s-1 H
0 sz QGJS—Z(S]Z — ﬂ[Aa (a+i)-BB*(B+i)]

s=0

_A(I+2) & ()0 sl_B(i—l)n[n
Y ;(Jz R I
A i+2)_1 n s s_B(i—l)_i n e
- a-p as—O[SJZ a-p ﬂ;(SJZ b
_A i+2)'£ n_B(i—l i n
Sy a(a+2) oy ,B(ﬂ+2)

A(i+2) e B(i-1) .
= a B =QGI,,.

o — o —

2) Using the Binet Formula of QG;j, , we conclude

i@znsqejs = Z(:Jz [3Aa“(a+i)+38,85’1( B+i)]

s=0 s=0

3A(i+2) :>>Ea(|—1)(ﬂ+2)n

=——(a+2)"+
= 3A(i+2)a” +3B(i-1) " = QGi,,.

a B

Considering the equations(14) and (15), one can see Gaussian Jacobsthal and Gaussian Jacobsthal-Lucas

quaternions satisfy a second-order linear recurrence relation. Thus we can derive the generating functions for
these quaternions. Consequently, we give the following theorem.

Theorem 2.9. Let QGJ, and QGj, be n™ Gaussian Jacobsthal quaternion and Gaussian Jacobsthal-Lucas
quaternion, respectively. The generating functions for QGJ, and QGj, are

QGJ,(1-1)+QGJt

at =
9(x1) 1-t-2t?
and
(x1) = 28k (=1 + QCIt
1-t-2t
where QGJ, :E+e1+(1+|)e +(3+i)e,, QGJ, =1+(1+i)e, +(3+i)e, +(5+3i)e,

QGj, = 2—%+(1+ 2i)e, +(5+i)e, +(7+5i)e, and QGj, =1+ 2i+(5+i)e, +(7+5i)e, +(17+7i)e,

are initial values for these quaternions.
Proof. Let g x t ZQGJ t be the generating function of QGJ, . Then with simple calculations,

tg(x,t) = ZQGJn(x)t"+l =QGJ t+QGJIt* +QGIt* +QGIt* +---+QGJ t" +
n=0
and
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2t°g(x,t) = > 2QGJ, ()" =2QGJ,t* + 2QGIt* + 2QG,t* +2QGIt° ++-++2QGJ t"? +- -
n=0

can be written. When we substract tg(x,t) and 2t*g(x,t) from g(X,t), then we get
(1-t-2t")g(x,t) =QGJ, +(QGJI, ~QGJ, )t =QGJ, (1-t)+QGJt .
So we get desired.

h(x,t) = Z:QGjn (x)t“ be the generating function of QG;j, . Since the second-order linear recurrence relation
n=0

of the Gaussian Jacobsthal-Lucas quaternions is the same as the Gaussian Jacobsthal-Lucas quaternions, then
we have

th(x,t) = > QGj, ()t™" = QGjst + QGjt” +QGj,t° +QGjt* +:+QGj, " +---
n=0
and

2t?h(x,t) =>_2QGj, ()t™? = 2QGj,t* + 2QGjt* + 2QGj,t* + 2QGjyt° +: -+ 2QGj t"* +---

n=0

Substracting th(x,t) and 2t*h(x,t) from h(x,t), then we obtain
(1-t—2t*)h(x,t) = QGj, +(QGj}, ~QGj, )t = QGj, (1-t) + QGj .

References

[1] Hamilton, W. R., Elements of Quaternions, Longmans, Gren and Co., London, 1866.
[2] Chou, J. C. K., Quaternion Kinematics and Dynamic Differantial Equation, IEEE Transaction on Robotics
and Automation, 8(1) (1992) 53-63.
[3] Conte, E., Biquaternion Quantum Mechanics, Pitagora Editrice, Via del Legatore, Blogna, Italy, 2000.
[4] Conway, A. W., The Quaternionic Form of Relativity, Phil. Mag., 24 (1912) 208-211.
[5] Gurlebeck, K., Sprossig, W., Quaternionic and Clifford Calculus for Physicists and Engineers,
John Wiley & Sons, Chichester, New York, 1997.
[6] Jolly, D. C., Isomorphism between matrices and quaternions, Lett. Nuovo Cimento., 44(2) (1985)
80-82.
[7] Negi, O. P. S., Bisht, S., Bisht, P. S., Revisiting Quaternion Formulation and Electromagnetism,
11 Nuovo Cimento, 113B(12) (1998) 1449-1467.
[8] Tanisli, M., Ozdas, K., Application of Quaternion Representation to Stanford Manipulator, Balkan Physics
Letters, 5(2) (1997) 65-68.
[9] Horadam, A. F., Jacobsthal and Pell Curves, Fibonacci Quart., 26 (1988) 79-83.
[10] Horadam, A. F., Jacobsthal Representation Numbers, Fibonacci Quart., 34 (1996) 40-54.
[11] Aydin, Torunbalci F., Yiice, S., A New Approach to Jacobsthal Quaternions, Filomat, 31(18) (2017)
5567-5579.
[12] Aydin, Torunbalci F., On Generalizations of the Jacobsthal Sequence, Notes on Number Theory and
Discrete Mathematics, 24(1) (2018) 120-135.
[13] Catarino, P., The Modified Pell and Modified k-Pell Quaternions and Octonions, Adv. Appl. Clifford
Algebras, 26(2) (2016) 577-590.
[14] Cimen, C. B., Ipek, A., On Pell quaternions and Pell-Lucas quaternions, Adv. Appl. Clifford Algebras,



Arslan/Cumbhuriyet Sci. J., 41(1) (2020) 1-10

26(1) (2016) 39-51.
[15] Halici, S., On Fibonacci Quaternions, Adv. Appl. Clifford Algebras, 22(2) (2012) 321-327.
[16] Halici, S., On complex Fibonacci Quaternions, Adv. Appl. Clifford Algebras, 23 (2013) 105-112.
[17] Horadam, A. F., Complex Fibonacci Numbers and Fibonacci Quaternions, American Math.
Monthly, 70(3) (1963) 289-291.
[18] Horadam, A. F., Quaternion recurrence relations, Ulam Quart., 2(2) (1993) 23-33.
[19] Szynal-Liana, A., Wloch, 1., A Note on Jacobsthal Quaternions, Adv. Appl. Clifford Algebr., 26(1) (2016)
441-447.
[20] Asci, M., Giirel, E., Gaussian Jacobsthal and Gaussian Jacobsthal-Lucas polynomials, Note on Number
Theory and Discrete Mathematics, 19(1) (2013) 25-36.
[21] Asci, M., Giirel, E., Gaussian Jacobsthal and Gaussian Jacobsthal-Lucas numbers, Ars Combin., 111
(2013) 53-63.
[22] Cerin, Z., Formulae for Sums of Jacobsthal-Lucas Numbers, International Mathematical Forum, 2(40)
(2007) 1969-1984.
[23] Dasdemir, A., On the Jacobsthal Numbers by Matrix Method, SDU Journal of Science (E-
Journal), 71 (2012) 69-76.
[24] Koshy, T., Fibonacci and Lucas Numbers with Applications, A Wiley-Interscience Publication,
2001.
[25] Koken, F., Bozkurt, D., On the Jacobsthal Numbers by Matrix Methods, International Journal of
Contemporary Mathematical Sciences, 3(13) (2008) 605-614.
[26] Jordan, J. H., Gaussian Fibonacci and Lucas Numbers, Fibonacci Quart., 3 (1965) 315-318.
[27] Pethe, S., Horadam, A. F., Generalized Gaussian Fibonacci Numbers, Bull. Austral. Math. Soc.,
33(1) (1986) 37-48.
[28] Stephan, J. S., Fundamental Representations and Algebraic Properties of Biquaternions or
Complexified Quaternions, Adv. Appl. Clifford Algebras, 21 (2011) 607-636.

10



