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Abstract:  
 

In the current study, logit, probit and tobit models which are commonly used 

among dependent dummy variable models are included. These models are also 

known as limited dependent variable models in the literature. Surveys, which are 

widely used in the field of social sciences, are carried out with limited options due 

to their nature. Linear regression models cannot be used in statistical estimations 

since they do not provide assumptions in limited analysis. In this case, different 

regression models may be preferred. The main purpose of this study is to compare 

the Tobit model used in censored data and the binary logit and binary probit 

regression models derived from this model. For this purpose, analysis were 

conducted on survey data. Logit, probit and Tobit model coefficient estimates and 

marginal effects were calculated. In addition, AIC and BIC values were obtained 

from the model selection criteria for these 3 models. 

  
 

1. Introduction 
 
Categorical models whose dependent or explained 

variables are coded as “0” and “1” are called as two-

ended or dummy dependent variable models. Models 

in which the dependent variable consists of answers 

having two categories such as whether the consumer 

buys a product or not, whether an individual 

participates in the labor market or not, yes-no, 

successful-unsuccessful, male-female can be given 

as examples. When qualitative variable models can 

take two such values, the first models that come to 

mind are linear probability model (LPM), logit and 

probit models. In the linear probability model which 

is one of these models the most obvious problem is 

that the estimated probability values fall outside the 

range of “0” and “1”. The problems encountered in 

linear probability models and detailed information 

about such models are explained by Gujarati [1] and 

Aldric and Nelson [2]. Logit and probit models are 

the most widely used models for estimating the 

functional relationship between dependent and 

independent variables in practice. 

 

Logit and probit models are also among the 

generalized linear models (GLM) family. If the 

latent variable is unobserved or the dependent 

variable is binary, this model cannot be estimated 

using the normal least squares method (OLS). 

Instead, the maximum probability estimate is used 

which requires assumptions about the distribution of 

errors. Often, the choice is between the normal errors 

in the probit model and the logistic errors in the logit 

model [3]. 

If independent variables can be observed in 

regression models where the range of change of the 

dependent variable is limited in any way, the 

censored model is a possibility. However, if 

observations outside a certain range are completely 

lost, there is a discrete model. Limited dependent 

variables are generally divided into two groups: 

censored and truncated regression models. The Tobit 

model is also known as the censored regression 

model. When the dependent variable is censored, 

least squares estimates give biased results. 

Therefore, when censored is applied to the 

dependent variable, the Tobit model allows us to 
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derive consistent and asymptotically efficient 

predictors. 

Tobit model, which is known as models where the 

dependent variable has a lower or upper limit, was 

first used by Tobin to analyze household 

expenditures by working on durable consumer goods 

considering the fact that expenditure cannot be 

negative. Tobin's idea was to change the probability 

function to reflect the probability of unequal 

sampling for each observation depending on whether 

the latent dependent variable rises or falls below the 

specified threshold [4]. This standard Tobit model 

was later developed. 

When it is known that the error terms for Tobit 

models are normally distributed, maximum 

similarity and other similarity-based processes yield 

consistent and asymptotically normally distributed 

estimators. However, when the assumed parametric 

form of the similarity function is incorrectly 

determined, the estimators become inconsistent [5]. 

In this study, the Tobit model used for censored data 

and two-option logit and probit models which are 

derived from censored dependent variable are 

emphasized. In the second part of the study, logit, 

probit and Tobit models are introduced; in the third 

section, the formulations of the marginal effects used 

in the coefficient interpretation of the models are 

shown and in the fourth section, the model selection 

criteria used in the application are given. In the fifth 

part of the study, model analyses were carried out 

based on the family income and expenditure survey 

data and the results of the analyses were explained at 

the end of the study. 

 

2. Dependent Dummy Variable Models 
 
In this study, logit, probit and tobit models are 

studied. These models are described below. 

 

2.1. Logit Model 
 

In the logit regression model, none of the 

assumptions (linear distribution of the dependent 

variable, withdrawal of independent variables from 

normal distribution, normal distribution of the error 

term and no relationship between error term values, 

etc.) involved in the linear regression analysis are not 

sought. Therefore, it provides researchers with 

considerable flexibility and has become a more 

preferred method. A general linear regression model 

can be written as expressed in Equation 1, where yi 

is a dependent variable and xi is an independent 

variable. 

 

𝑦𝑖 = 𝛼 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘 + 𝜀𝑖     (1) 

 

In the above model, 𝛼 constant term and 𝛽 are 

regression coefficients. This model can be predicted 

by classical OLS when the dependent variable is 

continuous. However, logit or probit regression 

methods are used in cases where the dependent 

variable is discrete [6]. 

The Logit model can be used to model the 

probability of a particular class or event with two 

states. Suppose that the unobservable or latent 

variable generated from the observed variable 𝑦𝑖 

between −∞ and +∞. is 𝑦𝑖
∗.  Values greater than 𝑦𝑖

∗ 

are considered 𝑦𝑖 = 1 and values less than or equal 

to 𝑦𝑖
∗  are considered  𝑦𝑖 = 0. The latent variable 𝑦𝑖

∗ 

is assumed to be linearly dependent on the observed 

𝑥𝑖 throughout the structural model. 𝑦𝑖
∗ is connected 

to the binary variable 𝑦𝑖  observed by the 

measurement equation in Equation 2: 

 

𝑦𝑖 = {
1,      𝑦𝑖

∗ > τ

0,       𝑦𝑖
∗ ≤ τ

     (2) 

 

Where τ is the breakpoint or threshold value. If  𝑦𝑖
∗ >

 τ is 𝑦𝑖 = 1 and  𝑦𝑖
∗ ≤ τ it takes 𝑦𝑖 = 0. The 

relationship between observed 𝑦𝑖 and latent 𝑦𝑖
∗ is 

shown in Fig. 1. 
 

 
 

Figure 1. Distribution of 𝑦𝑖
∗ according to 𝑥𝑖values 

 

Thus, when the dependent variable yi takes “0” and 

“1”, binary logit takes the name of the model. When 

the dependent variable is “1”, the probability is 

expressed by Equation 3: 

 

𝑃𝑖 = 𝐸(𝑦 = 1|𝑥𝑖) =
1

1+𝑒−(𝛼+𝛽𝑥𝑖) =
1

1+𝑒−𝑍𝑖
     (3) 

 

In this model, 𝑃𝑖 provides information about the 

argument 𝑥𝑖 while the first individual expresses the 

probability of making a particular choice. Thus 𝑃𝑖 

also takes values between “0” and “1”. The 

equations given in Equation 4 and Equation 5 can be 

written here: 
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𝑃𝑖 = 1 𝑏𝑦   𝑙𝑛 (
𝑃𝑖

1−𝑃𝑖
) = 𝑙𝑛 (

1

1−1
) = 𝑙𝑛 (

1

0
) = +∞   (4) 

 

𝑃𝑖 = 0 𝑏𝑦   𝑙𝑛 (
𝑃𝑖

1−𝑃𝑖
) = 𝑙𝑛 (

0

1−0
) = 𝑙𝑛 (

0

1
) = −∞   (5) 

 

To determine the logit function, 𝛼 and 𝛽 parameters 

cannot be directly predicted by OLS and Equation 6 

is used to estimate the model: 

 

1 − 𝑃𝑖 = 1 −
1

1+𝑒−(𝛼+𝛽𝑥𝑖)
= 1 −

1

1+𝑒−𝑍𝑖
     (6) 

 

If equations (3) and (6) are proportional, 

 
𝑃𝑖

1−𝑃𝑖
= 𝑒𝑍𝑖     (7) 

 

Equation 7 is obtained. It is also the odds or odds 

ratio (Odds Ratio, OR). Variables close to 1 among 

these OR values are not the factors that have a 

significant effect on the change of 𝑦. For OR values 

greater than 1, it is interpreted that the factor is an 

important risk factor provided that the coefficient is 

significant. Values close to zero indicate that the 

factor is an important risk factor, provided that the 

coefficient is significant, but that it is a negative 

factor that causes the y to take low values [7]. 

Equation 8 can be written by taking the natural 

logarithm of this model according to “e” base: 

 

𝐿𝑖 = 𝑙𝑛 (
𝑃𝑖

1−𝑃𝑖
) = 𝑍𝑖 = 𝛼 + 𝛽𝑥𝑖      (8) 

 

𝐿𝑖 is the difference rate logarithm and is linear with 

respect to both 𝑥𝑖 and parameters. Here 𝐿𝑖 is called 

the “logit model” [1]. This model is a semi-

logarithmic function. Therefore, the logit model is 

one of the best known models among generalized 

linear models. 

In order to estimate the parameters in the model, 

when the 𝐿𝑖 function, 𝑃𝑖 = 1 and 𝑃𝑖 = 0  are put in 

their places in logit 𝐿𝑖, then 𝑙𝑛( 1/0)  and 𝑙𝑛( 0/1) 

values are obtained which are insignificant. 

Estimates of the parameters in the 𝐿𝑖 function cannot 

be found by OLS but these parameters can be 

estimated by the maximum likelihood model (ML). 

However, the following points should be taken into 

consideration in research using logit model [8]: 

 

 All appropriate independent variables should 

be included in the model: Failure to include some 

variables in the model may cause the error term to 

grow and the model to be inadequate. 

 All unsuitable independent variables should be 

excluded: Inclusion of causally inappropriate 

variables in the model can complicate the model. 

 Observation should be done on the same 

individual once and there should be no repeated 

measurements. 

 The measurement error in the independent 

variables must be small: measurement errors should 

be small, no missing (missing) data. Errors can lead 

to bias in estimating coefficients and inadequacy of 

the model. 

 There should be no multicollinearity between 

the independent variables: The independent 

variables must not be interrelated. 

 There should be no extreme values: As with 

linear regression, extreme values can significantly 

affect the result. 

 

In the Logit model, the coefficients cannot be 

directly interpreted as the effect of a change in 

independent variables on the expected value of the 

dependent variable. For this reason, OR values or 

marginal effects can be calculated in applications. 

Furthermore, the sign of the coefficients indicates 

the direction of the relationship between the 

argument and the probability of occurrence of the 

event. 

The logit model is tested with the “chi-square test” 

and the existence of each independent variable in the 

model is tested by “Wald test statistics”. However, 

in cases where there is a classification and 

assignment process and where normal distribution 

assumption and continuity assumption are not 

prerequisite, data should be analyzed with logit 

model. 

 

2.2. Probit Model 
 

In the linear probability model, which is one of the 

qualitative preference models with qualitative 

variables that can take two values, the most obvious 

problem is that the predicted probability values fall 

outside the range of “0” and “1”. One of the models 

used to solve this problem is the probit model. This 

model is a nonlinear model in terms of coefficients 

that allows the probabilities to remain between “0” 

and “1”. When the dependent variable 𝑦𝑖  is binary, 

𝑃𝑖 is expressed in Equation 9: 

 

𝑃𝑖 = 𝐸(𝑦 = 1|𝑥𝑖) = ϕ(𝑥𝑖𝛽)     (9) 

 

Here ϕ is the cumulative distribution function and 𝛽 

maximum likelihood coefficients of the standard 

normal distribution. The probit model assumes that 

the basic dependent variable is normally distributed, 

whereas the 𝑦 dependent variable assumes that the 

variable is based on the logistic curve. Therefore, the 

tail regions of the logit cumulative distribution 

function of these two models are wider than those of 
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the probit model. Although these two models give 

similar results, it is not possible to directly compare 

the predicted main mass coefficients of the two 

models. However, they can be compared with a 

coefficient proposed by Amemiya [9]. 

Provided that it does not fall outside the range “0” 

and “1”, a model should be found so that the 

relationship between 𝑃𝑖 and 𝑥𝑖  is curvilinear: 

increases in 𝑥𝑖 also increase 𝑃𝑖. The illustration of 

the model with the above two features is given in 

Fig. 2: 

 

 
 
Figure 2. Logit and probit cumulative distribution 
 

The probit model utilizes the cumulative normal 

distribution function and is called the “normit 

model” in the literature. Since the probit model is 

based on the utility theory developed by [10], the 

model depends on the unobservable utility index (𝐼𝑖). 

If adapted as a model with a latent variable, the 

probit probability model based on the normal 

cumulative distribution function can be represented 

by Equation 10: 

 

𝑦𝑖
∗ = 𝐼𝑖 = 𝛼 + 𝛽𝑥𝑖      (10) 

 

Where 𝑥𝑖  is observable but  𝑦𝑖
∗  is not observable. 

As in the Logit model, if 𝑦𝑖 = 1  then  𝑦𝑖
∗ > 0, but if 

 𝑦𝑖
∗ < 0 then 𝑦𝑖 = 0. When assigning the result of 

the variable 𝑦𝑖, the value of τ used as the threshold 

value is generally taken as “0” and another number 

value can be used instead of zero [11]. Considering 

that 𝑦𝑖 has a threshold value that cannot be observed 

as it is and is expressed as  𝑦𝑖
∗, it can be said that if 

𝑦𝑖 exceeds the value  𝑦𝑖,
∗ the event will occur and if it 

does not, the event will not occur (Equation 11). 

 

𝑦𝑖 = {
1,               𝑦𝑖

∗ >  0

0,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (11) 

 

The case that 𝑦𝑖
∗ is less than or equal to 𝑦𝑖 is 

calculated from standardized cumulative distribution 

functions under the assumption of normality. If ϕ(Z) 

cumulative normal distribution function is defined as 

ϕ(Z) = P(Z ≤ z) for the normal standard variable 

Z, then Equation 12 and Equation 13 are expressed 

as follows: 

 

𝑃(𝑦𝑖 = 1) = 1 − ϕ (
−𝛼−𝑥𝑖𝛽

𝜎
)     (12) 

𝑃(𝑦𝑖 = 0) = ϕ (
−𝛼−𝑥𝑖𝛽

𝜎
)     (13) 

 

The variable Z here is a standardized normal variable 

with a mean of “0” and a variance of “1”. Thus, the 

model can be represented by Equation 14: 

 

𝐹−1(𝑃𝑖) = 𝐹−1(𝐼𝑖) = 𝛼 + 𝛽𝑥𝑖     (14) 

 

In this model, 𝐹−1 is the inverse of the normal 

cumulative distribution function. It is possible to 

state the following assumptions for the Probit model 

[2]. 

 

 𝑦𝑖 ∈ {0,1}, 𝑖 = 1,2, … , 𝑛  

 𝑃𝑖 = 𝐸(𝑌 = 1/𝑥) = ϕ(𝛽𝑥𝑖) (Unit normal 

cumulative distribution function)  

 𝑦1, 𝑦2 , … , 𝑦𝑛 are statistically independent 

 There is no exact or multicollinearity among 

all 𝑥𝑖 's  

 

Binary probit models WLSM (Weighted Least 

Squares Method), ML (Maximum Likelihood 

Method), minimum chi-square iterative can be 

estimated with WLSM. In addition, the coefficient 

of R2 in the probit model does not give us any idea 

as to whether the functional form of the model is well 

chosen. 

 

2.3. Tobit Model 
 

The sample where the information about the 

dependent variable is found only for some 

observations is known as censored sample. This 

model is also shown among models with a limited 

dependent variable because the dependent variable is 

limited. When censorship is applied to the dependent 

variable, the regression model is expressed in 

Equation 15: 

 

𝑦𝑖
∗ = 𝛽𝑥 + 𝜀𝑖   𝜀𝑖~N(0,1)     (15) 

 

This model is called “Tobit model”. 𝑦𝑖
∗  is the latent 

variable and τ is the censor point. Observed and 

censored for values greater than τ (Equation 16): 

 

𝑦𝑖 = {
𝑦𝑖

∗,    𝑖𝑓 𝑦𝑖
∗ >  τ

0,       𝑖𝑓 𝑦𝑖
∗ ≤ τ

     (16) 

 

In the traditional Tobit model in Equation 16 when 

τ = 0, some observations above 𝑦𝑖
∗ take the value of 

zero. That is, it is expressed as Equation 17; 
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𝑦𝑖 = {
𝑦𝑖

∗,      𝑦𝑖
∗ > 0

0,        𝑦𝑖
∗ ≤ 0

     (17) 

 

The observed variable is a mixture random variable 

with a probability mass 𝑃(𝑦𝑖 = 0/𝑥𝑖) = 𝑃(𝑦𝑖
∗ <

0/𝑥𝑖) = ϕ(−𝑥𝑖𝛽/𝜎)  on 0 and a continuum of 

values above 0 with density 𝑓(𝑦𝑖/𝑥𝑖) = 𝜎𝜙[(𝑦𝑖 −
𝑥𝑖𝛽)/𝜎]. The expected value of the observed 

variable is obtained by Equation 18 [12]: 

 

𝐸(𝑦𝑖/𝑥𝑖) = 0. 𝑃(𝑦𝑖
∗ ≤ 0/𝑥𝑖) + 𝑃(𝑦𝑖

∗/𝑦𝑖
∗

> 0, 𝑥𝑖). 𝑃(𝑦𝑖
∗ ≤ 0/𝑥𝑖) 

= [𝑥𝑖𝛽 + 𝜎
ϕ(−

𝑥𝑖𝛽

𝜎
)

𝜙(−
𝑥𝑖𝛽

𝜎
)
] ϕ (

𝑥𝑖𝛽

𝜎
)           (18) 

= 𝑥𝑖𝛽ϕ (
𝑥𝑖𝛽

𝜎
) + 𝜎ϕ (

𝑥𝑖𝛽

𝜎
)                           

 

Here, 𝜙 denotes standard normal distribution 

function and ϕ denotes the cumulative distribution 

function. When the data is limited below or above a 

certain limit, the distribution applied to the sample 

data becomes a mix of continuous and discontinuous 

distributions [13]. 

When it is known that the error terms for Tobit 

models are normally distributed (or have a generally 

parametric form distribution function), the 

maximum similarity and other similarity-based 

processes yield consistent and asymptotically 

normal distributed estimators. However, if the 

assumed parametric form of the similarity function 

is incorrectly determined, the estimators are 

inconsistent. The Tobit model uses a normal 

continuous dependent variable that is censored to a 

certain value. 𝑦 >  τ is an indicator variable equal to 

1, the observation is uncensored. If 𝑦 =  τ, that is, 

the observation is censored, then it is equal to 0. 

Since τ = 0 in the traditional Tobit model, 

likelihood function is given by Equation 19: 

 

𝐿 = ∏ [
1

𝜎
∅ (

𝑦𝑖−𝑥𝑖𝛽

𝜎
)]

𝑑𝑖𝑁
𝑖 − [1 − ϕ (

𝑥𝑖𝛽

𝜎
)]

1−𝑑𝑖
     (19) 

 

The log-likelihood function of the Tobit model is 

expressed in Equation 20: 

 

𝑙𝑛𝐿 = ∑ {𝑑𝑖(−𝑙𝑛𝜎 + 𝑙𝑛𝑁
𝑖=1 ∅ (

𝑦𝑖−𝑥𝑖𝛽

𝜎
)) + (1 −

𝑑𝑖)ln (1 − ϕ (
𝑥𝑖𝛽

𝜎
))}        (20) 

 

Here the possibility of log-likelihood consists of two 

parts. The first section corresponds to the classical 

regression for uncensored observations, while the 

second section corresponds to the possibilities of 

censoring an observation. The above probability 

function is a mixture of discrete and continuous 

components and the standard ML state cannot be 

applied. However, it can be shown that the Tobit 

estimator has the usual ML characteristics. Although 

the log-likelihood function of the Tobit model is not 

entirely concave, it has a single maximum. 

ML prediction of censored regression models gives 

strong predictions when the error term is normally 

distributed and has equal variance. However, several 

semi-parametric estimation strategies have been 

proposed that loosen the distribution assumption 

related to the error term [14]. 

The ML estimator is inconsistent in the presence of 

heteroscedasticity. [13] shows how to test different 

variance. Apart from the maximum similarity 

method, the following methods give estimates for 

the Tobit model. 

 

 Heckman's two-step method (Tobit II) 

 Nonlinear Least Squares method (NLLS) 

 Nonlinear Weighted Least Squares method 

(NLWLS)    

 Expectation-Maksimization method (EM)    

 

In case of heteroscedasticity, the Censored Least 

Absolute Deviation (CLAD) method is also 

recommended for the Tobit model [15]. 

There are 3 expected values for the censored model 

when τ = 0. 

 

o The expected value of the latent variable  𝑦𝑖
∗ 

(Equation 21): 

 

𝐸(𝑦𝑖
∗) = 𝛽𝑥𝑖     (21) 

 

o Expected value of (𝑦|𝑦 > 0) (Equation 22): 

 

𝐸(𝑦|𝑦 > 0) = 𝛽𝑥𝑖 + 𝜎𝜆(𝛼)     (22) 

 

Where 𝛼 = (τ − 𝑥𝑖𝛽)/𝜎𝑢 and (𝛼) =
∅(

𝑥𝑖𝛽

𝜎
)

ϕ(
𝑥𝑖𝛽

𝜎
)
  gives 

the inverse Mill’s ratio. 

 

o Expected value of y (Equation 23): 

 

𝐸(𝑦) = 𝛽𝑥𝑖 + ϕ (
𝑥𝑖𝛽

𝜎
) [𝑥𝑖𝛽 + 𝜎𝜆(𝛼)]     (23) 

 

3. Marginal Effects for Models 
 

For the classical least squares (OLS) regression 

model, marginal effects are coefficients and are not 

dependent on 𝑥. In the logit and probit model, the 

coefficients differ between models due to the 

functional form of the 𝐹 function. The relationship 

between coefficients is as follows [9, 16, 17]; 
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 𝛽𝐿𝑃𝑀 ≈ 0.25𝛽𝑙𝑜𝑔𝑖𝑡  (fixed term is beyond this) 

 𝛽𝐿𝑃𝑀 ≈ 0.25𝛽𝑙𝑜𝑔𝑖𝑡 + 0.5 (for fixed term) 

 𝛽𝑙𝑜𝑔𝑖𝑡 ≈ 4𝛽𝑂𝐿𝑆 

 𝛽𝑝𝑟𝑜𝑏𝑖𝑡 ≈ 2.5𝛽𝑂𝐿𝑆 

 𝛽𝑙𝑜𝑔𝑖𝑡 ≈ 1.6𝛽𝑝𝑟𝑜𝑏𝑖𝑡 

 

The approximate values given above work well in 

cases where the mean probability value for the event 

is not far from 0.5. When 𝐹(𝑥𝑖𝛽) > 0, coefficients 

and marginal effects are the same. 

 

3.1. Marginal Effect for Logit Model 
 

The marginal effect for the Logit model (𝑀. 𝐸𝑙𝑜𝑔𝑖𝑡) 

is expressed in Equation 24: 

 

𝑀. 𝐸𝑙𝑜𝑔𝑖𝑡 =
𝜕𝐸(𝑦𝑖

∗
|𝑥𝑖)

𝜕𝑥𝑖𝑘
=

𝑒𝑥𝑖𝛽

(1+𝑒𝑥𝑖𝛽)
2 𝛽𝑘     (24) 

 

3.2. Marginal Effect for Probit Model 
 

The marginal effect for the probit model 

(𝑀. 𝐸𝑝𝑟𝑜𝑏𝑖𝑡) is expressed in Equation 25: 

 

𝑀. 𝐸𝑝𝑟𝑜𝑏𝑖𝑡 =
𝜕𝐸(𝑦𝑖

∗
|𝑥𝑖)

𝜕𝑥𝑖𝑘
= ϕ(𝑥𝑖𝛽)𝛽𝑘     (25) 

 

3.3. Marginal Effect for Tobit Model 
 

For the Tobit model, marginal effects can be 

calculated in 3 possible cases [18]. 

 

 Marginal effect on latent dependent 

variable, 𝑦𝑖
∗: 

 

The interpretation of the parameters depends on the 

researcher. If the researcher is interested in the 

underlying linear relationship of the entire 

population, the slope coefficients 𝛽 can be 

interpreted as marginal effects with Equation 26 

[12]: 

 

𝑀. 𝐸𝑡𝑜𝑏𝑖𝑡 =
𝜕𝐸(𝑦𝑖

∗
|𝑥𝑖)

𝜕𝑥𝑖𝑘
= 𝛽𝑘     (26) 

 

Tobit coefficients show how a unit in an independent 

𝑥𝑖𝑘 variable changes the latent dependent variable. 

 

 For uncensored observations, the marginal 

effect of the expected value of the 𝑦 dependent 

variable is expressed in Equation 27: 

 

𝑀. 𝐸𝑡𝑜𝑏𝑖𝑡 =
𝜕𝐸(𝑦|𝑦 > 0)

𝜕𝑥𝑖𝑘
= 𝛽𝑘 {1 − 𝜆(𝛼) [

𝑥𝑖𝛽

𝜎
+

𝜆(𝛼)]}     (27) 

 

These coefficients show how the change of a unit in 

an independent 𝑥𝑖𝑘 variable affects uncensored 

observations. 

 

 For the marginal effect (censored and 

uncensored) of the expected value of the 

dependent variable; if the researcher is 

interested in the effect of the observed 

(censored) value on the expected value, the 

marginal effect [12, 13] is expressed in Equation 

28: 

 

𝑀. 𝐸𝑡𝑜𝑏𝑖𝑡 =
𝜕𝐸(𝑦𝑖|𝑥𝑖)

𝜕𝑥𝑖𝑘
= ϕ (

𝑥𝑖𝛽

𝜎
) 𝛽𝑘     (28) 

 

This marginal effect has an interesting 

decomposition [19] (Equation 29):  

 

(1) effect of fully observed values on expectations, 

(2) impact on the probabilities of the fully observed: 

 

𝜕𝐸(𝑦𝑖|𝑥𝑖)

𝜕𝑥𝑖𝑘
=

𝜕𝐸(𝑦𝑖
∗

|𝑦𝑖
∗ > 0, 𝑥𝑖)

𝜕𝑥𝑖𝑘
𝑃(𝑦𝑖

∗ > 0) +

𝜕𝑃(𝑦𝑖
∗>0)

𝜕𝑥𝑖𝑘
𝐸(𝑦𝑖

∗|𝑦𝑖
∗ > 0, 𝑥𝑖)          (29) 

(1)   
𝜕𝐸(𝑦𝑖

∗
|𝑦𝑖

∗ > 0, 𝑥𝑖)

𝜕𝑥𝑖𝑘
= 𝛽𝑘(1 − 𝜆2 − 𝛼𝑖𝜆𝑖) 

 

(2)   
𝜕𝑃(𝑦𝑖

∗>0)

𝜕𝑥𝑖𝑘
=

𝜕ϕ(
𝑥𝑖𝛽

𝜎
)

𝜕𝑥𝑖𝑘
= 𝛽𝑘𝜎−1(𝑥𝑖𝛽/𝜎) 

 

These marginal effects depend on the individual 

characteristics of the 𝑥𝑖 values and are shown as 

average effects in the sample population. 

 

4. Model Selection Criteria 
 

AIC and BIC are information criteria that allow 

comparison of both logit and probit models. 

Therefore, these are briefly explained below. [2] 

recommend that the use of certainty coefficient R2 

as a statitics should be avoided to explain and 

summarize the model in cases where there are 

models with a dependent variable that take two 

values. 
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4.1. Akaike Information Criterion (AIC) 
 

Akaike Information Criterion is used to select the 

most appropriate one among different models 

(Equation 30). In model comparisons, the model that 

always gives the lowest AIC value is preferred. 

 

𝐴𝐼𝐶 = −2𝑙𝑜𝑔(𝐿) + 2𝑘     (30) 

 

In cases where the number of parameters is larger 

than the sample size, AICc given by Equation 31 

proposed by Hurvich and Tsai should be used 

instead of AIC [20-22]. 

 

𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 + 2𝑘(𝑘 +
1

(𝑛−𝑘−1) 
     (31) 

 

4.2. Bayes Information Criterion (BIC) 
 

Akaike derived the BIC model selection criterion for 

selected model problems in linear regression [23]. 

Equation of Bayesian Information Criterion is 

expressed in Equation 32: 

 

𝐵𝐼𝐶 = −2𝑙𝑜𝑔(𝐿) + 𝑘𝑙𝑜𝑔(𝑛)     (32) 

 

The BIC differs from AIC in the second part, which 

depends on the sample size on the right side of the 

equation. However, in spite of the superficial 

similarity between AIC and BIC, it was later 

revealed that they differed within the Bayesian 

structure [24-25]. Among the existing models as 

with the Akaike Information Criterion, the model 

with the smallest BIC value is selected as the 

appropriate model. 

 

5.  An Application  
 

In this study, coefficient estimations and marginal 

effects were calculated with Stata 14 program for 

logit, probit and Tobit model and the models were 

compared according to AIC and BIC criteria. Family 

income and expenditure survey (FIES) data prepared 

by Philippine Statistical Institute (PSA) was used. 

This survey was conducted on 41544 people in 2015 

and consists of 60 variables. However, 9 variables 

were taken into consideration for comparison of 3 

models. Medical Care Expenditures were taken as 

the dependent variable. Independent variables; 

 

Age = Household Head Age 

Floor = House Floor Area 

NumLT5 = Members with age less than 5    

year old 

Bedrooms = Number of bedrooms 

Electricity = Electricity 

Car = Number of Cars, Jeeps, Vans 

Phone = Number of Cellular phones 

Computer = Number of Personal Computers 

 

Descriptive statistics related to these variables are 

given in Table 1. 

 

 

Table 1. Descriptive Statistics (𝑥𝑖) 

Variables Obs Mean Std. Dev. Min Max 

age 41544 51.38145 14.16608 9 99 
floor 41544 .4102157 .6943901 0 5 
numLT5 41544 55.60336 55.02316 5 998 
bedrooms 41544 1.788.008 1.105664 0 9 
electricity 41544 .8908146 .3118755 0 1 
car 41544 .0812151 .3467859 0 5 
phone 41544 1.905.738 1.55813 0 10 
computer 41544 .3150154 .7396982 0 6 

 

In Fig. 3, medical care expenditures of households 

are shown graphically. Household medical care 

expenditures of 1478 households out of 41544 

households have zero value. In other words, these 

households did not spend any medical care 

expenditure. 

 

5.1. Results for Logit Model 
 

In the analysis, the dependent variable showing 

whether the household is making medical care 

expenditure is included as the dummy variable. In 

the creation of the dependent variable, making 

medical care expenditure was defined as “1” and not 

making as “0”. When the binary logit model results 

are examined in Table 2, numLT5 and car variables 

are insignificant and the other variables are 

significant (p<0.05). 

According to the data used in the current study, 

model was determined as follows on the basis of the 

correlation between medical care expenditure and 

age, floor, numLT5, bedrooms, electricity, car, 

phone and computer, 
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Medical Care Expenditure (𝑦) 

Obs 41544 

Mean 7160.23 

Std. Dev. 26902,002 

Variance 723717726,384 

Skewness 15,049 

Kurtosis 357,474 
 

 

Figure 3. Histogram of Medical Care Expenditures and Some Statistics 

 

Table 2. Binary Logit Regression Model 

Medical Care Expenditure Coef. Std. Err. z P>t [95% Conf. Interval] 

age .0111197 .0019606 5.67 0.000 .0072769 .0149624 

floor .5587745 .052456 10.65 0.000 .4559627 .6615863 

numLT5 .0001076 .0006123 0.18 0.860 -.0010925 .0013078 
bedrooms .0794709 .0303316 2.62 0.009 .020022 .1389197 

electricity .3044671 .0743389 4.10 0.000 .1587655 .4501688 

car .089623 .1242187 0.72 0.471 -.1538412 .3330872 

phone .1921643 .0242938 7.91 0.000 .1445494 .2397793 

computer .1492993 .0592707 2.52 0.012 .0331308 .2654678 

constant 1.801.686 .120015 15.01 0.000 1.566.461 2.036.911 

N=41544   AIC= 12412.63  BIC=12490.34 
Log likelihood = -6197.3163    LR χ2 (8) =  369.55    prob> χ2=0.0000    Pseudo R2 = 0.0290 

 

 

𝑍 = 1.801.686 + 0.0111197 ∗ age + 0.5587745 ∗ floor + 0.0001076 ∗ numLT5 +  0.0794709
∗ bedrooms + 0.3044671 ∗ electricity + 0.089623 ∗ car + 0.1921643 ∗ phone
+ 0.1921643 ∗ computer 

 
All of the independent variables in our model have a 

direct relationship with the probability of occurrence 

(medical care expenditure). The obtained LR 

statistic was obtained according to 8 degrees of 

freedom χ2. Since the coefficients obtained in the 

Logit model estimates cannot be interpreted directly, 

marginal effects are calculated for the coefficient 

interpretation and the results are given in Table 3.  

 

 

Table 3. Marjinal Effect for Logit Regression Model 

Variable dy/dx Std. Err. z P>z [    95% C.I.   ] X 

age .0003341 .00006 5.73 0.000 .00022 .000448 513.815 

floor .0167882 .0015 11.22 0.000 .013855 .019721 .410216 

numLT5 3.23e-06 .00002 0.18 0.860 -.000033 .000039 556.034 
bedrooms .0023877 .00091 2.62 0.009 .000605 .004171 178.801 

electricity .0102547 .0028 3.66 0.000 .004767 .015743 .890815 

car .0026927 .00373 0.72 0.470 -.004617 .010003 .081215 

phone .0057735 .00071 8.12 0.000 .004379 .007168 190.574 

computer .0044856 .00177 2.53 0.011 .001012 .007959 .315015 
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Coefficient interpretation for logit model according 

to marginal effects: While other variables are 

constant; 1 unit increase in the household age 

increases the probability of medical care spending 

0.0003 units. Likewise, it is possible to increase the 

cost of medical care by 0.006 units according to the 

absence of a private phone. Having a private 

computer increases the probability of medical care 

spending by 0.02 units. 

 

 

Table 4. OR Binary Logit Regression Model 

MedicalCareExpenditure Coef. Std. Err. z P>t [95% Conf. Interval] 

age 1.011182 .0019826 5.67 0.000 1.007303 1.015075 

floor 1.748528 .0917207 10.65 0.000 1.577692 1.937864 

numLT5 1.000108 .0006124 0.18 0.860 .9989081 1.001309 
bedrooms 1.082714 .0328404 2.62 0.009 1.020224 1.149032 

electricity 1.355902 .1007963 4.10 0.000 1.172063 1.568577 

car 1.093.762 .1358657 0.72 0.471 .8574082 1.395269 

phone 1.21187 .0294409 7.91 0.000 1.155519 1.270969 

computer 1.16102 .0688145 2.52 0.012 1.033686 1.304041 

constant 6.059856 .7272739 15.01 0.000 4.789667 7.666891 

In logit models, besides marginal effects, OR values 

can be used for coefficient interpretation. Table 4 

shows the OR values. All of the variables identified 

in the study have OR values greater than 1. 

Therefore, since numLT5 and car variables are 

insignificant it can be interpreted that other variables 

are an important risk factor. 

 

5.2. Results for Probit Model 
 

Probit model is based on benefit theory and rational 

choice approach. According to the rational choice 

approach, individuals choose the ones that will 

benefit the most from the options they face. The 

dependent variable was defined as “1” for medical 

care expenditure and “0” for non-medical care 

expenditure as in the logit model. When the results 

of binary probit model are examined in Table 5, it is 

seen that as in logit model, numLT5 and car 

variables are insignificant and other variables are 

significant (p<0.05). 

 

 

Table 5. Binary Probit Regression Model 

MedicalCareExpenditure Coef. Std. Err. z P>t [95% Conf. Interval] 

age .0049271 .0008648 5.70 0.000 .0032322 .006622 

floor .2372132 .0214667 11.5 0.000 .1951393 .2792871 

numLT5 .0000412 .0002608 0.16 0.875 -.0004699 .0005522 
bedrooms .0341087 .0131134 2.60 0.009 .0084068 .0598105 

electricity .1506318 .0346956 4.34 0.000 .0826297 .2186339 

car .0415185 .050702 0.82 0.413 -.0578555 .1408926 

phone .0798869 .0102014 7.83 0.000 .0598925 .0998813 

computer .0586167 .0240934 2.43 0.015 .0113945 .1058389 

constant 113.478 .0547335 20.73 0.000 1.027504 1.242055 

N=41544   AIC= 12416.47   BIC=12494.18 
Log likelihood = -6199.2359     LR χ2 (8) =  365.71      prob> χ2=0.0000    Pseudo R2 = 0.0287 

Correlation between medical care expenditure and  other variables according to probit model was found 

to be as follows;
𝑍 = 113.478 + 0.0049271 ∗ 𝑎𝑔𝑒 + .2372132 ∗ 𝑓𝑙𝑜𝑜𝑟 + 0.0000412 ∗ 𝑛𝑢𝑚𝐿𝑇5 + 0.03410870𝑏𝑒𝑑𝑟𝑜𝑜𝑚𝑠

+ 0.1506318 ∗ 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 + 0.0415185 ∗ 𝑐𝑎𝑟 + 0.0798869 ∗ 𝑝ℎ𝑜𝑛𝑒 + 0.0586167
∗ 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟 

 

The obtained LR statistic was found to be significant 

according to χ2 value with 8 degress of freedom In 

the probit model, the numLT5 and car variables were 

found to be statistically insignificant similar to the 

logit model. On the other hand other variables were 

obtained significantly. Marginal effects were 

calculated following the probit model estimate. To 

interpret the coefficients of the probit model as in the 

Logit model; The mean of the independent variables 

was evaluated and marginal effects were used. 

According to this, when the age of the household 

increases by 1 year, the probability of spending on 

medical care increases by 0.005 units. 
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Table 6. OR Binary Logit Regression Model 

Variable dy/dx Std. Err. z P>z [    95% C.I.   ] X 

age .0003506 .00006 5.74 0.000 .000231 .00047 513.815 

floor .0168809 .00148 11.40 0.000 .013979 .019783 .410216 

numLT5 2.93e-06 .00002 0.16 0.875 -.000033 .000039 55.6034 
bedrooms .0024273 .00093 2.60 0.009 .0006 .004255 1.78801 

electricity .0119621 .00306 3.91 0.000 .005965 .017959 .890815 

car .0029546 .00361 0.82 0.413 -.004114 .010023 .081215 

phone .005685 .00072 7.94 0.000 .004282 .007088 1.90574 

computer .0041714 .00171 2.44 0.015 .000819 .007524 .315015 

Having electricty was found to lead to a 15 units 

increase in the medical care expenditure. 

 

5.3. Results for Tobit Model 

 

The results for the Tobit model are given in Table 7. 

The lower limit of the expenditure was zero and left 

censored. Accordingly, 1478 observations were 

censored from the left and 40066 observations were 

not censored. When the results for Tobit model are 

examined, it is seen that all variables are significant. 

 

Table 7. Tobit Regression Model 

Medical Care Expenditure Coef. Std. Err. z P>t [95% Conf. Interval] 

age 175.5149 9.6917 18.11 0.000 156.5189 194.5108 

floor 1279.26 193.7298 6.60 0.000 899.5455 1658.975 

numLT5 27.09796 2.705572 10.19 0.000 21.79498 32.40094 
bedrooms 1403.485 141.3207 9.93 0.000 1126.494 1680.477 

electricity 2512.529 442.4302 5.68 0.000 1645.356 3379.702 

car 7558.064 426.3697 17.73 0.000 6722.371 8393.758 

phone 605.0307 99.2418 6.10 0.000 410.5146 799.5467 

computer 3111.545 215.5903 14.43 0.000 2688.984 3534.107 

constant -12089.91 642.4839 -18.82 0.000 -13349.19 -10830.63 

/sigma 26558.79 93.95331   26374.64 26742.94 

Obs. summary: 1478     left-censored observations at MedicalCar~e<=0 
40066   uncensored observations 
 0           right-censored observations 

N=41544    AIC=932271.2     BIC=932357.5 
Log likelihood = -466125.59     LR χ2 (8) =  2847.34    prob> χ2=0.0000    Pseudo R2 = 0.0030 

The parameter given as sigma is the estimated 

standard error of the regression. The obtained 

26558.79 value can be compared with the mean 

square error (Root MSE = 26022) in the regression 

model. Correlation between medical care 

expenditure and other variables according to Tobit 

model was found to be as follows:  

 

 

𝑦𝑖 = −12089.91 + 175.5149 ∗ age + 1279.26 ∗ floor + 27.09796 ∗ numLT5 + 1403.485 ∗ bedrooms
+ 2512.529 ∗ electricity + 7558.064 ∗ car + 605.0307 ∗ phone + 3111.545 ∗ computer 

 

Interpretation of the coefficients for the Tobit model: 

Older people, people whose house has more square 

meters, households having more people under the 

age of 5, households whose houses have more 

rooms, households using more electricity, 

households having more personal phones, personal 

computers were found to spend more more money 

on medical care. If the household owner is one year 

older, then the expected or latent medical care 

spending increases by $175.5. Marginal effects for  

 

 

the Tobit model are given in Tables 8 and 9. 

Interpreting marginal effects for the censored 

sample: If the household owner is one year older, 

they spend an additional $ 74 more on medical care 

expenditure. Other coefficients can be interpreted 

similarl It is expected that the higher the number of 

household members the greater the expenditure. On 

the other hand the greater the number of individuals 

that make up the family the less likely the family will 

spend on medical expenses. 
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Table 8. Marjinal Effect for Tobit Regression Model (predict(e(0,.))) 

Variables dy/dx Std. Err. z P>z [    95% C.I.   ] 

age 73.66675 4.073.022 18.09 0.000 65.68377 81.64972 

floor 536.9284 81.32036 6.60 0.000 377.5434 696.3134 

numLT5 11.3735 1.136055 10.01 0.000 9.146874 13.60013 
bedrooms 589.0679 59.33781 9.93 0.000 472.7679 705.3679 

electricity 1054.554 185.7133 5.68 0.000 690.562 1418.545 

car 3172.255 179.1964 17.70 0.000 2821.037 3523.474 

phone 253.9422 41.658 6.10 0.000 172.2941 335.5904 

computer 1305.971 90.56519 14.42 0.000 1128.467 1483.476 

margins, dydx(*) atmeans  predict(e(0,.)) 

y.  

 

Table 9. Marjinal Effect for Tobit Regression Model (predict(ystar(0,.))) 

Variables dy/dx Std. Err. z P>z [    95% C.I.   ] 

age 104.6082 5.785614 18.08 0.000 93.26861 115.9478 

floor 762.4487 115.4805 6.60 0.000 536.111 988.7864 

numLT5 16.15059 1.613382 10.01 0.000 12.98842 19.31276 
bedrooms 836.4878 84.26893 9.93 0.000 671.3237 1001.652 

electricity 1497.486 263.7239 5.68 0.000 980.5971 2.014.376 

car 4504.664 254.5433 17.70 0.000 4005.768 5003.56 

phone 360.6029 59.15704 6.10 0.000 244.6572 476.5485 

computer 1854.505 128.631 14.42 0.000 1602.392 2106.617 

margins, dydx(*) atmeans  predict(ystar(0,.)) 

 

6. Conclusion and Suggestions 
 

In this study, logit, probit and Tobit models are 

compared using a questionnaire. When dummy 

variables that take two or more values are included 

in regression models as dependent variables, 

dependent variables indicate preference or decision. 

The most commonly used models among these 

preference models are logit and probit models. Both 

logit and probit model analyses are very similar and 

the probability estimates obtained are close to each 

other. However, while log-odds (likelihood ratios) 

are used in logit model analysis, the cumulative 

normal distribution of probit model is used. 

The structural models of Logit, probit and Tobit are 

similar, but the models are different. In the Tobit 

model, the observed values of the dependent variable 

are known when  𝑦𝑖
∗ > τ. In the probit and logit 

model, if only  𝑦𝑖
∗ > τ,  𝑦 value is “1”. However, if 

the data are below the threshold (τ), they cannot be 

known and the value 𝑦 is assumed to be zero. More 

information is available on the Tobit model. 

Therefore, it is expected that coefficient estimations 

obtained from Tobit model will be more effective 

than those obtained from probit model. 

When all the results obtained are evaluated together, 

it is more important that the coefficients give 

expected signs and the explanatory variables are 

statistically significant in binary models such as logit 

and probit than the goodness of fit measure. This 

value may be too low when R2 is calculated for these 

models. This will not be an indication that the model 

is weak. The reason for this is that most of the 

Pseudo R2 values calculated in qualitative preference 

models are based on similarity ratios, not variances 

explained. In the current study, Pseudo R2 = 0.0290 

for logit model, Pseudo R2 = 0.0287 for probit model 

and Pseudo R2 = 0.0030 for Tobit model. 

Logit and probit models can be compared with the 

log-likelihood value instead of R2. As the log-

likelihood value approaches zero (always negative), 

the model works well. In the current study, Log-

likelihood was found to be -6197.3163 for logit 

model, -6199.2359 for probit model and -466125.59 

for Tobit model. 

When the models were compared, the lowest AIC 

and BIC values (932271.2 and 932357.5) were found 

for the Tobit model. Therefore, it can be said that 

Tobit model is better than probit and logit models in 

estimating regression models used with censored 

data. In the current study, the variables found to be 

insignificant in logit and probit models were found 

to be significant in Tobit model. Even if the 

coefficients of the Logit model and the probit model 

are not the same, the information obtained from the 

marginal effects is quite similar. The Tobit model 

uses all data, including censored information, and 

allows for the estimation of consistent parameters. 
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